
Attention Guided Cosine Margin to Overcome Class-Imbalance in Few-Shot
Road Object Detection

Ashutosh Agarwal*† Anay Majee ‡ Anbumani Subramanian ‡ Chetan Arora †

IIT Delhi†, Intel Corporation‡

{ashutosh.agarwal,chetan}@cse.iitd.ac.in†, {anay.majee,anbumani.subramanian}@intel.com‡

Abstract

Few-Shot Object Detectors (FSOD) are tasked to lo-
calize and classify objects in an image given only a few
data samples. Recent trends in FSOD research show the
adoption of metric and meta-learning techniques, which
are prone to catastrophic forgetting and class confusion.
To overcome these pitfalls in metric learning based FSOD
techniques, we introduce an Attention Guided Cosine
Margin (AGCM) that facilitates the creation of tighter and
well separated class-specific feature clusters in the clas-
sification head of the object detector. The Attentive Pro-
posal Fusion (APF) module introduced in AGCM minimizes
catastrophic forgetting by reducing the intra-class variance
among co-occurring classes. At the same time, the Co-
sine Margin penalty in AGCM increases the angular mar-
gin between confusing classes to overcome the challenge of
class confusion between already learned (base) and newly
added (novel) classes. We conduct our experiments on the
India Driving Dataset (IDD), which presents a real-world
class-imbalanced setting alongside popular FSOD bench-
mark PASCAL-VOC. Our method outperforms existing ap-
proaches by up to 6.4 mAP points on the IDD-OS and up
to 2.0 mAP points on the IDD-10 splits for the 10-shot set-
ting. On the PASCAL-VOC dataset, we outperform existing
approaches by up to 4.9 mAP points.

1. Introduction
Deep Convolution Neural networks (ConvNets) trained

on large-scale image datasets [4, 17], have shown exem-
plary performance on tasks like classification and object
detection [10, 24, 25]. A noticeable pitfall in ConvNets is
the requirement of large-scale annotated datasets to achieve
State-of-The-Art (SoTA) performance which is both expen-
sive and labor-intensive to acquire.

Recent developments in Machine Learning research have
shown significant progress in few-shot learning, especially
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Figure 1: Overview of our proposed Attention Guided Cosine
Margin approach (a) Visually similar classes are driven closer us-
ing our Attentive Proposal Fusion Module (APF). (+) represents
that the distance between corresponding RoI proposals should be
increased. (b) Our cosine margin cross-entropy loss increases the
inter-class margin among classes.

for image recognition [8, 9, 22, 26, 27, 29, 31] tasks
where algorithms learn to recognize images from limited
(few-shot) data samples. On the contrary, Few-Shot Ob-
ject Detection (FSOD) emerges as a relatively unexplored
and complex field as it encompasses both localization and
recognition tasks.

Early attempts in FSOD have been made by drawing
inspiration from two primary learning strategies in image
classification - Meta-Learning [12, 15, 36, 34] and Metric
Learning [28, 32, 37]. Benchmark experiments conducted
by these works show that metric learners significantly out-
perform meta-learners [33] in adapting to few-shot data.
However, the success of metric learners is seldom overshad-
owed by two dominant issues - class confusion and Catas-
trophic forgetting. Class confusion refers to misclassifying
a predicted Region of Interest (RoI) as an incorrect class
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label. This confusion is commonly observed among ob-
jects belonging to the newly added (novel) classes, which
are classified as one or more already learned (base) classes.
Catastrophic forgetting refers to the degradation in perfor-
mance of the base classes while adapting to novel classes.
The issues mentioned above become more evident in real-
world scenarios such as autonomous driving [2, 30] where
only a few data samples are available for detecting less-
occurring road objects with significant variations in struc-
ture and orientations.

Through extensive experimentation on several SoTA
FSOD methods, we observe significant overlaps between
feature representations of the base and novel classes. This
overlap can be attributed to increasing class confusion in
FSOD. On the other hand, catastrophic forgetting among
base classes is a result of FSOD techniques [28, 32] overfit-
ting to few-shot data samples.

