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Abstract

Ski jumping is one of the oldest winter sports and takes
also part in the Winter Olympics from the very start in 1924.
One of the components of the final score, which is used for
ranking the competitors, is the style score, given by five
judges. The goal of this work was to develop a prototype
for automatic style scoring from videos. As the main source
of information, the proposed approach uses the detected lo-
cations of the ski jumper body parts and his skis to capture
a full-body movement through the entire ski jump. We ex-
tended a method for human pose estimation from images to
detect also the tips and the tails of the skies and adapted it to
the domain of ski jumping. We proposed a method to utilize
the detected trajectories along with the scores given by real
judges to build a model for predicting the style scores. The
experimental results obtained on the data that we had avail-
able show that the proposed computer-vision-based system
for automatic style scoring achieves an error comparable to
the error of real judges.

1. Introduction
In recent years, technology has been entering the world

of sports at a great pace. In addition to the traditional appli-
cations used for improving the performance of athletes, and
the experience of spectators, very recently, various techno-
logical aids have been developed for increasing the fairness
of competitions by helping the referees to bring better de-
cisions. In this paper, we focus on the application of such
technological solutions in winter sports, more specifically
in ski jumping (Figure 1).

In this sport, the competitors are ranked according to
the score they achieve, which is compound of three com-
ponents: (i) the jump length, (ii) the jump style, and (iii) the
compensation for inrun length and wind conditions. The lat-
est component was introduced in 2009, and the wind speed
meters are used, along with the starting gate information,
to compensate for variable outdoor conditions when cal-
culating the ski jumper’s score. Also for measuring the

Figure 1: Proposed automated system for style scoring
based on evaluating the body and ski parts trajectories dur-
ing the ski jump.

jump length various technological aids can be used. It is
quite a well-defined problem; once the landing point of a
ski jumper is determined, the jump length can be calculated
using a suitable measuring device. Explicit rules exist on
how to perform this measurement, which can be straight-
forwardly implemented, providing that a (imaging) sensor
system enables sufficiently accurate measurement.

The remaining component, judging the jump style, is sig-
nificantly more difficult to automatize. The International
ski competition rules, defined by FIS [8], specify how the
judges should score the points for the jump style. However,
these rules are quite vaguely defined; with a few exceptions,
they do not contain clear quantitative descriptions, which
could be explicitly implemented in terms of, e.g., measur-
ing specified angles or distances. They are rather mostly
given qualitatively; i.e., the judging criteria include ”Ac-
tively utilisation of the air pressure”, ”A smooth movement
from the flight position to landing by straightening the up-
per body”, and ”With equal weight on both legs in upright
body position skiing safely through the fall line with arms
and legs in any relaxed position.” For many of these criteria,
it is therefore not possible to program the measuring tech-
nique. How to explicitly program the measurement of “util-
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isation of air pressure” or “skiing safely”? It is something
that humans, i.e., experienced judges can implicitly asses
easily. We, therefore, opted to learn this judging technique
from real judges by observing the athlete’s performance and
the style scores they were given. In addition, we wanted to
avoid any sensors that would have to be attached to the ski
jumpers or the skis. We wanted to develop a completely
non-intrusive technique for ski jump style scoring, by using
only information provided by a camera.

In this paper, we, therefore, present a computer vision
approach for style scoring. We utilise regular video se-
quences of ski jumps as recorded during the TV broadcasts.
In every frame, the ski jumper and the individual body parts,
as well as skies, are detected, as depicted in Figure 1. The
trajectories of the detected parts through time (image coor-
dinates in the video sequence) are then used to describe the
jump. They are then utilised to predict the score of the in-
dividual judges, based on the models build in the learning
stage. Several deep learning methods are used to perform
these tasks. By combining the predicted scores a virtual
score is calculated. Experimental results show that the ob-
tained virtual scores are in the range of the scores given by
the real judges, and demonstrate the potential of the pro-
posed approach for automating the style scoring.

2. Related Work
There has been a steady increase in research in the

ski jump domain in recent years, including works, that
use computer vision directly. To the best of our knowl-
edge, there is no research work published, except our prior
work [17], that would directly tackle the problem of style
scoring with computer vision methods, but similar problems
of distance measurement [6] and jump parameters estima-
tion [22, 15] are present in the literature.

