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Abstract

In recent years, there has been significant progress in
overcoming the negative effects of domain shift in semantic
segmentation. Yet, existing unsupervised domain adapta-
tion methods operate in an offline fashion, which imposes
multiple restrictions on their deployment in real world sce-
narios. In this paper, we introduce a problem of online do-
main adaptation for semantic segmentation, which involves
producing predictions for and, at the same time, contin-
uously adapting a model to new frames of target domain
videos. To tackle this problem, we propose a novel method
which utilizes unsupervised structure-from-motion cues as
the primary source of domain adaptation. By optimizing on-
line the representation shared between depth and semantics
networks, our geometry-guided algorithm achieves seman-
tic segmentation performance comparable to state-of-the-
art offline methods, without using target domain training
data whatsoever.

1. Introduction
Semantic segmentation is an essential task for various in-

dustry fields, such as autonomous driving or robotics. Un-
fortunately, semantic segmentation models do not perform
well under the conditions of domain shift – a change in the
distribution between the sets of data a model was trained on
(source) and is deployed on (target). Such a difference in
the data distribution can be caused, for instance, by transfer-
ring from synthetic to real domain, the variation of weather
conditions or even the location change.

The goal of domain adaptation is to improve the model
performance in the target domain by reducing the conse-
quences of domain shift. Supervised domain adaptation as-
sumes the annotations available in both source and target
domains. It allows to benefit from the vast amount of syn-
thetic data with accurate and automatically-derived labels.
Nonetheless, the annotations in real domain are expensive
or even often unavailable, which is a significant drawback
of supervised domain adaptation algorithms.

Unsupervised domain adaptation (UDA) poses a more
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Figure 1. Schematic comparison of UDA setups: (a) offline, (b)
source-free offline, (c) ours – source-free online.

viable alternative to supervised methods, as it only requires
the source domain data to be labeled. Most methods ex-
plicitly align source and target domain distributions using
adversarial learning or explore the use of self-training by
iteratively refining pseudo-labels.

One common limitation of existing semantic segmen-
tation UDA (we will often omit “semantic segmentation”
from now on) algorithms is offline setting: they rely on
curated target domain data to train the model for multiple
epochs. Such setting introduces multiple restrictions: First,
target domain data has to be acquired and pre-processed
in advance, before training. Second, these methods do not
benefit from new data available in target domain unless the
model is retrained. Third, offline UDA does not allow to ad-
just the model to dynamically changing domain properties,
such as weather conditions. The aforementioned restric-
tions make offline UDA impractical for many real-world
applications desiring online capabilities.

To tackle the shortcomings of offline UDA and to en-
courage further research on online adaptation, we make the
following contributions:

• We introduce a method for joint source-free online
UDA of depth and semantic segmentation, which im-
poses more realistic requirements on model deploy-
ment compared to offline algorithms;

• We compose a benchmark for online semantics do-
main adaptation by complementing KITTI semantic
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segmentation [1] annotations with long videos from
other KITTI subsets [12, 13]. This benchmark facil-
itates the evaluation of our method and possible future
online UDA works;

• We perform extensive analysis of proposed design
choices, such as the use of experience replay, geom-
etry guidance and confidence regularization;

• We demonstrate that online UDA is capable of achiev-
ing performance comparable to state-of-the-art offline
methods. In particular, our algorithm reaches 57.3%
mean intersection over union (IoU) when adapting
from Virtual KITTI v2 to KITTI, compared to 59.0%
achieved by a well-performing offline baseline.

2. Related Work
In this section, we discuss two lines of research which

are most related to our work: offline UDA for semantic
segmentation, and unsupervised online adaptation for stereo
and monocular depth estimation.

2.1. Offline UDA for Semantic Segmentation

Semantic segmentation UDA methods can roughly be
categorized in the following way: distribution alignment
and self-training algorithms, and the works exploring var-
ious proxy tasks. We will mostly focus on the latter two,
since they are more relevant to our research.
Distribution Alignment. Most UDA methods tackle do-
main shift by explicitly matching source and target domain
distributions.

Some algorithms [56, 24, 49, 17, 30, 36, 51, 46, 50]
transform target domain images in such a way that they
look like those belonging to source domain, or vice versa
– source to target. Target to source translation allows
to utilize models trained in source domain, while source
to target – to train models in “fake” target domain us-
ing source domain annotations, assuming that image trans-
lation preserves semantics. Other methods try to make
learnt representations [17, 19, 30, 51] or model outputs
[5, 18, 41, 42, 43, 44, 35, 49] domain indistinguishable.