We propose a metric-learning based Attention Guided
Cosine Margin (AGCM) approach that exploits the over-
lapping features among RoI proposals in FSOD to create
compact and well-separated feature clusters. As shown in
Figure 1, our novel Attentive Proposal Fusion (APF) mod-
ule computes the similarity in features between RoI pro-
posals and assigns higher attentive weights to similar RoIs
without referring to the class labels. Since similar RoIs
have a high likelihood of belonging to the same class, such
feature representations are driven closer in the embedding
space, thus forming tighter clusters. APF also ensures
that the object detector assigns equal representation to base
and novel classes, resulting in reduced catastrophic forget-
ting. We also introduce a cosine margin cross-entropy loss
(Lcos-margin in Figure 1) that overcomes the impact of class
confusion by increasing the angular margin between object
classes.

Existing works on FSOD demonstrate their performance
on canonical benchmarks like PASCAL-VOC [5], and MS-
COCO [17] which do not represent the real-world scenar-
ios leading to poor performance during deployment in chal-
lenging domains such as autonomous driving. On the con-
trary, we demonstrate the performance of our approach on
the recently introduced benchmark in FSOD, few-shot In-
dia Driving Dataset [20] as it presents a real-world, class-
imbalanced setting with large intra-class variance and inter-
class bias [30]. The main contributions of our work can be
summarized as:

• We introduce a simple and lightweight metric learning
based FSOD technique, Attention Guided Cosine Mar-
gin (AGCM), to overcome class confusion and catas-
trophic forgetting in driving scenes.

• We introduce a parameterless Attentive Proposal Fu-
sion module (APF) and a Cosine Margin Cross-
Entropy loss in AGCM to retain feature information

from base classes while generalizing to novel classes.

• We demonstrate upto 10% reduction in class confusion
and 18% improvement in catastrophic forgetting while
achieving SoTA performance on the challenging India
Driving Dataset (IDD) [30] and other FSOD bench-
marks like PASCAL-VOC [5].

2. Related Work
2.1. Few-Shot Object Detection

Classical approaches in FSOD adopt a traditional fine-
tuning strategy [1], or a distance metric learner [13] to ex-
tend the features of the already learned (base) classes to the
newly added (novel) classes. Recent approaches in FSOD
adopt meta-learning techniques on standard object detec-
tion methods using episodic training [12, 34, 36] to learn
class-specific feature sets to discriminate among classes.
Meta-Reweight [12] and MetaRCNN [36] learns an addi-
tional feature extractor network that converts class agnostic
features from the RoI head of the object detector to class-
specific features. Add-Info [34] introduces the feature dif-
ference between meta-train (support) and meta-test (query)
images as additional features, while [6] learns an Attention-
based Region Proposal Network (RPN) to guide a relation
network [29] to learn discriminative features for each class.
Very recent approaches in meta-learning like [38] encour-
ages sharing of information between support and query im-
ages to enhance class-specific feature sets, while CME [15]
establishes an equilibrium between class margins to reduce
class confusion and demonstrates better generalization to
novel classes. A characteristic feature of meta learners is the
use of attention mechanisms [6, 39] to identify the most dis-
criminative features for each class. This allows meta learn-
ers to retain the knowledge of base classes while generaliz-
ing to novel classes.

Despite their success in retaining the knowledge of
base classes, meta-learning approaches are compute and
memory-intensive. Surprisingly, metric learning strategies
provide a better generalization to novel objects without any
additional overheads. FsDet [32] learns generalizable fea-
ture embeddings by introducing a cosine-similarity-based
classifier. FSCE [28] adopts a contrastive training strat-
egy while SRR-FSD [40] uses the semantic relationships
between word embeddings from category labels to show
improvements on novel class performance. PNPDet [37]
decouples the base and novel class predictors and learns
a cosine-similarity classifier that partially resolves catas-
trophic forgetting and class confusion. Unfortunately, met-
ric learners suffer from extreme catastrophic forgetting as
they tend to overfit on the novel classes. GFSD [7] pro-
poses a Bias-Balanced RPN to prevent overfitting on met-
ric learners and introduces a Re-detector network that de-
couples the base and novel class predictors. Although this
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Figure 2: The architecture of our proposed AGCM approach: AGCM follows a metric learning strategy and is applied
during the few-shot adaptation stage (b) after base training (a), on K shot samples from base and novel categories. We
introduce an Attentive Proposal Fusion (APF) module and a cosine margin cross-entropy loss to overcome class confusion
and catastrophic forgetting in FSOD.

technique reduces the impact of catastrophic forgetting, it
fails to generalize to novel classes. Our work introduces
attention-based proposal level fusion into metric learning
based FSOD technique to help retain information from base
classes, preventing catastrophic forgetting.

