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Abstract

Visual question answering (VQA) is the problem of under-
standing rich image contexts and answering complex natural
language questions about them. VQA models have recently
achieved remarkable results when training on large-scale
labeled datasets. However, annotating large amounts of data
is not feasible in many domains. In this paper, we address
the problem of VQA in low labeled data regime, which is
under-explored in the literature. We take a data augmen-
tation approach to enlarge the initial small labeled data in
order to inject proper inductive biases to the VQA model. We
encode the additional inductive biases in the questions by
producing new ones taking advantage of the image annota-
tions. Our results show up to 34% accuracy improvements
compared to the baselines trained on only the initial labeled
data.

1 Introduction

VQA is the task of answering questions about visual contexts.
It has attracted significant attention and achieved impressive
results [11, 26, 2]. This success is partly due to large-scale la-
beled datasets [10, 4, 27, 13]. Relying on large-scale labeled
datasets is not realistic in many settings due to the infeasi-
bility of collecting such data. In addition, the objective of
VQA in a sense is rather ambitious as there are potentially
infinite number of questions to be asked about an image. As
such, we argue that VQA is generally a low-data problem. In
the absence of sufficient data, current VQA systems do not
maintain their high performance (e.g., see Figure 1).

We consider VQA in low labeled data scenarios. We in-
vestigate the features of a VQA task which necessitate a lot of
labeled training data. One of those features is understanding
complex questions about rich visual contexts. VQA datasets

mostly contain complex questions where a learner requires
identifying multiple objects and understanding their relation-
ships. Understanding a question and capturing an image
scene is a lot easier when the learner has access to a large
amount of labeled data. The model eventually captures the
complexity after seeing a large variety of data when training
on a large-scale dataset. However, complex relationships are
challenging to learn from small datasets.

In this paper, we improve the generalisation of VQA
models by injecting inductive biases so that the model can
explicitly have access to them in a data efficient manner.
The inductive biases are particularly of high significance to
the questions since they heavily impact the answers in VQA.
An inductive bias that a typical learner acquires by training
on natural language tasks is related to the inherent compo-
sitionality of the human language, e.g. a complex sentence
can be understood by understanding its simpler chunks. The
resulting chunks are normally easier to capture the meaning,
and provide a powerful foundation for understanding com-
plex sentences. Inspired by the fact that a complex question
can be learned on the basis of the basic concepts, we hypoth-
esized that augmenting the training set of complex questions
with simpler questions will help the model. The notion of
simplicity of a question can be defined based on different
criteria, including syntactic and semantic dimensions. In
the VQA context, we consider simplicity as the number of
reasoning steps required for answering a question. Thus, the
simplest possible question requires identifying a single ob-
ject and reasoning about it. We particularly include simpler
questions that if learned could lead to better representations
in the VQA model.

We take a data augmentation approach and enlarge the
initial small training set by automatically generating simple
question-answer pairs for images. We hypothesise basic
concepts can be learned from simple questions, enabling the
model to better learn the structure of more complex questions.
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Figure 1. Accuracy of vanilla training of the execution engine on
CLEVR val where trained on different-sized random subsets of
the CLEVR train set.

Data augmentation strategies have proven to be partic-
ularly useful in a variety of computer vision applications,
including image classifications [17]. Not only they can be
helpful to overcome the problem of insufficient labeled data,
they are also used to reduce overfitting and class imbalance
problems [23]. Current data augmentation techniques use
data warping or oversampling to increase the size of the
training dataset [20, 23]. Data warping is a technique for
transforming data while maintaining its labels. Typically the
examples are transformed by geometric and color transforma-
tions, random erasing, neural style transfer, and adversarial
training.

Data augmentation in VQA is under-explored due to the
challenge of correctly preserving the semantic relation of the
<image, questions, answer> triplet during transformation.
Geometric transform, and random cropping of the image
cannot guarantee to preserve the answer. For instance, the
answer to “what color is the thing on the left side of the
cube?” may be flipped if the image is vertically transformed.
Random cropping can result in missing the number of objects
when counting to answer a how many question.