Most works mentioned in the previous paragraph em-
ploy adversarial training. Interesting exceptions are non-
adversarial image generation algorithms [51, 46, 50]. For
instance, Yang et al. [50] showed that style can be trans-
ferred by simply swapping the amplitudes of image Fourier
transforms.
Self-Training. Self-training UDA methods make use of
the assumption that the model trained with source annota-
tions already achieves reasonably good performance on tar-
get data. These methods generate pseudo-labels using most
confident predictions, and utilize the generated labels as a
source of supervision for further model optimization.

Zou et al. [57] introduced iterative self-training (IST) -
a procedure which alternates between generating pseudo-

labels for target domain and retraining the model using the
generated labels. As predictions for some classes are nat-
urally more confident than for others, pseudo-labels may
be dominated by high-confidence classes, whereas low-
confident ones remain underrepresented. To avoid this,
[57] proposed to generate pseudo-labels taking into account
class confidence distributions in target domain. Alterna-
tively, [29] tackled this issue by utilizing class- and image-
adaptive confidence regions, [31] and [20] added weak la-
beling loss indicating class presence in the image, and [37]
incorporated focal loss [27].

Another way to enhance self-training is the use of addi-
tional regularizations or constraints. For instance, in order
to avoid over-fitting to noisy pseudo-labels, [58] penalize
overconfident predictions similarly to [56]. [57] constrain
self-training using source domain spatial priors. [29] pro-
posed to sharpen low confidence regions via direct entropy
minimization likewise [43]. [37] and [20] enforce consis-
tency between model predictions at different scales and lo-
cations respectively.
Proxy Tasks. Another interesting line of UDA research ex-
plores the use of proxy tasks as additional means of domain
adaptation.

[38, 48] showed that solving simple problems such as
rotation, flip, patch location prediction and jigsaw puz-
zle completion improves segmentation quality if combined
with existing UDA algorithms.

Alternatively, several methods incorporated a more com-
plex task of monocular depth estimation. For instance, [24]
proposed to utilize source domain depth for generating ge-
ometrically correct target-style images. This is achieved by
making the model produce consistent depth predictions for
source and generated target-style images. In addition to en-
forcing consistency on depth outputs, [4] use source domain
depth as an extra input to image generator network. Differ-
ently from [24] and [4], [44] and [35] do not utilize depth
for image transfer. Instead, they proposed to align seman-
tics fused with continuous and discrete depth respectively.

In contrast to previous works, which only try to make tar-
get domain depth predictions indistinguishable from source
domain depth, our method and the concurrent works by
Guizilini et al. [15] and Wang et al. [45] try to make
them consistent with the target scene geometry. This
is achieved by optimizing depth predictions using target
domain self(un)-supervised structure-from-motion (SfM)
cues.

2.2. Online UDA for Depth Estimation

Recently, several works leveraged geometry cues for
self-supervised online adaptation of stereo and monocular
depth estimation models. Instead of relying on a dedicated
target domain training set, these methods either perform
per-image adaptation utilizing only the data from a small
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Figure 2. Our online UDA pipeline. We keep segmentation head frozen (pink), whereas the parts of the model depicted in blue are adapted.

neighborhood of an input image [6, 3] or adapt a model on
videos in online fashion [53, 25, 23, 39, 40, 52, 54].

Most depth adaptation methods focus on improving the
adaptation stability or speed. [53, 25, 39, 52] employ meta-
learning [9] to obtain better adaptor (optimizer) parame-
ters. Other works regularize adaptation using past experi-
ence. For instance, Chen et al. [6] and Zhang et al. [53]
force the predictions of the adapted model to be similar to
the predictions generated by the model at some previous
state. Kuznietsov et al. [23], in turn, utilize experience re-
play [26], optimizing the model estimates for past samples,
randomly drawn from replay buffer, the same way as the
predictions for the current frame.

Due to the inherent similarity of stereo and monocular
depth estimation tasks to the respective self-supervised op-
timization objectives, these methods yield clear improve-
ments under the conditions of domain shift. Nonetheless,
there is no research on online UDA for such an important
task as semantic segmentation.