The authors in [20] demonstrate the application of
FSOD in the context of autonomous driving to detect less-
occurring road objects. Our work adopts this problem def-
inition and demonstrates a reduction in catastrophic forget-
ting while showing significant improvements in the perfor-
mance of novel classes.

2.2. Margin based Feature learning

Margin-based learning has been applied to various com-
puter vision tasks [19, 21, 35] to better discriminate be-
tween objects that show a significant overlap in visual fea-
tures. Such penalties have proven to be effective in reducing
class confusion for the few-shot classification [14, 18] task
by introducing an additional angular margin between fea-
ture clusters. While similar approaches have been recently
adopted in meta-learning based FSOD techniques [15, 38],
the margin-based penalty is yet to be explored for metric
learners. To the best of our knowledge, we are the first
to introduce a simple and effective margin-based penalty in
metric learning based FSOD techniques through the Cosine
Margin Cross-Entropy loss described in section 3.2.2.

3. Method
In this section, we define the problem for Few-Shot Ob-

ject Detection and describe the architecture of our proposed
Attention Guided Cosine Margin (AGCM) approach.

3.1. Problem Definition

We define a proposal based few-shot object detector
h(I, θ) consisting a class-agnostic component f(I, θf ) and

a class-specific component C(f, θc) as shown in figure 2(b),
such that h(I, θ) = C(f(I, θf ), θc). Here, I represents
the input images and θ, θf and θc represents the respec-
tive model parameters for the components of the few-shot
object detector. We define a metric learning based FSOD
training strategy as in [20] which proceeds in two stages:
base training and few-shot adaptation. During base training
h(I, θ) learns to detect objects from base classes (Cbase)
using a large scale dataset Dbase. In the few-shot adap-
tation stage, h(I, θ) is fine-tuned using images in Dnovel

consisting of classes Cbase ∪ Cnovel with only K instances
from N classes, such that |Cbase ∪ Cnovel| = N . The
goal for h(I, θ) is to boost performance on novel classes in
Dnovel with minimal degradation in performance of classes
in Dbase.

3.2. AGCM: Attention Guided Cosine Margin

The proposed Attention Guided Cosine Margin (AGCM)
approach adopts a novel metric learning strategy to reduce
the intra-class variance and inter-class bias among object
classes by encouraging orthogonality among class-specific
feature clusters [23]. As shown in Figure 2(b) the AGCM
is applied only during the few-shot adaptation stage to the
output of the class-agnostic branch of the object detec-
tor f(I, θf ) to guide the class-specific component C(f, θc)
through two key components. We first apply a novel Atten-
tive Proposal Fusion (APF) to the feature representations of
individual RoI proposals in P = f(I, θf ). The feature in-
formation in each RoI proposal Pi is propagated across all
proposals Pj ∈ P and is fused with those that have high
visual similarity with Pi in a label-free fashion. Secondly,
we introduce a Cosine Margin Cross-Entropy loss term to
the classification head of the object detector C(f, θc). This
loss term maximizes the angular separation between fea-
ture clusters to reduce inter-class bias among classes. We
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describe the formulations of the APF and Cosine Margin
Cross-Entropy loss in sections 3.2.1 and 3.2.2 respectively.
The combined effect of these two modules results in a sig-
nificant reduction in class confusion and catastrophic for-
getting, as shown by our experiments in section 4.

3.2.1 APF: Attentive Proposal Fusion Module

The scarcity of data samples in FSOD techniques leads to
the formation of non-discriminative feature sets, especially
for the novel classes. The bias associated with few-shot
data has been identified in [3] as sample bias for image
recognition tasks. The authors in [3] propose a transductive
meta-learning strategy by propagating feature information
between labeled few-shot samples (support set) and unla-
belled test data samples (query set). We adopt a similar di-
rection through the Attentive Proposal Fusion (APF) with
modifications towards metric learning based FSOD tech-
niques.

The class-agnostic component of the object detector
f(I, θf ) produces feature representations from M RoI pro-
posals, denoted by P . Our proposed APF module is applied
to individual RoI proposals in P to maximize the class-
specific feature information by fusing the low-level features
from RoI proposals pi ∈ P with the weighted sum of the re-
maining M − 1 proposals as described in equation 1. Here,
Φ (pi) represents the proposal pi after feature fusion and
wij is the attentive weight between the ith and the jth RoI
proposal.