Our proposed data augmentation method automatically
generates simple questions. Our method only requires having
access to shallow annotations of an image scene and does not
use any additional labeled data. The annotations give some
information about the appearance of the objects in the image.
The answers to the questions are also automatically generated
at no cost in human effort. The method is generic and is
applicable to any VQA task given the scene information
available in many current VQA datasets. The experimental
results and analysis demonstrate that our method is effective
in improving VQA performance, and significantly improves
the performance by up to 34% accuracy compared to training
on only the initial labeled data.

2 Related Work

2.1 Data Augmentation

It is widely accepted that using larger datasets in training
yields stronger DNN models. However, in many domains

such as medical applications, limited datasets are of com-
mon challenges due to the manual effort of collecting and
annotating data. One of the main problems of training on
insufficient data particularly in deep learning is overfitting.
Many methods try to solve this problem by focusing on the
model’s architecture [9] or regularization methods [24, 12].
In contrast to them, data augmentation tackles overfitting
from the root, i.e. by manipulating the training set. This lies
on the idea that data augmentation can extract more infor-
mation from the original dataset. It generally consists of
artificially increasing the size and the diversity of training
examples by automatically creating additional “augmented”
data based on the available data. Besides the problem of
limited datasets, data augmenting has also been considered
in the class imbalance distribution problem.

Data augmentation has received most of its attention in
Computer Vision (CV). Many widely-used augmentation
techniques are introduced to improve the generalization abil-
ity of Convolutional Neural Networks (CNN) models in vi-
sion tasks such as image classification, object detection, and
image segmentation. These techniques are most applicable
to images but not other types of data. In other areas such
as text processing or more specifically Natural Language
Processing (NLP), data augmentation has not been well ex-
plored. Although VQA is a multi-modal problem involves in
both image and text, due to some restrictions it cannot easily
benefit the data augmentation advances in both image and
text modalities. The ensuing sections elaborate on the related
studies on data augmentation in CV and NLP as a foreground
for VQA data augmentation while we briefly explore the data
augmentation studies in VQA later.

2.2 Data Augmentation in VQA

Data augmentation for VQA is covered in fewer works, for
example [15, 19, 5]. Ray et al. [19] leverages knowledge
in the Visual Genome dataset [16] to create QA pairs that
quantitatively evaluate the consistency of a VQA model. The
idea is that if a model answers “red” to “what color is the
ball?”, it should answer “yes” if asked “is the ball red?” to
correctly preserve the notions of entailment. They automat-
ically create a set of logically consistent QA pairs from a
source QA pair and also collect a human-annotated set of
consistent QA pairs based on common-sense, e.g. “is the ball
the same color as a tomato?”.

Shah et al. [22] presents a cyclic-consistent training
strategy in which the model is trained to predict a consis-
tent answer for a source question and its rephrased ver-
sion. To enhance the model’s robustness against semantic
visual changes, their method uses a GAN-based re-synthesis
methodology to automatically eliminate items. Agarwal et
al. [1] use data augmentation to enhance the model’s robust-
ness against semantic visual modifications. They employ a
GAN-based re-synthesis approach to automatically eliminate
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Figure 2. An overview of a modular VQA system consisting of a program generator and an execution engine.

the objects.

2.3 Using Scene Information in VQA

Although many studies use scene graphs in answering ques-
tions [26, 11, 6], a few works attempt to exploit such infor-
mation for generating questions. [5] proposed to generate
contrast questions for the GQA dataset. Contrast sets pro-
posed in [8] aim to perturb a small subset of the test instances
in a meaningful way typically change the ground truth label
in order to evaluate a model’s true capabilities. For instance,
a contrasting example for QA pair “is there a fence near
the puddle? yes” is automatically generated using the scene
graph as “is there a wall near the puddle? no”. [19] con-
sider scene graphs in creating consistent Question-Answer
(QA) pairs that can be derived based on simple notions of
logic. For instance, they create a QA like “is the sofa black?
No” according to the relational triplet of <sofa, is, white>
derived from the scene graph and using a simple logic like

“a white thing is not black.” Similar to the above work we
automatically generate the QA pairs using scene knowledge
but in contrast to them, our proposed method does not rely on
the relationships in a scene graph or any logic, it rather uses
the attributes of the objects in images which can be easily
generated by an object detection model.

