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Abstract

In this paper, we investigate the task of Video based
Question Answering. We provide a diagnostic dataset that
can be used to evaluate the extent of reasoning abilities of
various methods for solving this task. Previous datasets
proposed for this task do not have this ability. Our dataset
is large scale (around 1.3 million questions jointly for train
and test) and evaluates both the spatial and temporal prop-
erties and the relationship between various objects for these
properties. We evaluate state of the art language model
(BERT) as a baseline to understand the extent of correla-
tion based on language features alone. Other existing net-
works are then used to combine video features along with
language features for solving this task. Unfortunately, we
observe that the currently prevalent systems do not perform
significantly better than the language baseline. We hypothe-
sise that this is due to our efforts in ensuring that no obvious
biases exist in this dataset and the dataset is balanced. To
make progress, the learning techniques needs to obtain an
ability to reason, going beyond basic correlation of biases.
This is an interesting and significant challenge provided
through our work. We release our dataset and source code
for our baseline modules in the following webpage https:
//delta-lab-iitk.github.io/vquad/.

1. Introduction
Significant progress has been achieved by the commu-

nity in terms of answering queries over images [1, 24]. This
progress has further lead to interest in answering queries
over videos [30, 17, 35]. However, it is crucial to en-
sure that the progress achieved is in terms of actual visual
reasoning abilities. This assurance was possible in images
through the use of a diagnostic dataset CLEVR [14]. In-
troducing this dataset allowed evaluation of true reasoning
capabilities in terms of answering questions as compared
to fatuous correlation based capabilities. However, such
an image based diagnostic dataset alone does not suffice to
evaluate video based question answering systems. To ad-
∗Currently working at Oracle
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dress this requirement, we make available a video-based
question answering diagnostic dataset (VQuAD). Specifi-
cally, through this dataset, we ensure that a variety of ob-
ject properties, the relationship between object properties
and temporal properties can be analyzed using the proposed
dataset.

The dataset is motivated by the fact that while reason-
ing about a video, one needs the ability to analyse various
factors. In addition to the spatial reasoning capabilities re-
quired for answering queries related to images, one needs
to obtain reasoning abilities concerning temporal queries.
Further one also requires intuitive physics based reason-
ing abilities [7, 3, 9] to answer queries related to colli-
sion based queries. We ensure by using an automatically
function based question generation approach that there is
minimal bias and therefore correlation based approaches to
answer queries would not succeed. We further analyze pop-
ular baselines based on visual question answering (VQA)
systems and video based question answering systems. Our
analysis suggests that currently, prevalent systems are defi-
cient in answering reasoning based queries for videos. Im-
portantly, even methods such as FILM [29] that perform
well on CLEVR [14] dataset do not do well in the context
of videos. The emphasis in this dataset is on the spatio-
temporal reasoning abilities. Hence, the videos themselves
do not pose complex visual analytics challenges; rather,
the challenge lies in the reasoning abilities. Using the cur-
rently prevalent video question answering datasets [30, 35]
in addition to the proposed dataset would allow thorough
understanding and diagnostics being available for the vari-
ous methods. We also show that analysis of the results can
be obtained by using visual explanation techniques such as
GradCam [32] to understand whether the visual attention
regions the methods focus on are correct or not.

The motivation for investigating video based question
answering systems are for enabling a variety of applica-
tions related to obtaining systems that aid visually impaired
users to visual surveillance systems. To develop reliable
systems that have accurate reasoning abilities, it is crucial
that we analyze the various reasoning abilities of such sys-
tems. The proposed work is a step in that direction to obtain
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Frame:13Frame:10Frame:7Frame:1 Frame:4

What is the rate of movement of large bubbled
metallic cylinder? Fast

How big is the metal object that is both to the
right of the big squared red_and_gray thing and
in front of the translating object? Large

The rotating red_and_gray object is what
shape?  Cube 

How many things can hit the big jumping
squared shiny sphere? 1

What number of big shiny spheres are there
with slow movement rate? 2

Is there a small bubbled blue_and_green
metal cylinder? 1

How many striped objects are big
brown_and_green things or red_and_gray
shiny things? 1

Is there any thing that can hit the big still
red_and_gray thing? Yes

There is a thing that is in front of the striped shiny block; what is its
rate of movement? Fast

There is a jumping metallic object that is behind the large bubbled
metallic cylinder; what size is it? Large

There is a large object that is behind the large rotating
red_and_gray metallic object and on the right side of the squared
red_and_gray metallic object; what texture it has? Bubbled

There is a large shiny thing that is expected to hit the large squared
metal ball; what is its shape? Sphere

Fast Rotating Cube

Slow Jumping Sphere

Fast Jumping Cylinder

Slow moving sphere

Hop-1
Hop-2

Hop-3
Hop-4

Figure 1. Illustration of an instance of VQuAD dataset. The figure shows the variety of questions that are generated concerning the video
created and the difference in complexity in terms of hops for the questions.

comprehensive diagnostic analysis for video based question
answering systems.