Φ (pi) = α · pi + (1− α)
∑

j∈P,j ̸=i

wij · pj (1)

As described in (2) the attentive weights (wij) represents
the likelihood of the features in the ith RoI proposal to be
similar to the features in the jth proposal. It involves a non-
linear similarity (cosine similarity [9] in our case) between
pi and pj denoted by cos(pi, pj). The choice of this metric
is described in detail in section 5.2.

wij =
ecos(pi,pj)∑

k ̸=i,k∈P e
cos(pi,pk)

(2)

The formulation of Φ (pi) introduces a hyper-parameter α
which controls the proportion of low-level features that are
fused into pi from remaining RoI proposals. The value of
α is always kept in the range [0.5, 1.0] to encourage the re-
tention of a significant portion of the features of the original
RoI. More details on the choice of α is provided in section
5.2.

The information exchange among RoI proposals encour-
ages the grouping of similar feature representations without
the ground truth label information. This facilitates the re-
duction in intra-class bias and chances of model overfitting
as all classes in the training dataset are equally represented

in the embedding space. Consequently, we observe a di-
minishing effect on catastrophic forgetting of base classes
as shown in section 5.4.

3.2.2 Cosine Margin Cross-Entropy Loss

Although the application of label-free feature fusion (APF
module) helps in forming tighter feature clusters, it may re-
sult in the clustering of features from heterogeneous classes
that show high visual similarities. It also fails to ensure suf-
ficient margin among co-occurring object classes like mo-
torcycle and rider, leading to elevated class confusion.

Based on the recent success of margin based penalties in
auxiliary vision tasks (section 2.2), we introduce a negative
angular margin based loss function in AGCM with suitable
modifications for metric learning based FSOD techniques.
In contrast to a positive margin, a negative margin helps
establish an equilibrium between the distinguishability of
classes and the performance of novel classes [18].

We apply the cosine margin-based objective in the few-
shot adaptation stage, to the output logits of the classifica-
tion head in the FSOD model, Z = C(ϕ, θc), where θc
represents the parameters of the classifier head and ϕ is ob-
tained by applying APF module on the RoI features from
the class-agnostic branch f(I, θf ). The objective func-
tion described in equation 3 through 4 maximizes the log-
likelihood of the angular distance between the logit zi ∈ Z
corresponding to the ground truth label yi and the normal-
ized weight vector of the corresponding class Wyi

.

Lcos-margin = − 1

M

M∑
i=1

l(zi) (3)

lzi = log
eβ(cos(zi,Wyi)−1yi ̸=backm)

eβ(cos(zi,Wyi)−1yi ̸=backm) +
∑N

j=1,j ̸=yi
eβcos(zi,Wj)

(4)
An angular margin m is applied to this objective to increase
the separation between feature clusters, and a scaling fac-
tor β is introduced which is set to a constant value of 20
[18]. Also, we do not apply the angular margin to logits of
the background class to prevent loss of information during
model training as it might contain features belonging to one
or more object classes in Cbase ∪Cnovel. The choice of the
value of margin m is described in section 5.2.

3.2.3 Training Procedure

As defined in section 3.1 the model h(I, θ), involves a
Faster-RCNN [25] based object detector and trained in two
distinct stages. We adopt the training strategy of FsDet [32]
during the base training stage, and train h(I, θ) till con-
vergence. We use the standard loss function used in [25]
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Table 1: Results on Few-Shot India Driving Dataset: Few-shot object detection performance (mAP50) on IDD-OS and
IDD-10 splits from India Driving Dataset using 5 and 10 shot samples.