3 VQA Model

Current VQA approaches mostly obtain the embedding of
questions and images and map them into a cross-modal com-
mon space in which the answers are predicted. Such ap-
proaches treat a question holistically thus the reasoning pro-
cess is unclear [25, 18, 21].

In contrast, modular approaches plan the reasoning pro-
cess by semantically parsing the question [3, 14]. A modular
VQA model generally consists of two main components:
(1) a program generator G that takes a question and gener-
ates the reasoning plan called program p, (2) an execution

engine E that use the program as a layout to combine the mod-
ules. Modules are small neural networks treated single-task
functions that are able to fulfill complex jobs when combin-
ing into a larger network. The resulting network predicts the
answer by processing the input image. Figure 2 depicts an
overview of the modular VQA system in this work.

In this paper, we use the modular model proposed by
[14]. The authors demonstrate that the program generator
can produce accurate programs when training on less than
4% of the possible programs. Therefore, we disregard G
and focus on evaluating the execution engine in a low data
setting. We train E on different training sets where each set is
a subset of the full dataset. Note that we use the ground truth
program and image pair as the input to E in all experiments.
The results shown in Figure 1 reveal that the accuracy of
predicting answers dramatically drops when training on small
sets.

4 Our Data Augmentation Approach
This section explains our approach for automatically generat-
ing simple questions using superficial information from the
image scene. We use only the basic attributes of the objects
present in an image including size, color, material, and shape;
and disregard object’s coordination and spatial relationship
between objects.

4.1 The Notion of Simplicity of Questions
The first objective of this work is to generate simple questions.
As discussed earlier, simplicity is an abstract and relative
concept that can be defined in different ways. One may
view it from the linguistic point and incorporate lexical and
semantic criteria such as the length of the questions. In order
to focus on simple questions, we inevitably must formulate
simplicity as a measurable criterion. Based on the general
focus of this work which is reasoning using compositionality,
we translate simplicity as the number of reasoning steps
required for answering a question. In this sense, a question
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Figure 3. The question “what color is the object behind the blue
cube?” is ambiguous since there are two blue cube in the image. To
create an unambiguous question, the target object must be uniquely
identifiable by the referring expression in the question. A unique
attribute combination assures that the expression refers to a unique
object such as “red” or “red sphere” that both refer to the red
sphere at the top right corner.

with a longer reasoning chain is considered a more complex
question relative to other questions with a shorter reasoning
chain.

Since we aim to generate simple questions, let us first
specify the characteristics of the simplest possible question
that can be created. According to the above definition, the
simplest question is the one with the shortest reasoning chain.
One of the most important aspects of comprehending ques-
tions is identifying the target object. In many cases, an object
is detectable through its spatial relationship with other ob-
jects, e.g. “the sphere behind the green box” in Figure 3.
Such cases involve locating multiple objects and therefore
the reasoning chain would be more than one. As a result, a
demand for finding a single object in the image can be taken
as the first character of the simplest questions.

A second factor that makes a reasoning chain longer, even
if it requires detecting a single object, is a long referring
expression to the target object. The referring expression is
the phrase by which we can uniquely locate the object in
the image. Every major word in a referring expression will
be translated to a filtering step in the reasoning chain. For
instance, the expression “red sphere” is converted to “1)
filtering the red color pixels, 2) filtering the sphere shapes
on top of the result of the first step”. To keep a question as
simple as possible, the referring expression needs to be short.

4.2 The Notion of Ambiguity of Questions
The objective here is to generate questions automatically
without any use of human effort. Generally speaking, human
intervention in question generation may be required for two
main purposes: either monitoring the quality of generated
questions or producing answers. Question quality is a broad
concept that embraces meaningfulness, unambiguity in addi-
tion to linguistic factors such as grammar and fluency. Every
work may narrowly define question quality according to its
task and aims.