The works [22] and [15] represent the closest contribu-
tions to our work. In [22] they automate the computation of
jump forces solely based on cameras, predominately based
on ski jumper’s posture, while in [15] they automate esti-
mation of different flight parameters (in terms of body-ski-
trajectory angles). The architecture of the system in [22]
is very similar to our work, by first detecting a ski jumper
using a MobileNet [10] and then estimating the pose with
Convolutional Pose Machines (CPM) [19]. The pose esti-
mation was split into separate steps of body pose estima-
tion (CPM) and the detection of ski parts (ski tips and ski
tails) using a Hough transformation. In comparison, in our
work, we extend the CPM [19] method to directly detect
body and ski parts. This was done in a similar fashion in
a recent work [15], where they have instead used Mask R-
CNN method [9]. The dataset used in [15] consisted out
of 10,070 annotated frames from 290 jumps, obtained via
professional camera setup.

Style scoring for ski jumping was already tackled in the

literature [2, 3, 14], but all the solutions are built around in-
ertial sensors and are thus not based on imaging data. In [2]
they used a similar approach of using CNNs to process ob-
tained trajectories, but the problem was simplified to mul-
tiple binary classification tasks of predicting whether a cer-
tain trajectory contains a specific error, which could cause
style point deductions. The work in [3] also focuses on es-
timating deductions points, but more accurately, by com-
paring the trajectory of a specific jump to the set of tra-
jectories in training data, which were free of that specific
error. Works that include inertial sensors [2, 3, 14] per-
formed small-scale experiments on at most 6 participants,
but included professional FIS accredited judges, thus mak-
ing available point deductions per separate flight stages.

Pose estimation represents the main input data for many
downstream tasks in ski jumping, in our work, as well as in
related work [22, 15], 2D pose estimation is used, but 3D
pose estimation from a single monocular RGB image repre-
sents another field of research, not yet applied to ski jump-
ing domain. The recent work in 3D pose estimation [5, 18]
has significantly improved the real-world applicability of
such methods, including with the real-time capability on
mobile devices [5] and with data captured in the wild [18].
3D pose information should significantly boost the perfor-
mance of downstream ski jump analysis tasks and presents
an open research problem. Our proposed proof-of-concept
modular architecture enables future adaptability to these
new advancements.

3. Methodology

In this section, we present the main building blocks of
the system for an automatic scoring of the ski jump style.
The system is designed in a modular fashion, which enables
the use of different methods. The architecture of the system
is presented in Figure 2 and consists out of three main mod-
ules, namely: (1) Ski jumper detector, (2) body and ski parts
detector, and (3) the method for scoring the style of a jump.
The input is represented by the jump video and the output
represents the style score of the jump. The separate modules
are presented in detail in the following subsections.

video frames

ski jumper
detector

body & ski
parts detector

style scoring
method

style
score

Figure 2: The architecture of the system for an automatic
ski jump style scoring.
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3.1. Ski Jumper Detection

The detection of the ski jumper serves for estimating his
location and size, the information which is used in the pose
estimation module. We utilised Faster R-CNN [16], which
we adapted to our custom dataset for ski jumper detection.
We initialized the method on the COCO [13] dataset and
adapted only the last fully connected layer to support ski
jumper detection. The obtained location and the size of the
detected ski jumper are then used to significantly speed up
the pose estimation method, by applying it only to the de-
tected region, on a single scale. The proposed approach
applies detection on every video frame separately, which
could be also replaced with a short-term visual tracker in a
production system.

3.2. Detection of Body and Ski Parts

The detection of body and ski parts represents one of
the main contributions of our work. We used the Convo-
lutional Pose Machines (CPM) [19] implementation from
OpenPose [4] as a baseline method for pose estimation. The
CPM [19] method is built around multi-stage CNN archi-
tecture, where the input into the first stage is just the im-
age, while in later stages, both the image, as well as inter-
mediate detections are used as an input. This enables the
method to model the interactions between different body
parts, in order to resolve the potential ambiguities and fine-
tune the positional accuracy of the detections. We used 6-
stage CPM [19] implementation and the outputs of different
stages for some of the body parts are depicted in Figure 3.
We can see that the symmetric body parts are poorly sep-
arated after the first stage, as the topological order of the
body parts and their interdependence is still not inferred.
One obvious example is the right ankle in Figure 3, which
is at first detected as the left ankle, but it then gets slowly
properly detected in the 4th and later stages, due to infer-
ence from the locations of the other body parts.