Data-split IDD-OS IDD-10 (Split 1) IDD-10 (Split 2)
Shots (K) K=5 K=10 K=5 K=10 K=5 K=10

Method
Metric

mAPbase mAPnovel mAPbase mAPnovel mAPbase mAPnovel mAPbase mAPnovel mAPbase mAPnovel mAPbase mAPnovel

Meta-RCNN [36] 24.1 4.3 24.0 6.4 23.2 5.7 24.6 7.8 18.1 7.4 18.2 6.7
Add-Info [34] 36.4 18.2 37.1 28.8 33.5 5.2 33.7 10.0 31.3 7.7 32.1 9.5
FsDet w/ cos [32] 38.2 23.6 47.8 39.8 33.5 13.1 31.2 22.1 34.2 14.8 39.7 22.8
FSCE [28] 38.1 39.1 45.5 51.6 23.6 9.2 31.3 16.4 30.6 9.1 37.7 14.7
AGCM (ours) 42.1 45.5 51.5 58.0 37.2 16.0 45.0 22.1 36.2 15.2 42.3 24.8
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Figure 3: Qualitative results from the few-shot India Driving Dataset: We contrast the performance of AGCM against
SoTA FSOD approach, FSCE for novel classes in the IDD-OS split for the 10-shot setting. FSCE suffers from extreme
catastrophic forgetting and is unable to adapt to large intra-class and inter-class variations in IDD. Such issues are shown to
have been overcome by the proposed AGCM approach.

comprising of a binary cross-entropy loss at the Region
Proposal Network (RPN) to separate foreground and back-
ground proposals Lrpn, a cross-entropy loss for bounding
box classifier Lcls and a smoothed L1 loss to localize the
bounding box deltas Lreg .

In the few-shot adaptation stage, we adopt the stronger
baseline presented by FSCE [28] in which the network
backbone remains frozen, the number of proposals gener-
ated by the RPN is doubled, and the number of RoI features
used for loss computation is halved. This is done to fa-
cilitate the incorporation of the low-confidence predictions
from the novel classes during the initial training iterations.
We add our APF module to the classifier head of h(I, θ)
and replace the cross-entropy loss Lcls with our proposed
cosine margin cross-entropy loss Lcos-margin as shown in (5).

L = Lrpn + Lcos-margin + Lreg (5)

4. Experiments

In this section, we describe our experimental setup and
compare the results of our proposed method with exist-
ing FSOD techniques on multiple benchmark datasets. We
adopt the standard evaluation criterion in FSOD [32, 12]

and report the Mean Average Precision (mAP ) at 50% In-
tersection Over Union (IoU) for all our experiments.

4.1. Datasets

We evaluate our proposed AGCM approach on two few-
shot object detection datasets - India Driving Dataset (IDD)
[30] and PASCAL-VOC [5] datasets.

Indian Driving Dataset (IDD) comprises of 15 object
classes in the IDD-Detection dataset consisting of driving
scenes on Indian roads. We adopt the data splits proposed in
[20] to evaluate our AGCM approach. The dataset consists
of two few-shot data splits -

• IDD-OS consists of 14 classes representing an open-
world deployment setting with 10 base classes and 4
novel classes. The novel classes (Tractor, Street Cart,
Water tanker and Excavator (JCB)) have been obtained
by expanding on the vehicle fallback category in IDD.

• IDD-10 consists of 10 classes forming 2 few-shot data
splits. Each split consists of 7 base classes and 3 ran-
domly chosen novel classes. The authors of [20] create
two representative splits, referred to as split 1 (bicycle,
bus and truck / others) and split 2 (auto-rickshaw, mo-
torcycle, truck/ others) based on the choice of novel
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Table 2: Quantitative analysis on PASCAL-VOC dataset: Few-shot object detection performance (mAPnovel) on novel
class splits of PASCAL-VOC dataset. We tabulate results for K=1, 5, 10 shots from various SoTA techniques in FSOD. *
indicates that the results are averaged over 10 random seeds. † indicates a different evaluation strategy (N-way, K-shot meta
testing).