2. Related Work
Our work relates to the broader domain of solving prob-

lems in the space of vision and language based multi-
modal reasoning domain. There has been extensive work
done in the vision and language domain for solving im-
age captioning [40, 16, 15, 45], Visual Question Answering
(VQA) [25, 1, 22, 49, 10, 20, 33] and Visual Dialog [5, 2].
In this context various datasets [26, 1, 12, 14, 41, 19, 49]
have been proposed for solving image based question an-
swering. While significant progress has been achieved in
these tasks, our work relates mainly to video based ques-
tion answering. The video based question answering task
has shown increasing interest. There have been a number of
methods and datasets devoted to understanding video con-
tent. Several datasets have been proposed to do reasoning
over video content, e.g., MovieFIB [23], VideoQA [48],
LSMDC [31, 36], MovieQA [35], PororoQA [17], Mari-
oQA [28], and TVQA [18]. All these datasets focus on
video content supported by natural language in the form of
dialogs. However, it is possible that the methods that solve
these could be based on cues in dialogs [4, 2] or visual
content and could be correctly answering these without ac-
tually arriving at the ‘correct’ visual reasoning [34]. For
instance, queries based on actions could be answered based
on correlations between the image and text features without
actually succeeding in reasoning. We present a diagnostic
dataset that quantifies the understanding of video contents
without any natural language support. In particular, we in-
tend to evaluate the capability of statistical learning systems
to capture spatiotemporal knowledge of data and perform
reasoning over them. It is clear that there is a sufficient gap
in the abilities for the various systems to actually reason
based on the observed accuracies for various baselines in
the proposed dataset.

3. The VQuAD Dataset

The VQuAD dataset provides complex and challenging
questions to answer over video contents. It contains syn-
thetic videos and questions with a balanced distribution of
object properties. A video scene contains all the ground
truth information about the object properties in the video.
This ground truth assists us in the generation of questions
based on various aspects of the videos.

3.1. Objects Properties

The VQuAD dataset offers two classes of properties,
spatial and temporal. Spatial properties can be analyzed
and reasoned over by looking at a single frame of video. To
reason over the temporal property, one has to look across
the video frames of the video. A brief overview of VQuAD
objects is presented in Figure 2 (Left).

Spatial Properties: VQuAD family contains three ob-
ject shapes (cube, cylinder, and sphere) of two sizes
(small and large) and two materials (metal and rub-
ber). It contains three bichromatic textures (squared,
bubbled and striped) on each object surface. Six color
combos red and green, red and gray, brown and green,
brown and gray, blue and green, blue and gray are used
on objects across the dataset.

Temporal Properties: Each object in the VQuAD dataset
has a movement (still, rotating, jumping and translating)
associated with it. A still type object does not contain any
actions. An object with translating movement has an ini-
tial position (first frame) and a final position (last frame).
Spatial property of texture aids in recognition of rotation
movement of some object types. A rotating object can ro-
tate in either clockwise or anti-clockwise direction. Objects
with actions (rotate, jump, translate) have speed (fast, slow)
associated with it. Since we are maintaining a fixed video
length, so time is constant, and speed ∝ distance.
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Figure 2. Object properties (Left), Relationship definitions for translating objects (Middle, Right)

For the rotating objects, we determine its pace with the
rotation values (in degrees) for a single frame transition. For
jumping objects, speed corresponds to jump height and for
translating object it refers to the Euclidean distance. We
maintain a difference in pace of fast and slow objects by a
multiplicative factor of three, to make them distinguishable
by humans. Humans also have a visual sense of predicting
possible collisions. We have incorporated the idea of colli-
sion detection in our dataset by calculating the possibility of
crashes after the last frame. For simplicity, we have avoided
collisions in the ongoing video scene. We have verified that
humans can answer these questions with high accuracy.

3.2. Object Relationships

This dataset contains two types of object relationships
such as spatial and temporal.