In our VQA setting, question quality narrows down to
unambiguity. Since our method is a template-based ques-
tion generation approach, other aspects of question quality
are automatically addressed in the templates. Therefore, hu-
man intervention may be needed to filter out the ambiguous
questions. According to our definition, ambiguity happens
when the target object cannot be uniquely identified by the
attributes stated in the question. For example, in Figure 3 the
question “what color is the object behind the blue cube?” is
ambiguous due to two reasons. Firstly the expression “the
blue cube” can refer to either the large shiny blue cube or
the small matt cube at the back. Secondly, if supposedly

“the big shiny blue cube” was the only “blue cube” in the
image, the questions would still be ambiguous because there
is more than one object behind it whose color could be the
answer. The reader should note that the task is a question-
answering task, not a dialog in which the agent can ask for
more clarification by responding, for instance, “which object
behind the blue cube?”. On the other hand, an unambiguous
question can be easily answered by locating the target object
and looking up the required attributes among its metadata
from the scene knowledge.

As a result of the discussions so far, eliminating human
effort boils down to posing unambiguous questions. For this
purpose, we introduce unique attribute combinations to
guarantee that answering the generated questions does not re-
quire any human effort by ensuring that they refer to a unique
object in images. The following section explains unique at-
tribute combinations in detail whereafter we elaborate on the
templates used for generating questions.

4.3 Unique Attribute Combinations

A unique attribute combination is defined as a referring
expression consisting of a set of attributes that can uniquely
identify an object in an image. For instance, a unique at-
tribute combination for the red sphere at the top right corner
of Figure 3 can be “red” because it is the only red object in
the image and it can be uniquely identified if one refers to
it as “the red object”. Although it is the shortest unique at-
tribute combination for the red sphere, there are other unique
combinations for this object including “large sphere”, “matt
sphere”, and “large red sphere”. As we are interested in
short questions, we only produce short attribute combinations
of the lengths 1 and 2.

Now, we explain how we create unique attribute combi-
nations. Let uacl be the unique attribute combination of
length l. We begin by creating combinations of length 1 for
all objects in the image, uacl=1by simply comparing the
values of the similar attributes in all objects of the image,
e.g. the colors or shapes of the objects; and then record the
attribute values that appear in only one object such as “red”
in Figure 3. This process is shown in Algorithm 1 line 4–9.

A general method to create unique combinations with
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Query-attribute Type

Template Example

Question What [attributeq] is the [uac ] object? What size is the red object?

Program scene→
{
filter–[attributeuaci ][[uac

i]]→
}l

i=1
scene→ filter–color[red]→ query–size

query–[attributeq]

Existential Type

Template Example

Question Is there a [uac ] object? Is there a red object?

Program scene→
{
filter–[attributeuaci ][[uac

i]]→
}l

i=1
exist scene→ filter–color[red]→ exist

Table 1. The question and program templates for two types of questions are used in this work along with an example for each. The top table
shows the the templates and example for query-attribute type where the question begins with what and asks about an attribute value of the
target object. The lower table details the existential type where the questions asks if the target object presents in the image.

length l > 1 is generating all possible combinations of length
l for all objects in an image. Then comparing the combina-
tions and removing the ones that refer to more than one object
by simply eliminating the repeated combinations. However,
as illustrated in Algorithm 1 line 10–19, we modify this
method to reduce the computational time. We join the val-
ues in uacl=1 to other attribute values of the corresponding
object, e.g. we attach “red” as a uac1 to “sphere” to cre-
ate “red sphere” or “red large” where l = 2. This strategy
produces longer unique combinations at a fast rate but at the
cost of missing a number of possibilities. Once the uacs
are generated, the next step is using templates for question
generation. Let us now introduce our templates as well as
the generation details.

4.4 Generating Template-based Questions

We synthesize two types of questions from scene knowledge:
query-attribute and existential questions. As their names
suggest, query-attribute questions begin with “what” ask
about the value of an attribute of the target object, e.g. “the
color of the cube” or “the shape of the big object”, while
existential questions start with “is” and ask whether the target
object presents in the image. Table 1 shows the templates
along with corresponding examples. [attributeq] indicates a
placeholder which must be replaced with the queried attribute
name that can be any of the attributes from the attribute set,
i.e. {size, color,material, shape}; while [attributeuac ] is
the attribute name being presented in the uac . [uac] indicates
a uac of the desired object.