Method Meta/ Metric
Learner

Backbone Novel Split 1 Novel Split 2 Novel Split 3

K=1 5 10 1 5 10 1 5 10
† Meta-RCNN [36] Meta FRCN-R101 19.9 45.7 51.5 10.4 34.8 45.4 14.3 41.2 48.1
†Meta-Reweight [12] Meta YOLO V2 14.8 33.9 47.2 15.7 30.1 40.5 21.3 42.8 45.9
†MetaDet [33] Meta FRCN-R101 18.9 36.8 49.6 21.8 31.7 43.0 20.6 43.9 44.1
†Add-Info [34] Meta FRCN-R101 24.2 49.1 57.4 21.6 37.0 45.7 21.2 43.8 49.6
†CME [15] Meta YOLO V2 17.8 44.8 47.5 12.7 33.7 40.0 15.7 44.9 48.8
PNPDet [37] Metric DLA-34 18.2 - 41.0 16.6 - 36.4 18.9 - 36.2
FsDet w/ FC [32] Metric FRCN-R101 36.8 55.7 57.0 18.2 35.5 39.0 27.7 48.7 50.2
FsDet w/ cos [32] Metric FRCN-R101 39.8 55.7 56.0 23.5 35.1 39.1 30.8 49.5 49.8
FSCE [28] Metric FRCN-R101 41.0 57.9 57.8 27.3 44.4 49.8 40.1 53.2 57.7
AGCM (ours) Metric FRCN-R101 40.3 58.5 59.9 27.5 49.3 50.6 42.1 54.2 58.2
∗FsDet w/ cos [32] Metric FRCN-R101 25.3 47.9 52.8 18.3 34.1 39.5 17.9 40.8 45.6
∗FSCE [28] Metric FRCN-R101 28.2 46.2 54.1 16.5 35.9 45.3 22.2 45.4 49.4
∗AGCM (ours) Metric FRCN-R101 28.3 49.0 54.8 17.2 38.5 47.0 22.9 46.5 51.5

classes. We adopt these splits in our work.

We evaluate our approach on the complete validation set of
IDD for 5 and 10 shot settings.

PASCAL-VOC [5] dataset consists of 20 classes, out of
which 15 are considered as base and 5 as novel classes. The
novel classes are chosen at random giving rise to three data
splits namely, split-1 (bird, bus, cow, motorbike, sofa), split-
2 (aeroplane, bottle, cow, horse, sofa) and split-3 (boat, cat,
motorbike, sheep, sofa). Following previous works [12],
we use the combined VOC 07+12 datasets for training and
evaluate our models on the complete validation set of VOC
2007 for 1, 5, and 10 shot settings.

4.2. Experimental Setup

The architecture of the proposed AGCM is based on the
Faster-RCNN [25] model with a ResNet-101 [11] and Fea-
ture Pyramidal Network [16] based backbone. For IDD, the
input batch size to the network is set to 2 and 6 in the base
training and few-shot adaptation stages respectively. How-
ever, for PASCAL-VOC, a batch size of 16 is used for both
stages. The input resolution is set to 1920 x 1080 pixels
for data splits in IDD, while it is set to 800 x 600 pixels for
PASCAL-VOC. Following the training procedure described
in section 3.2.3, we train our model till convergence with a
learning rate of 0.001 for both base and few-shot adaptation
stages. For IDD, base-training is done for 50k iterations
with a pretrained imagenet [4] backbone, while the train-
ing procedure of FSCE [28] is followed for PASCAL-VOC.
Standard data augmentation like horizontal flip and random
crop are applied for both datasets. During the few-shot
adaptation stage, we adopt the stronger baseline of FSCE
and set the number of RoI proposals to 2000 and the num-
ber of RPN proposals to 256. The hyper-parameters used in

the formulation of AGCM, namely α, margin (m), and dis-
tance, are chosen through ablation experiments described
in section 5. Results from existing methods are a repro-
duction of the algorithm from publicly available codebases
along with hyper-parameter tuning on IDD datasplits. Un-
like other FSOD benchmarks, all our experiments are per-
formed on a single GPU with 12GB memory. More details
can be found in the supplementary material.

4.3. Results on India Driving Dataset

We follow the benchmark experiments in [20] and com-
pare the performance of our AGCM approach against State-
of-The-Art (SoTA) meta [34, 36], and metric learners [32]
on IDD-OS and IDD-10 splits. Additionally, we extend
this benchmark by reimplementing the results of the cur-
rent SoTA approach in FSOD, FSCE [28] on IDD datas-
plits. Table 1 records both the base and novel class per-
formance of various approaches in contrast to our AGCM
appraoch. For IDD-10 splits, our AGCM outperforms ex-
isting SoTA methods by an average of 1.5 mAP points in
split-1 and 1.2 mAP points in split-2 on novel classes. For,
IDD-OS split, AGCM outperforms the SoTA metric learner,
FSCE, by 6.4 and 6 mAP points for the 5 and 10 shot set-
tings, respectively. Alongside the significant improvements
in novel class performance, our AGCM approach achieves
the highest retention in base class performance, which ef-
fectively overcomes catastrophic forgetting. This is further
described in section 5.4. Although FSCE has proven to be
effective against class confusion and catastrophic forgetting
for canonical datasets, there exists a large performance gap
between FSCE and AGCM on the IDD datasplits. This can
be attributed to the contrastive training strategy in FSCE
resulting in elimination of discriminative features for con-
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Table 3: Ablation on various components of the proposed AGCM
approach.