3.2.1 Spatial Relationships

The VQuAD dataset includes ‘left,’ ‘right,’ ‘behind’ and ‘in
front’ direction relationships among objects. We calculate
them by projecting the directions concerning the camera
perspective onto the ground plane. The viewpoint vector
direction of the camera becomes the ‘behind’ vector, and
the vector in its opposite direction becomes ‘in front’ vec-
tor. We calculate the left, and right directions similarly.

3.2.2 Temporal Relationships

We ensure consistent temporal relationships. This consists
of the direction relationships involving the translating ob-
jects. We define the relationship of an object with translat-
ing object if and only if it holds this relationship with both
the initial and final position of the translating object. Re-
fer to Fig. 2(Middle, Right) for clear understanding. For
example, a rotating object x is ‘left’ related to the translat-
ing object y if and only if it has ‘left’ relationship with both
the initial and final position of the object y. The zone be-
tween the initial and final position of the translating object
is called a ‘no relationship zone.’ The objects present in
this zone will not have the said relationship with this trans-
lating object. The VQuAD dataset also contains same at-
tribute relationship in spatial and temporal context. The

spatial context involves same relationship over texture,
color, shape, size, and material, whereas temporal con-
text includes the relationship over movement and speed.
We define ‘same speed’ relationship to understand the rea-
soning ability involving intuitive physics [7].

3.3. Video Scene Representation

The dataset stores the ground truth information of ev-
ery video sequence in a JSON structure. It contains all
the scene information about object properties such as size,
color, shape, material, movement, texture, and speed. It also
includes knowledge about the temporal and spatial relation-
ships among the objects. This scene representation assists in
generating questions & ground truth answers for the videos.

3.4. Video Generation

Video, in its elemental sense, is a sequence of images
representing an event. We need to process videos and con-
vert them to image sequences for their analysis. To escape
this standard conversion, we directly render the frames of
the videos. First, we sample a scene graph by randomly
selecting objects’ spatial properties like shapes, sizes, ma-
terials, colors, and texture. We place the objects such that
no objects intersect, all the objects are at least partially vis-
ible, and there is some margin between different objects;
this helps in avoiding ambiguity in establishing spatial re-
lationships. Considering this as our first frame, we then
sample for temporal properties like movement and speed.
If the movement type is ‘jump’ or ‘rotate’ then movement
sequence is created for all the frames with corresponding
speed values. For the ’translate’ movement type, we sam-
ple a destination point for the object based on its speed.
We sample the location from the circular annulus of radius
quantified by each speed type. This point must have some
margin with all other objects in the scene, and there must
be no intersection with any objects in the path. This re-
quirement is mandatory to avoid conflicts in temporal re-
lationships. The movement sequence is then produced by
breaking the pathway into frame length. We recursively do
sampling for the destination point and if we do not find a
suitable destination point after a fixed number of retries,
we convert the object movement type to non-translating,
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(a) Movement distribution (b) Feature distribution
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Figure 3. (a) Movement Distribution: Inner circle: Movement values, Outer circle: speed value per movement. (b) Feature distribution:
Distribution of object attributes across all the objects in VQuAD dataset.

Question Type Train sample Test sample

What 579615 199627
How 77134 31987
Are 97757 36800
Is 141524 52936
Does 38425 13563
Do 21635 8047
Table 1. Distribution of Question statement type

Split Questions Unique questions Videos

Train 750000 673322 3000
Val 249999 241856 3000
Test 360000 344223 1000

Table 2. VQuAD statisics

i.e., rotating, jumping, and static. This conversion does not
have much effect on the distribution of the object movement
types, as shown in Fig. 3(a). Finally, the video frames are
rendered using Blender by iteratively applying spatial and
temporal properties on objects for each frame.

Size Movement Texture

small squaredjumping

Unique Possible
Collision Exist

Filter

Q-Type:   exist Size:   6
Is there any other thing that can hit the small jumping squared thing?