The body pose in a ski jump is quite unique and not
frequently encountered in the everyday life, therefore the
pretrained models, such as the ones trained on MPII [1] or
COCO [13], are not adequate for an accurate detection. We,
therefore, created a specific ski jump dataset, presented in
Section 4.1, and also extended the CPM [19] method with
the capability of detecting the tail and the front points of
the skies. The method takes input image regions of the
size of 368 x 368 pixels, centered around the detected ski
jumper, which also enables to scale the input, such that the
ski jumper represents 70% of the frame size input. The
ground truth data is represented by the location of the body
parts, presented in the top row of Figure 5. The CPM [19]
method augments this, by adding Gaussian peaks with small
variance (bottom row in Figure 5), which represents an ideal
belief map, to be learned by the method.

We extended the CPM [19] method with the capability of

nose                l. elbow
                   l. w

rist                    r. ankle                    l. ankle

stage

Figure 3: Output probability maps for individual body parts
(nose, left shoulder, left wrist, right ankle, left ankle) on
each stage (n=6) of the CPM [19] method.

detecting the ski parts, by treating them as additional body
parts. We can see in Figure 5 that the positions of skies
differ in different stages of the flight and that they also di-
rectly influence the pose of the ski jumper, thus making it
reasonable to threat the ski parts as additional body parts.

3.3. Ski Jump Style Scoring

The style of the ski jump is judged by 5 judges, where
each judge can give up to 20 points. The lowest ad the
highest scores are eliminated, thus style points may reach
a maximum of 60 points. The jump is evaluated from the
end of the take-off to the passing of the fall line in the out-
run and the jump must be judged based on the outer ap-
pearance of the succession of the jumpers movements, from
the aspect of precision (timing), perfection (carrying out
the movements), stability (flight-position, outrun) and gen-
eral impression [8]. According to the FIS rule book [8],
the ideal performance is concerned with utilisation of the
aerodynamic efficiency of the body and ski, the posture of
arms, legs, as well as ski position during the flight, and
their succession of the movements during landing and out-
run. The point deductions for the faults are specified in [8]
and should be reported separately for the flight, landing, and
outrun stages.

From the above description, we can notice that the rules
are vaguely defined and carry a lot of subjectivity. Never-
theless, the posture of the body and ski parts plays a cru-
cial role in scoring and is thus also used in our work as the
primary input. To obtain a style score, we use the informa-
tion of the locations of the body and ski parts during the ski
jump. To achieve that, we encode the information about the
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Figure 4: Visualization of the raw input into the method for the style scoring. The visualization shows the trajectories and
their confidence for three different jumps, where the locations are normalized according to the body mass center.

locations of the body and ski parts (X and Y coordinates),
along with their confidence estimation (C) in a 3D image-
like structure with 3 slices (X, Y, C), where the width of
the structure equals the number of body and ski parts and
height to the number of the image frames captured for the
jump. The coordinates of the body and ski parts are nor-
malized according to the center of mass of the body. The
encoding in the form of 3D tensors enabled the use of CNN
architectures for style scoring, which is widely used in ac-
tion recognition [7, 12, 21].

For style scoring, we used a similar approach to action
recognition work [7], based on 2D CNNs, but with a sim-
plified architecture consisting out of two convolutional lay-
ers, each followed by a max pooling layer, and two fully-
connected layers at the end. We cast the problem as a re-
gression problem, using an L2 loss, to predict the scores of
5 judges. The actual raw input into the method with the tra-
jectories and their confidence for the three example jumps
is presented in Figure 4. We can notice how detection con-
fidence nicely spots spurious detections (e.g. Y-axis for l.
ankle in jumps 1 and 2), effectively pushing confidence to
zero, which is also learned by the style scoring method.