Method Stronger APF Cosine Margin mAPnovel

Baseline [28] (Sec. 3.2.1) CE loss 5-shot 10-shot
FsDet w/ cos - - - 23.6 39.8
FSCE ✓ 38.7 51.3

AGCM (ours) ✓ ✓ 43.3 54.9
✓ ✓ ✓ 45.5 58.0

Table 4: Ablation for the effect of key hyper-parameters (α, dis-
tance and m) on novel class performance in IDD-OS. The chosen
values for the AGCM approach is underlined and associated per-
formance values are indicated in bold.

Parameter Value mAPbase mAPnovel

α
(Distance =
Euclidean)

0.5 48.9 44.8
0.7 52.2 52.9
0.8 52.7 53.9
0.9 52.2 54.4
1.0 50.5 52.7

Distance
(α = 0.8)

Euclidean 52.7 53.9
Cosine 52.7 54.9
Pearson 52.1 54.8

m
(Distance =
Cosine, α =

0.8)

0.0 52.7 54.9
0.1 52.0 56.1
0.2 51.5 57.9
0.4 50.9 53.8
0.8 49.1 40.1
1.0 48.5 43.3

fusing road objects.
Figure 3 demonstrates a qualitative analysis of our ap-

proach against the SoTA metric learner FSCE on the IDD-
OS split in the 10-shot setting. As observed from the figure,
the FSCE approach suffers from significant catastrophic
forgetting (as shown in figure 3(a)) and is unable to detect
incomplete (Water tanker in figure 3(d)) or obscure objects
(Excavator in figure 3(b)). Unlike FSCE, the AGCM ap-
proach can retain most base class predictions and is invari-
ant to large intra-class variances in IDD.

4.4. Results on PASCAL-VOC dataset

Table 2 records the results obtained from our AGCM ap-
proach on novel splits of the PASCAL-VOC dataset and
contrasts it against SoTA FSOD techniques. Our method
outperforms SoTA approaches on almost all few-shot set-
tings with a maximum improvement of 4.9 mAP points in
split-2 for the 5-shot setting. However, we do not achieve
high gains for very low shot settings (1-shot) as the model
suffers significant inter-class bias and intra-class variance.
More experimental details are provided in the supplemen-
tary material.

5. Ablation
In this section, we conduct ablation experiments on the

challenging IDD-OS split to qualify the contributions of

Table 5: Ablation experiment on catastrophic forgetting of base
classes on IDD-OS split in the 10-shot setting. The mAPbase be-
fore few-shot adaption is 63.4 mAP points.

Method mAPbase mAPnovel % drop (↓)
FRCNN-ft
(only base classes) 63.4 - -
FsDet w/ cos 47.8 39.8 24.6
FSCE 45.5 51.6 28.2
AGCM (ours) 51.5 58.0 18.8

various components and hyper-parameters in our proposed
AGCM approach.

5.1. Components of the AGCM Architecture

The AGCM approach consists of three main compo-
nents. First, we adopt the stronger baseline of FSCE [28]
which facilitates the inclusion of low-confidence proposals
of the novel classes resulting in a significant performance
gain over the best performing architecture demonstrated in
[20] on IDD-OS. Secondly, our proposed APF module (re-
fer section 3.2.1) reduces the effect of catastrophic forget-
ting by encouraging the formation of tighter class-specific
feature clusters through attentive re-weighting of the RoI
proposals. Finally, the cosine margin cross-entropy loss re-
duces the inter-class bias by increasing the angular margin
between feature clusters. It ensures a reduction in confusion
among object classes that share a large portion of low-level
features. The quantitative contributions of each component
is tabulated in Table 3.

5.2. Ablation on key hyper-parameters in AGCM

We perform ablation on various hyper-parameters intro-
duced in our approach and derive their values which lead to
the best possible novel class performance during the few-
shot adaptation stage.