Specific 
Filter Texture Color Shape

squared cylinderbrown_and_gray

Unique Query
Speed

Filter

movement
still

What is the rate of movement of squared brown_and_gray cylinder?
Q-Type:   query_speed Size:   6

4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Question Length (in words)

0

5

10

15

20

25

30

N
um

be
r 
of
 Q
ue

st
io
ns
 (i
n 
%
)

Distribution of question length(in words)

VQuAD
TVQA
CLEVR
MSRVTT
MSVD

Figure 4. Explanation of question generation (Above) and Ques-
tion length comparison with other VQA datasets (Below)

3.5. Question representation and families

We use an approach similar to that used by CLEVR [14]
for representation and generation of questions. In this ap-
proach, questions are the representation of functional pro-

grams build using basic building blocks, which, on exe-
cution over scene information yields ground truth answers.
These programs are made up of basic building blocks which
handle the elementary operations like querying, counting,
comparing, etc. Unlike other video datasets, the functional
representation enables VQuAD to contain multi-hop ques-
tion architecture (Fig. 1) which requires multiple itera-
tions over questions to answer them correctly. Each iter-
ation indulges different aspects of reasoning. For exam-
ple, What number of big shiny spheres are
there with slow movement rate? This ques-
tions needs two hops, first hop to find big shiny
spheres with slow movements and second hop to count
them. Some questions induce prior knowledge about
some features incorporated in answering the question.
For example, What is the rate of movement
of square cylinder? imposes an understanding
that the object in question must have a non-still move-
ment type. We introduce an elementary operation of spe-
cific filter to handle such priors; it filters out the ob-
jects with specific features enforcing the priors. We have
also added a basic block of possible collision which re-
turns the set of objects expected to collide with the in-
put object after the last video frame. A question fam-
ily comprises of a template which contains functional pro-
gram nodes, parameters, and constraints. It also contains
multiple text templates to represent the program in nat-
ural language. For example, What is the rate of
movement of squared cylinder? can be gener-
ated from text template What is the rate of movement of
< T >< M >< S > by mapping < T >< M >< S > to
texture, material, and shape and assigning values squared,
Nil, cylinder respectively. The answer to this question can
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(a) Question distribution (b) Answer distribution
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Figure 5. (a) Question distribution (left) : Inner Circle: Elementary Reasoning Block, Outer Circle: Attribute types per reasoning block.
(b) Answer distribution (right) : Inner Circle: Answer Classes, Outer Circle: Values per class

be obtained by instantiating the program with query speed(
unique(filter shape(cylinder, filter texture(squared, spe-
cific filter(movement still, scene())))))).

3.6. Question Generation

To generate questions, we select a family among 158
question families, fill-in the template parameters, and exe-
cute them over the video scene to produce ground truth an-
swers. The parameter values are then substituted to the text
templates to generate the natural language question. Each
VQuAD template can take up to 27 parameters as input,
which gives it the capability to produce numerous unique
questions. We use depth-first search to search for the var-
ious valid parameter instantiations for question templates.
In this way, we traverse through the depth-first tree look-
ing for parameters and pruning undesired branches using
the ground truth scene information. We also use rejection
sampling to maintain a uniform answer distribution, which
assists in minimizing question-conditional bias. We have
chosen the question-type as the type of last functional block
used in its representation. The number of functional blocks
in questions determines the question size.

For a model it is not easy to learn the template. There is
lot of variety in the templates. The templates are designed
to offer a multistep reasoning over video contents, avoid-
ing any superficial clues to answer the questions. We have
verified this by giving only question features (LSTM, Bert)
to the model, no video information is provided, there is not
much question conditional bias. Training data of VQuAD
contains 999999 questions generated over 3000 videos. To
ensure the proper validation, we shuffle the question-video
pairs and split it into 750000 training and 349999 validation
samples. The test data includes 360000 questions created
over 1000 videos, rendered separately.

Figure 6. Overall Accuracy Comparison with or without Bert

4. Baseline Models

Video QA methods commonly use encoded frame fea-
tures as video representations. C3D features [37] are also
common in video domain. Some methods use recurrent
neural networks [44] with iterations over video frames and
question to answer them. Other methods include mem-
ory components in network architecture [43, 21, 11] for
spatio-temporal attention. To answer a question based on
the video, attention would play a major role. This stems
by considering that methods such as S2VT [39], NQA [1],
LSTM [13] are able to solve for VQA and videoQA. We
compare this proposed model with the other existing models
such as LSTM [13], S2VT [39], Neural QA[1], SAN [46],
Memory Network [42], MCB [10] and provide results in
Figure 7.

5. Experiments

We evaluate different aspects of VQuAD dataset in fol-
lowing ways: First, we assess the distribution of spatiotem-
poral properties & relationships in Fig 3 along with question
and answer type assessments Fig.- 5. Second, we perform
a statistical analysis of dataset presented in Table 1 & Table
2 with question length based comparison in Fig 4. Third,
we evaluate various state of the art methods on our dataset,
shown in Fig.- 7. Finally, we present some insights on
Attention visualization Fig.- 8 comparison of each method
over discrete reasoning categories. We provide video sam-
ples and more analysis results on supplementary material.
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Figure 7. Question type accuracy of seven VQA methods with bert embedding in VQuAD.