3. Methodology
In this section, we describe the key components of our

method – supervised pre-training in source domain and the
proposed source-free online UDA. Additionally, we intro-
duce a source-free offline baseline in order to compare to
state-of-the-art offline UDA methods.

3.1. Problem Setting

Online UDA. Given the model M trained with annotated
source data DS and a set of target domain videos without

annotations VT , online UDA setting assumes that in order to
produce predictions for frame It at time t of video v ∈ VT

only the following data can be accessed:
• Any data from DS ;
• {It−i|It−i ∈ v ∧ i ≥ 0}.

Source-Free UDA. While online UDA does not prohibit the
utilization of source data, we voluntarily waive this privi-
lege likewise other source-free methods [22, 28]. Conse-
quently, our method is also applicable to scenarios when
source data is private.

Fig. 1 illustrates the differences in data usage between
offline, source-free offline and source-free online UDA set-
tings. We employ the latter in all our “online” experiments.

3.2. Supervised Pre-Training in Source Domain

Since we rely on self-supervised depth and ego-motion
estimation as a proxy task for source-free domain adapta-
tion, it is important that source data allows to learn ego-
motion.

Given a source dataset containing (possibly very short)
videos recorded by a moving camera and ground truth se-
mantic labels for at least some of the video frames, we train
semantics, depth and ego-motion estimators jointly using
the following loss for supervision:

Ltrain = LIR + αLS , (1)

where LIR is the image reconstruction loss as defined in
Monodepth2 [14], and LS is supervised semantic segmenta-
tion loss. LIR allows to optimize the parameters θ of depth
and ego-motion estimators in self-supervised way. Given
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three neighboring frames I91, I0 and I1, LIR can be ob-
tained as follows. First, the synthetic views Î91 and Î1 of I0
are generated by warping its neighbors I91 and I1 into I0.
The warping (re-projection) is performed using the respec-
tive depth d̂θ0 and ego-motion m̂θ

91, m̂θ
1 predictions. Then,

LIR is computed as the difference between real I0 and syn-
thesized Î91, Î1. For more details please refer to [14].

For semantic segmentation loss LS , we employ the mod-
ification of bootstrapped cross-entropy [47]:

LS = − 1

|Ω| · |C|
∑
p∈H

∑
c∈C

y(p, c)logŷ(p, c), (2)

where y(p, c) is 1 if ground truth at pixel p belongs to class
c and 0 otherwise, ŷ(p, c) is the soft-max score predicted by
model for class c at pixel p, Ω is the set of all pixels in the
batch, and the set of hard pixels H is defined as follows:

H =

{
p

∣∣∣∣∣ − 1

|C|
∑
c∈C

y(p, c)logŷ(p, c) > τ

}
, (3)

with τ being an adaptive cross-entropy value threshold set
at top k-th cross-entropy score within a batch.

The described hard pixel mining is known to enhance
prediction sharpness and effectively contributes to class bal-
ancing, demonstrating dramatic improvements for small but
frequent classes such as traffic light, sign or poll.

3.3. Geometry-Guided Online UDA

While devising our method for online UDA, we consid-
ered various offline UDA procedures described in Section 2.
However, the most widely used algorithms are seemingly
hard to integrate into online setup. For instance, the use of
both adversarial distribution alignment and IST is not fea-
sible during early stages of adaptation (e.g., when less than
100 target domain frames are available). The reason for
this is the need to train a domain discriminator from scratch
or re-train a semantic segmentation network for adversar-
ial alignment and for IST respectively. Employing IST at
later stages of online adaptation is also debatable, as it is
a very time consuming procedure, and, in online setting,
the amount of new data acquired while re-training a seman-
tic segmentation network may be significantly bigger than
what was originally used for re-training.

Utilizing self-supervised monocular depth and ego-
motion adaptation as a proxy task, on the other hand, does
not have obvious online restrictions, and can be performed
very close to real time [23, 40]. However, in order to be
able to use SfM cues as the primary supervision source for
semantic segmentation UDA, our method must exhibit fol-
lowing characteristics: 1) features used to predict semantics
and geometry are correlated and 2) improving geometrical
correctness of learned representation should not make it less
discriminative for semantic segmentation.