The phrase inside the braces creates a sequence of fil-
ters with the same length as uac when being repeated for
each attribute value in uac and combined together. In
fact the examples provided in the table use a uac with

Algorithm 1 Creating Unique Attribute Combinations
1: I: Image list
2: A: List of attributes i.e. {color, shape, size, material}
3: procedure CREATE-UAC(l)
4: #Obtaining uac where l==1
5: for im ∈ I do
6: for obj ∈ im do
7: for attrib ∈ A do
8: if obj.attrib.value is unique then
9: uac1←obj.attrib.value

10: #Obtaining uac where l≥1
11: if l ≥ 1 then
12: for im ∈ I do
13: for obj ∈ im do
14: for u1 ∈ im.obj.uac1 do
15: #Choosing l-1 attribute

16: from all obj attributes

17: for attrib-comb ∈
(

l−1
obj.attibutes

)
do

18: if u1 ̸∈ attrib-comb then
19: uacl← Concat(u1, attrib-comb)

l = 1, i.e. “red”; however in case the uac is longer, e.g.
“red sphere” then identification process of the target object
is performed in a multi-step filtering. For instance, first
filtering the red color and second filtering the sphere
shape. This process is formalized as the following phrase:
filter–color[red] → filter–shape[sphere]. It is also
noteworthy to mention that we let it be possible that a ques-
tion asks about one of the attributes that constitute the uac ,
e.g. “what color is the red sphere?”, although the answer
is very obvious and already appears in the question itself.
In other words, the attribute that is chosen to fill the [at-
tribute] placeholder may be one of the attributes whose value
is included in the [uac].
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The existential template can be used to produce yes/no
questions. Replacing a target object’s uac with [uac] in the
template can easily result in a yes answer while for a question
with an answer no an invalid attribute should be joined to
uac. Any attribute value which does not match the target
object is considered as an invalid attribute for it. For instance,
assume “is there a red sphere in the image?” as a positive-
answered question, then “is there a red small sphere?” will
make a negative-answered question because small is an in-
valid attribute for the target object and hence if attached to
uac creates a referring expression with no visual equivalence
in the image. The invalid attribute must be selected among
the attributes that don’t already contribute in the uac other-
wise the referring expression becomes ambiguous.

As it may be clear, to select an answer to a generated
question, we simply determine the target object and draw
its scene information, then pick the value of the requested
attribute. In the case of the yes/no answers, the answer is
determined by the questions generation process based on
whether an invalid attribute is used or not. Let us emphasize
again that utilizing uac ensures that the question refers to a
unique object and as the result, the answer will be distinct so
that it can be automatically selected or generated.

5 Experiments

Dataset
Although our data augmentation method is generic and

applicable to many VQA datasets for generating augmented
questions, we make use of the scene information from the
CLEVR dataset [13]. An example of it is provided in supple-
mentary material. This information is available in the form
of objects’ attributes and their spatial relationship. Our pro-
posed method aims to use the shallow attributes of objects,
thus we only consider color, size, material and shape among
all other information have been provided about the scene of
an image. We also use the CLEVR dataset [13] for training.
It provides a training set with 70k images, ∼700k (image,
question, answer) tuples. The answers come from 28 classes
including 8 colors, 2 sizes, 3 shapes, 2 materials, 11 numbers
as well as yes and no. Our evaluation is conducted on the
val split, which contains ∼ 150k questions and 15k unique
images.

5.1 Setup
To simulate a low-data scenario, we select four small sub-
sets from the training set with different sizes denoted as a
percentage of the full dataset. We refer to these subsets as
s-CLEVRx where x ∈ {5, 10, 20, 30} indicates the size of
the subset, e.g. s-CLEVR20 is the subset that is chosen to be
as small as 20% of the full training set with ∼140k (image,
question, answer) tuples. We use the scene information of

the images from s-CLEVRx denoted as Ix for generating
augmented questions.

We conducted our experiments in two stages: data aug-
mentation and training. The first stage includes extracting
uacs and generating question-answer pairs using the pro-
posed data augmentation method. The uacs are extracted
from the scene information of a selected set of images (See
details in §5). To emphasise simplicity, we only use uac1 for
generating query-attribute questions and uac2 for existential
questions. uac2 , as described in the preceding section, are
built upon uac1 s. For each uac1 , we generate existential
questions with a probability of p = 0.25 where the chance
of yes answers equals no ones. We refer to the generated
question-answer set as Augsimple . In the second stage, we
add the augmented questions to the training set to create an
augmented training set, i.e. s-CLEVRx+Augsimple . We use
the execution engine E described in §3 as the model in the
experiments. We train E on the augmented training set from
scratch and evaluate on val.