Hyper-parameters of the APF Module : The hyper-
parameter α introduced in section 3.2.1 controls the ratio
of the contribution of the chosen RoI with respect to other
RoIs in the APF module. We vary the value for α between
α = 0.5 to α = 1.0 and record the variation in performance
of the novel classes in Table 4. For smaller values of α,
there is a loss of distinctiveness for a feature proposal, and
therefore, we see a loss in performance for both base and
novel classes. On the other hand, for higher values of α, no
information propagation happens among the RoI proposals,
which increases class confusion and deteriorates the perfor-
mance on the base class. We thus chose α = 0.8 for our
experiments across all datasets.

Attentive weights (wij) computed for each RoI proposal
through equation 2 are calculated through a learnable met-
ric. We ablate this metric in table 4 and record the variations
in base and novel class performance while maintaining α at
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(a) FsDet (Confusion = 68 %) (a) FSCE (Confusion = 56 %) (a) AGCM (Confusion = 46 %)

Figure 4: Confusion Matrix plot for the proposed AGCM technique. Our method shows a significant reduction (10%) in class
confusion between base and novel classes as compared to SoTA metric learning based FSOD techniques FSCE and FsDet.
Class names mentioned in bold and italics represent the novel classes in IDD-OS.

0.8. We chose the cosine similarity metric over others as it
achieves the best overall performance.

Hyper-parameters of the Cosine Margin Cross-
Entropy Loss : As shown in Table 4, we vary the value
of m in the range of [0,1] and observe an increase in novel
class performance between m ≥ 0 to m ≤ 0.2 followed by
a decrease in both base and novel class performance from
m > 0.2 to m ≤ 1.0. Consequently, we adopt the value of
m as 0.2, which results in the highest overall performance
gains for all our experiments across datasets. Although we
observe a large gain in novel class performance (4 mAP
points), a small drop (1 mAP point) is observed in the base
class performance as the angular margin increases the inter-
class bias among classes.

5.3. Class Confusion Among Road Objects

Figure 4 shows the confusion matrix for our proposed
AGCM in contrast with FSCE and FsDet approaches on all
classes in IDD-OS for the 10-shot setting. FsDet shows
a large confusion of 68.4% while FSCE has 56% confu-
sion. AGCM achieves the least confusion of 46%. Al-
though FsDet can discriminate between the novel classes, it
shows significant confusion among base classes with large
intra-class variance like car, bus and truck. The contrastive
training strategy adopted by FSCE can reduce confusion be-
tween such classes but fails to overcome the inter-class bias
between co-occurring classes like motorcycle, person, and
rider. AGCM overcomes the intra-class variance through
proposal fusion (APF) while encouraging inter-class sep-
aration through margin penalties, reducing class confu-
sion among classes. We also visualize a t-SNE plot of
feature representations in the supplementary material that
shows how AGCM helps in reducing overlap between class-
specific clusters.

5.4. Catastrophic Forgetting of Base Classes

This section quantifies the drop in base class perfor-
mance for multiple metric learning techniques and shows
that our proposed AGCM approach achieves minimum
degradation in base class performance while boosting the
performance of novel classes. Results from a Faster-RCNN
model with a ResNet-101 backbone trained on 10 base
classes in IDD-OS (referred as FRCNN-ft in table 5) is used
as the roofline for all evaluations. The results of this experi-
ment after the few-shot adaptation stage (in 10-shot setting)
are demonstrated through table 5. Our method achieves the
least degradation in base class performance of 18.8% while
obtaining the highest base and novel class performance.

6. Conclusion

In this work, we introduced a novel FSOD technique,
Attention Guided Cosine Margin (AGCM), to overcome
the class imbalance in Few-Shot Road Object Detection.
Our method achieves State-of-The-Art (SoTA) results on
all the splits of India Driving Dataset, outperforming the
SoTA metric learners by up to 6.4 mAP points in IDD-OS
split 10-shot setting. AGCM also generalizes to standard
FSOD benchmarks like PASCAL-VOC, where we outper-
form SoTA approaches by up to 4.9 mAP points. Our pro-
posed Attention Proposal Fusion (APF) module minimizes
catastrophic forgetting by 19% by reducing intra-class vari-
ance. APF is computationally inexpensive and can be used
with any two-stage detector. The introduced Cosine Margin
Cross-Entropy loss increases the angular margin between
overlapping classes reducing class confusion by 10%.
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