4. Experiments and Results
In this section, we present the performed experiments

and results on a newly created dataset for ski jump style
scoring. We first present the dataset and the labels provided

in Section 4.1 and then the results for each of the solution’s
building blocks - ski jumper detection and pose estimation
results in Section 4.2 and style scoring in Section 4.3.

4.1. Ski Jump Dataset

A specific ski jump dataset for human pose estimation
was constructed for successful domain adaptation and in-
clusion of ski parts, not included in existing pose estimation
datasets [1, 11, 13]. We have also included the data that is
needed for ski jumper detection (bounding box) for each of
the frames and ski jump style scoring and other metadata
related to the particular competition and ski jumper. The
dataset represents the first of such kind in the ski jump do-
main and contains almost 1800 annotated images from the
2010 Winter Olympics in Vancouver. The prototype was
developed on the TV footage available on YouTube and we
have chosen a particular competition and footage due to
consistent camera movements. A production setup would
allow for (and probably require) a professional dedicated
camera setup which would significantly constrain the en-
vironment and our prototype can be viewed as the lower
bound of what is possible to achieve in a constrained, pro-
fessional environment, if available.

The distribution of annotated frames and jumps across
the ski jump hill types and train/test sets is presented in Ta-
ble 1. The training part of the dataset was constructed from
the first rounds of the competitions and the test set from
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(a) take-off (b) flight (c) landing (d) outrun

Figure 5: Example annotations for each part of the flight (take-off, flight, landing, outrun) - upper row and the actual input
into the pose estimation method CPM [19], with added 2D Gaussian peaks with small variance on the body and ski parts
locations.

the final rounds. For training (first rounds) we labeled 50
jumps from small and big ski jump hill types (100 jumps all-
together) and, for the test set, 30 jumps in the final rounds
(60 all-together), both using the footage from the main com-
petition. Additionally, we labeled 50 jumps from the first
round of the Nordic combined discipline (denoted with †)
on the small ski jump hill type in order to increase the vari-
ety of the ski jump style scores. We have provided 17 labels
for body and ski parts for each of the frames, as presented
in Figure 5 (upper row) and the distribution of frames over
the ski jump is presented in Figure 6. We see from the dis-
tribution that most of the frames were labeled in the first
and last phases of the jump, due to large body and ski parts
movements. During the flight, the position of the ski jumper
is much more stable, thus fewer annotations are needed to
achieve the satisfying performance of pose estimation.

Table 1: Distribution of annotated frames (detection) and
jumps (scoring) across jumping hills and train/test sets.

Ski jump hill Detection ∑ Scoring ∑
train test train test

big 679 116 795 50 30 80
small 868 98 966 50* + 50† 30* 130∑

1547 214 1761 100 + 50† 60 210
*Main competition data used for style scoring (Section 4.3)
†Additional data from Nordic combined discipline
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obmǒcje skoka

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

de
lěz
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učna-mala
test-mala
test-velika

train-big
train-small
test-small
test-big

pr
op

or
tio

n 
of

 a
nn

ot
at

io
ns

ski jump stage

la
nd

in
g

Figure 6: Distribution of annotations along the ski jump
and ski jump hill types. We divided the jump into 10 parts,
with specifically marked landing moment (averaged across
all the jumps).

We have also included additional information about the
competition, such as individual performances of the ski
jumpers using a unique FIS code, length of the jump, and
its associated style scores given by 5 judges.
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smǔckaZL

pr
op

or
tio

n 
of

 tr
ue

 d
et

ec
tio

ns

normalized distance

head
r. shoulder
l. shoulder
r. elbow
l. elbow
r. wrist
l. wrist
r. hip
l. hip
r. knee
l. knee
r. ankle
l. ankle
ski FR
ski BR
ski FL
ski BL

0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

pr
op

or
tio

n 
of

 d
et

ec
tio

ns

Intersection-over-Union (IoU)

(c)(b)

(a)

Figure 7: (a) The distribution of IoU values across the test set of frames for ski jumper detection. (b) An example of the
worst detection (IoU = 0.65). The red rectangle represents the ground truth location, while the green one represents the
predicted one. (c) PCKh value for different values of α for all body and ski parts.