There is a tiny shiny sphere that is expected to hit the big rotating brown_and_gray cylinder; what is its texture?

Tiny Shiny Sphere

Attention Map

Big rotating brown_and_gray cylinder

Figure 8. Attention map of SAN (Stacked Attention Network) across Visual Frames

5.1. Analysis On Question length

People usually feel that longer questions are challenging
to answer since they involve multiple steps of reasoning.
Here we try to investigate the importance of question size.
We take the length as the number of words present in the
question. For each of our models, we plot their accuracy
against question size. Surprisingly, we found no correlation
between question length and accuracy. Figure-4 shows the
analysis of question length with accuracy.

5.2. Model Configurations

We use VGG-19 to extract 7x7x512 dimensional frame
features for S2VT & NQA, and 14x14x512 dimensional
features for Memory Networks, MCB, and SAN. The VGG-
19 models were pretrained on Imagenet [6] and no finetun-
ing is done. The frame was resized to 224x224 before fea-
ture extraction. We used Word2Vec[27] with embedding

dimension of 200 to train the word vectors on the question
representation of our dataset. LSTM is used for encoding
question features and frame features with the dimension of
512 for the hidden layer. Multi-Layer Perceptron is used
during the early stages of the classification with ReLU ac-
tivation. All the hyperparameters, including learning rate,
word embedding size, dropout, hidden size of LSTMs, and
MLP layers are tuned according to the accuracy over val-
idation dataset. Further we extend our models by extract-
ing the features for questions using pre-trained BERT model
[8], experiment with them to see the improvement in exist-
ing models. In order to get question encoding features we
use LSTM over BERT embedding features. Though it gives
better result compared to not using BERT, the improve-
ment is around 1-2% which is not quite significant. Thus
we use state of the art language model (BERT) for ques-
tion features encoding, for videos features encoding and to
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Q-Type BERT Best Acc. Human
Exist 57.0 NQA 60.0 85
Count 36 SAN 40.2 87
Compare Int 50.8 MAN 51.5 89
Query Attr. 34.9 S2VT 45.2 91
Compare Attr. 49.8 S2VT 51.0 80
Speed 44.8 MCB 49.5 81
Collision 45.2 S2VT 50.2 92
Overall 42.5 S2VT 47.1 86

Table 3. Accuracy comparison of best performing method with
conditional-bias model(BERT) and human-evaluation.

Table 4. This figure shows accuracy vs number of the word in
the question in VQuAD dataset.
obtain joint embedding in order to improve reasoning be-
tween question and video. However, in our dataset, none of
above approaches perform as expected. The results are pre-
sented in table 3 and summarized in Figure 7. It seems the
task defined in our dataset based upon the attributes such
as speed, direction, jumping, rotation and colliding appear
to be much harder as compared to other videos/movies QA
dataset. Hence this raises a need for pursuing research for
new reasoning based methods.

5.3. Attention visualization
In order to accurately answer questions based on image

sequences, a shift in attention might be required across the
frames. Here we will evaluate implementation of some pop-
ular attention based methods like SAN over video QA tasks
in VQuAD dataset. In Fig 8, the question asks about ex-
istence of any small shiny sphere which is about to hit ro-
tating brown and gray cylinder. This question compels us
to look at distinctive portions of images across the frames
to arrive at correct answer. We can observe that SAN goes
around all the objects missing the attention on the relevant
small sphere. This shows the inability of attention based
methods to visit suitable areas essential for temporal rea-
soning.

5.4. Model analysis of Reasoning Types

Exist: Existence type questions ask about the presence
of the objects based on particular conditions. For example,
Is there anything else that has the same size as the jumping
squared red and gray metal thing?. The answers to these
type of questions are yes or no. All the baseline models

give accuracy above 50%. NQA performs best among all
with an accuracy of 60% see Figure 7.

Count: Count type questions reason over the ability
to count objects satisfying some conditions. For exam-
ple, How many things are there to the right of the jumping
cube?. There are eight possible answers for count ques-
tion (zero to seven), so maintaining a uniform answer dis-
tribution is very difficult. We observe the LSTM accu-
racy of 36.0% suggesting the presence of some question-
conditional bias. Relatively less occurrence of 5, 6, and 7
in the answers might be a contributing factor [Figure 5 (b)].
Counting the objects is a challenging problem, as shown in
[47, 38]. NQA is the best performer in this section with an
accuracy of 40% see Figure 7. We have also incorporated
FiLM [29] technique in temporal context on our dataset.