In addition to the questions, the model requires the im-
age features to produce the answer. The image features are
the output of conv4 of ResNet-101 [9] pre-trained on Ima-
geNet [7]. We then test the model on the validation set and
compare the results with two baselines.

Avoiding Reproducing Questions
A concern in our setting when working with a synthetic

dataset like CLEVR is that by automatically generating ques-
tions we may end up replicating the questions in the dataset.
Since CLEVR questions have also been produced using tem-
plates, we should ensure that we did not reproduce the ques-
tions of the other (100−x)% of the dataset when augmenting
s-CLEVRx with automatically-generated questions. Other-
wise comparing the outcomes when using augmented data to
that of the original dataset is not fair.

To address this concern, we first randomly select a sub-
set of x% of the CLEVR images, Ix. then collect all the
questions referring to those images, and use them as the x%
subset of the dataset, s-CLEVRx. In CLEVR the rate of the
question referring to a specific image is almost fixed to 10.
So the set of questions about Ix roughly equals x% of the
full dataset. We only make use of the scene information of
Ix for data augmentation.

Baselines
We use the execution engine, E , to assess the proposed

data augmentation impact on the VQA performance in com-
parison to two baselines. One baseline is when the model
is trained on s-CLEVRx which includes only the subset of
CLEVR complex questions about the images in Ix while the
other baseline trains the model on only generated questions
denoted as Augsimple which includes simple and short ques-
tions. We do not compare with the state of the art, because
the goal of our paper is to study VQA in a low-data regime,
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# images # unique colors # unique shapes # unique materials # unique size

5% 3,480 10,198 2,604 862 835

10% 6,961 20,288 5,204 1,727 1,673

20% 13,917 40,520 10,331 3,490 3,365

30% 20,859 60,927 15,575 5,179 5,145

Exist Questions Attribute Questions All Questions

Subcategories yes, no color, shape, size, material -

Questions length 6 6 6

Program Length 4 4 4

Count in 5% 10,817 (16%) 57,996 (84%) 68,813

Count in 10% 21,715 (16%) 115,568 (84%) 137,283

Count in 20% 43,375 (16%) 230,824 (84%) 274,199

Count in 30% 65399 (16%) 347,304 (84%) 412,703

Table 2. The statistics of generated questions for each training subset. Top: the number of images are chosen to generate augmented
questions and the number of unique attributes, i.e. uac1 , that are extracted from those images. Bottom: The length and number of generated
questions per question type and in total.

and to the best of our knowledge, there is no other work that
conducts similar research. Thus, we focus on improving the
performance of our baseline models.

5.2 Results and Discussion

Data Augmentation Statistics
Table 2 shows some statistics of the data augmentation

experiment. As seen in the upper part of the table, from
∼70k images in the CLEVR dataset of which we randomly
select x% of images for each subset. In other words, the size
of Ix for each subset in our experiments is as shown in the
table, e.g. in the case of I20 it is 13,917. Then, all uac1 were
extracted from the image scenes which can be further divided
into colors, shapes, materials, and sizes. The statistics neatly
correlate with the number of values of each attribute. For
instance in CLEVR dataset, the attribute color includes
eighth values of blue, cyan, green, gray, yellow, brown, red,
and purple. Thus it is more likely for a certain object in
an image to have a color different from other objects in the
image. As a result, the number of unique colors are presented
in the images ∈ Ix are largely higher than other attributes.
On the other hand, size has only two values of large and
small. So an object is less probable to be the only small or
large object in the image particularly in the current VQA
datasets in which the images are relatively rich in terms of
the number of objects.