4.2. Ski Jumper Detection and Pose Estimation

We evaluate the method for ski jumper detection and
pose estimation on our test set of frames (214 frames)
on small and big ski jump hills of the Vancouver Winter
Olympics. We have used Intersection-over-Union (IoU) as
a measure of our detector’s performance. The distribution
of IoU scores across test frames is presented in Figure 7(a).
The histogram shows that more than 80% of detections are
detected with IoU ≥ 0.8, with IoU = 1 representing the
perfect detection. The worst detection in terms of IoU score
is presented in Figure 7(b). We can see that the performance
of the detector sufficiently fulfills the performance require-
ments of the pose estimation method.

For pose estimation performance evaluation, we used the
PCK metric, first presented in [20]. The detection of the
individual body or ski part is deemed correct if it lies on
a distance from the ground truth location, that is less than
α ∗max(h,w), where h,w represents the height and width
of the frame around the person that we want to detect the
pose. α represents the threshold for that distance. MPII [1]
dataset uses a slightly different implementation of the PCK
metric (i.e. PCKh), which we also use in our work. PCKh
metric [1] uses the head of the person as a reference frame,
in order to reduce the influence of different body pose con-
stellations on the metric. The maximum distance for the
detection to be deemed correct is presented with the Equa-
tion 1. X1 and X2 are the locations of the diagonally oppo-
site rectangular corners of the head annotation. The actual
evaluation script provided for MPII [1] applies an additional

scaling factor of 0.6 and the threshold factor α set to 0.5.

max dist = α ∗ 0.6 ∗ ∥X1 −X2∥L2
(1)

Body and ski parts detection results are presented in Fig-
ure 7(c). We can see that the vast majority of the limbs are
detected in over 75% of the cases already at the threshold
value of α = 0.1, which is roughly equal to an error grade of
the 5% of the size of the ski jumper’s head. We can also no-
tice that the right part of the body is slightly less accurately
detected, which is due to the camera view from the left side.
Importantly, we can see that the detection of the ski parts is
equally accurate to the other limbs, which implies that the
method successfully modeled the newly designed constella-
tion of body and ski parts. Figure 9 presents the qualitative
result of limb and ski parts detection. We similarly notice
slightly worse detection of the right-hand side body and ski
parts and the ones, that are not so visible, due to the camera
setup and were also not labeled in a larger quantity. Such
false detections are learned to be filtered by using the confi-
dence information in the style scoring method.

4.3. Ski Jump Style Scoring

We evaluate the performance of style scoring by directly
predicting the scores of the 5 judges and then measuring
the absolute error against the scores given by them, as well
as by creating an additional virtual judge out of predictions
and then measuring its consistency with other judges. We
perform all of the evaluations for style scoring on a small ski
jump hill, due to consistent camera setting across jumpers.
Initially, we only use the training data from the first round
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Figure 8: Confusion matrix, obtained by predicting style scores that would be given by real-world judges (1-5), trained solely
on main competition data (a) and when combined with Nordic combined competition data (b). Histogram of the consistency
scores (CS) for our best performing model (Judge V†) and five real judges (c).

of the main competition (n=50 jumpers, marked with * in
Table 1) and perform the evaluation on the final round of
the same competition (n=30 jumpers).

In Table 2 we present the average absolute error scores
for predicting the scores of the individual judges (1-5) of the
proposed, as well as of the baseline approach (both rounded
to the closest half). As there is no other system available to
compare with, we compare it against the baseline average
predictor, i.e. the predictor that always predicts the average
of the scores given in the first round by a particular judge.
We can see that our method performs roughly twice as good,
while similarly only being based on the data from the first
round of the competition.

Table 2: Average absolute errors and standard deviations
of the proposed and a baseline approach against real judges
(1-5) and the measured consistency scores (CS) of the real
and virtual judges (Judge V).