Compare Integer: This type of reasoning involves com-
paring the integer counts in spatiotemporal zone. For Exam-
ple, Is the number of red and gray metallic things less than
the number of translating bubbled spheres?. Answer to this
type of questions contain either yes or no. This question
type requires memory, counting, and comparison to answer
them correctly.

Query Attribute: In this reasoning type, the ques-
tions query about some attribute of the object. For exam-
ple: What is the texture of the jumping red and gray ob-
ject?. In VQuAD dataset, we have two sizes, two materi-
als, three textures, four movements, six color combos, and
three shapes. Interestingly we see that four of our models
NQA, SAN, MN, MAN and MCB, produces equally likely
results for attributes of movement, texture, color, and ma-
terial. S2VT outperforms all the models with a significant
margin for all the query attribute types.

Compare Attribute: In this category, we ask questions
involving the comparison of two attributes. For example:
Does the rotating block have the same size as the jumping
squared shiny thing?. The answers under this category are
yes or no type. All the models failed to capture the similarity
and dissimilarity between the attribute values of all the six
attributes.

Speed: This type involves speed of objects with non-still
movement type, in questions. It includes the spatiotemporal
reasoning type of query speed and equal speed. In query
speed, we ask about the speed attribute of the object. For
example: What is the rate of movement of the large bubbled
metallic cylinder?. Answers to these questions are either
fast or slow.In equal speed, we reason about the equality of
the speed attribute. For example, Does the large rotating
striped red and gray thing have same rate as the big shiny
cube?. The answers to this type of questions are either yes
or no. The collision type contains Exist, Count and Com-
pare Integer as their sub-types. For example, What number
of large metallic things are there with fast movement rate?.
We can see that none of the methods can capture the speed
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(a) Data sample 1 (b) Data sample 2

(c) Data sample 3 (d) Data sample 4

Figure 9. This figure shows data sample of our VQuAD dataset based on various object attributes.

Query type: (a) Movement, Shape (b) Color, Count (c) Exist, Speed

Figure 10. We show responses of various start of the art models in VQuAD dataset. We observed responses for various query types such
as : Color, Count, Exist, Speed, Movement and Shape.

information of the objects. Each shows the attribute values
as equally likely. This analysis indicates that identifying the
speed of an object is a difficult task.

Collision: This type of reasoning asks questions about
the temporal property of the expected collision of the ob-
ject. For example: Are there any other things that can hit the
large striped shiny block?. It includes Exist, Count, Com-
pare Integer and Query Attribute as its sub-types. The ac-
curacy of around 50% for compare integer and exist type
questions shows reasoning inability of models in these ar-
eas. This result shows that all the models failed to capture
the collision property, and capturing this property is a sig-
nificantly tough task.

5.5. Data Samples and Model Responses

In figure-9, we provide few sample example of our
dataset. In each example, example contains a given video
and its corresponding questions. The question based upon
temporal and spatial relation of the video. We also provide
query types such as shape, movement, speed, color, direc-
tion, count, exist, texture, compare and material. We also
show variant of objects based on the materials such metal
or rubber in supplementary material..

We obtained responses for various baseline models as

shown in figure-10. For a given video and its correspond-
ing questions, we obtain answer based on the query types.
We observe that almost all the model fails to answer the
question of a video for all query-types(count, movement,
shape, color etc.) in the dataset. In moment and shape query
type, S2VT performs better than others. Similarly, exist and
speed base query, LSTM based model preforms better than
others.

6. Discussion and Future Work
In this paper we have introduced ‘a VQuAD’ dataset,

which provides rich analysis for video based question an-
swering. It contains a wide variety of questions over videos
with multiple reasoning steps. This also contains less ques-
tion conditional bias and a uniform distribution of question
types and answer classes. This type of variability and anal-
ysis flexibility is not present in other datasets. In our ex-
periments, we showed that the conventional VQA methods
for Image question answering and video question answer-
ing significantly fail in spatio-temporal reasoning. We have
also proposed a model (MAN) in this paper that performs
comparably on this dataset with other models. To conclude,
with this dataset, we pose a challenge to the community to
better understand the video content and perform reasoning
over them.
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