The lower part of Table 2 reports the statistics of the gen-
erated questions from the selected subsets. For instance,
from the extracted uac1 of I20, we generated 274,199 ques-
tions in total of which 43,375 are of exist type while the
remaining are from what-[attribute] type. The number of

existential questions with yes and no answers is almost equal
containing 21,665 and 21,710 questions respectively. Con-
sidering that the size of training sets are 35k for s-CLEVR5,
70k for s-CLEVR10, 140k for s-CLEVR20, and 210k for
s-CLEVR30, we can say that the numbers of generated ques-
tions are roughly twice the original sets size. The rest
of 203,824 questions ask about four attributes of color,
shape, size, and material each 57,706 questions. As
for every uac1 , four questions corresponding to the four at-
tributes are generated, hence the count of the questions for all
attributes is the same. We use only uac1 for what-[attribute]
questions and uac2 for existential questions, according to
templates in Table 1, the question’s length will be 6 and the
length of their corresponding programs will be 4.

How does the augmentation change the training set dis-
tributions?

Figure 4 compares the distribution of questions length in
s-CLEVR20 and Augsimple as well as the valid set. From
the close-up shot of the curves, we can see that the distribu-
tion of s-CLEVR20 and valid set is very similar. This is
due to the fact that the distribution of the train and valid
set are similar in the CLEVR dataset and the s-CLEVR20 is
a random subset of train set which means they share the
same distribution. As seen, augmenting s-CLEVR20 with
Augsimple

20 dramatically changes the distribution of ques-
tions in terms of length and type. One may hypothesise that
such distribution dissimilarity will adversely affect the perfor-
mance. However, the results demonstrate that in our setting it
significantly enhances the model performance in predicting
answers.

Training
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Figure 4. Comparison of the distributions of questions length with and without data augmentation. s-CLEVR20 and val set are sampled
from the dataset original distribution while s-CLEVR20+Augsimple shows the distribution of the augmented training set.

Training Set 5% 10% 20% 30%

Augsimple 31.69 30.18 30.14 30.17

s-CLEVR 46.91 49.90 54.24 87.70

s-CLEVR+Augsimple 69.23 83.06 87.81 91.26
Table 3. The accuracy on CLEVR val set when training on different sized sets.

Table 3 depicts the results of model validation when train-
ing on (1) generated simple examples, Augsimple

x , (2) a sub-
set of complex questions, s-CLEVRx, and (3) the augmented
sets, s-CLEVRx+Augsimple

x . As seen our data augmenta-
tion method, i.e. training on s-CLEVR+Augsimple outper-
forms the baselines. The best performance of our approach
is achieved by training on and s-CLEVR10+Augsimple

10 and
s-CLEVR20+Augsimple

20 with 34 scores accuracy increase.
This large improvement confirms our initial hypothesis about
lacking the basic concepts in a small training set with only
complex questions. Adding simple questions to the training
set helps the model to learn the basic concepts as the basis
of complex ones. Then the model learns how to combine
those simple concepts by training on a small set of complex
questions. These two skills together make the model effec-
tively generalize on unseen examples and it is the reason
for producing 34% more accurate answers on val set in the
cases of 10% and 20% subsets.

This analysis also explains the results of other subsets.
In the case of s-CLEVR5 the set of complex questions is
not large enough for the model to learn all variations of
combining the basic concepts. So the improvement is less
than the next two larger subsets.

s-CLEVR30+Augsimple
30 increase only 5% improvement

in the accuracy. It is because s-CLEVR30 contains almost
200k of complex examples. The numbers of complex ex-
amples are quite large so that the model can implicitly infer
many basic concepts by repeatedly visiting close examples.

In this case, explicitly introducing basic concepts cannot
largely enhance the performance.

It is noteworthy that the poor results on Augsimple sets are
as expected since the training sets are not challenging enough
for a model to learn how to deal with complex questions.
Therefore many predicted answers on val set are incorrect.

6 Conclusion

This paper explores VQA in low data settings motivated by
the low performance of VQA models in the absence of suffi-
cient data. To improve the performance, we propose a data
augmentation method aiming to explicitly inject certain in-
ductive biases. The inductive biases are based on the inherent
compositionality of the questions which allows a complex
question to be decomposed into smaller parts. We utilize
this feature to augment the training set with basic questions
where the learning can occur easier. The proposed data aug-
mentation approach relies solely on the existing training set
without seeking help from any other data resources. The
results show that our method outperforms the baseline in all
cases by a large margin.
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