Judge/Predictor Baseline Ours* CS

Judge 1 0.60 ± 0.35 0.30 ± 0.28 0.22 ± 0.19
Judge 2 0.66 ± 0.48 0.27 ± 0.28 0.10 ± 0.13
Judge 3 0.69 ± 0.44 0.33 ± 0.32 0.17 ± 0.21
Judge 4 0.54 ± 0.44 0.35 ± 0.32 0.22 ± 0.23
Judge 5 0.64 ± 0.52 0.32 ± 0.27 0.16 ± 0.17

Judge V* 0.27 ± 0.21
Judge V† 0.21 ± 0.20

*Only main competition data used for training (n=50)
†Additional training data from Nordic combined discipline (n=50+50)

For obtaining a virtual judge grade (Judge V), we first re-
move the lowest and the highest predictions out of the pre-
dictions of the scores for 5 judges and then use the closest-
half rounded average as the grade for the virtual judge - uv .
To evaluate the performance of the virtual judge, we mea-

sure the consistency of the virtual judge with other (real)
judges. Let it be ŷ = (y1, y2, y3, y4, y5) the ground-truth
judge scores for one particular jump. We first remove the
lowest and the highest scores then calculate an average
score y representing a reference score. For each of the
judges, we then calculate the absolute distance to the ref-
erence score di = |yi − y|, which can be thought of as a
consistency score with other judges. Then we also calculate
the consistency score of the virtual judge dv = |uv−y|. We
average the consistency scores for all the real judges and a
virtual one across all the jumps. We want the average con-
sistency score of the virtual judge to be similar or smaller,
compared to real judges.

The consistency scores (CS) are also presented in Ta-
ble 2. We can see that the virtual judge (Judge V*) achieved
a CS score, which is slightly worse, in comparison with real
judges. We then extended the training data of the virtual
judge (Judge V*) with the data from the Nordic combined
competition, which has much larger variability in terms of
style score ranges. We see that the performance signifi-
cantly improved (Judge V†), slightly overreaching 2 out of
5 real judges. This can be also seen in Figure 8c, where we
present the distribution of CS scores in the histogram. We
can notice that the performance of Judge V† is consistent
with other judges, while Judge 2 clearly represents the most
consistent judge.

In Figure 8a we present the predictions for the real-world
judges in a confusion matrix, where we can notice that in
the majority of the cases, the error is at most half a point.
We can also notice, that our score is usually a bit higher in
the case of lower ground truth style score and vice-versa,
which we attribute to the lack of border cases in our train-
ing data. These results improve significantly when we in-
troduce Nordic combined training data in Figure 8b. This is
due to the higher inclusion of border case examples, as the
average style score in the Nordic combined competition was
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approximately 1 point lower. This clearly demonstrates that
our prototype system clearly benefits from the introduction
of additional data.

5. Conclusion
In this work we presented a prototype computer vision

system for automatic ski jump style scoring using the TV
video footage. We created and annotated the image dataset
that was used for training the deep learning model to detect
the body and ski parts throughout the video sequence. We
proposed a method to utilize the detected trajectories of the
body and ski parts locations, along with the detection con-
fidences, to build a model for predicting the ski jump style
scores. This presents the first such implementation in the
research community and broader.

Despite vaguely and subjectively defined judging rules,
we demonstrate that the proposed system successfully
learns a model, based solely on time-series data of the body
and ski parts locations and existing reference style scores,
which performs on par with real-world judges on our ex-
perimental data. We showed that the results significantly
improve when the training set increases. We experimented
with the data in the dataset containing 210 jumps that we
were able to collect and annotate. If a large-scale data were
available, including several hills, competitions, judges, etc.,
the reliability of the obtained results would even increase.

The system is built in a modular fashion, which en-
ables future development and integration of newer or better-
performing methods. It could also utilize 3D pose estima-
tion methods, or even 3D pose information obtained using a
professional dedicated camera setup, placed around the ski
jump hill, if available, to make the system more view-point
invariant.

The system would also benefit from a more granular
scoring information in terms of deduction points per differ-
ent jump stages, which are currently not publicly available.
This would enable learning the models of the individual
jump stages, thus increasing the amount of data available
and the robustness and accuracy of the system. This would
also enable improved explainability of the given score and
serve also as a training system for younger generations of
ski jumpers.
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Figure 9: Example output detection heatmaps of body and
ski parts for different images (columns). Body and ski parts
are presented in rows for the same image, wherein in the
case of symmetry, the right part of the limb or ski is first
presented.
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Vodan, Robert Rozman, and Matjaž Kukar. Video meritve
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