The first characteristic is encouraged by employing a
shared encoder for depth and semantics networks. For the
second, we introduce confidence regularization LCR, which
forces the model to not deviate significantly from already
confident predictions:

LCR = − 1

|Ω| · |C|
∑
p∈X

log

(
max
c∈|C|

ŷ(p, c)

)
, (4)

where X is the set of pixels for which the model predicted
highly-confident labels. We set p ∈ X if maxc∈|C| ŷ(p, c) >
γc, where γc is the minimum of 0.99 and top l% softmax
score for class c within a batch.

While confidence regularization is very similar to self-
training using online-generated pseudo-labels, its purpose
is to prevent the model updates which improve depth esti-
mation, but worsen segmentation quality. And, as shown in
Section 4.3, confidence regularization does not yield notice-
able segmentation improvements when used without geom-
etry guidance.

As the result of our previous considerations, we propose
online UDA based on the combination of confidence reg-
ularization and geometry guidance. In particular, for every
frame It (also using It−1 and It+1 for image reconstruction)
of a target domain video, model parameters are optimized
by minimizing the following loss:

Ladapt = LIR + αLCR. (5)

In practice, monocular depth adaptation methods often
employ additional mechanisms to avoid catastrophic for-
getting and overfitting. Similarly to [23], we employ ex-
perience replay [26], adapting our model using several past
samples (frame triplets), drawn from replay buffer, in addi-
tion to the current frame sample. Past samples are drawn
randomly, and experience in the buffer is distributed uni-
formly over time. However, in contrast to [23], new samples
are added to our replay buffer during adaptation in target do-
main, and the buffer does not contain source domain sam-
ples unless stated otherwise. Together with experience re-
play, our method is summarized by Fig. 2 and Algorithm 1.
The latter follows the notation from this section and also
formalizes our online evaluation protocol.

3.4. Offline UDA Baseline

For source-free offline baseline, we fine-tune the source-
trained model on a dedicated target domain training set.
First, the model is optimized using the loss from Eq. 5 for
n = 4 epochs. After this, we continue to train our model
with self-training loss instead of confidence regularization.
In particular, in the beginning of each epoch, pseudo-labels
are generated using the confidence region X selection pro-
cedure described in Section 3.3. Then, self-training loss is
computed as cross-entropy between the predicted semantics
and the generated pseudo-labels.
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Algorithm 1 Proposed Online UDA
Require: Set of target videos VT , modelM pre-trained in source domain

DS , batch size b, α, other hyper-parameters.
Ensure: IoU for every class
1: I&U ← [[0...0], [0...0]] ▷ Intersections and unions
2: for v ∈ VT do
3: E ← ∅ ▷ Initialize replay buffer
4: M∗ ←M ▷ Reset model parameters for every video
5: for t ∈ [2..end(v)] do
6: E ← add sample(Ivt92, I

v
t91, I

v
t )

7: B ← (Ivt92, I
v
t91, I

v
t )⊕ sample(E, b 9 1) ▷ Compose a batch

8: ▷ consisting of the current and b−1 past frame triplets from E
9:

10: ▷ Model optimization w.r.t. middle frames of [-1, 0, 1] triplets
11: m̂91, m̂1, d̂0, ŷ0 ←M∗(B) ▷ Inference
12: if car is moving then
13: Î91, Î1 ←do warping(m̂91, m̂1, d̂0,B[−1, 1])
14: compute LIR(Î91, Î1,B[0])
15: X ← generate cr (ŷ0) ▷ Confidence region
16: compute LCR(ŷ0,X )
17: Ladapt ← LIR + αLCR

18: M∗ ←optimize(M∗,Ladapt)
19: if yvt exists then ▷ Evaluation
20: ŷvt ←M∗(Ivt )
21: I&U ← update I&U(ŷvt , y

v
t )

22: compute IoU(I&U)

4. Experiments
In this section, we provide experimental evaluation of

our method as well as comparison to prior art.

4.1. Datasets

Most of our experiments are evaluated using simulated
to real UDA setup. Thus, we chose one synthetic and two
real datasets for source and target domains respectively.
Virtual KITTI v1/v2. Virtual KITTI [2, 10] is a synthetic
dataset simulating the scenes from KITTI. It contains five
daytime videos with normal weather conditions, resulting
in a total of 2126 frames for left camera. Each frame has
automatically generated dense semantic annotations for 12
classes. Unlike other datasets widely used in sim-to-real
setup (Synthia [33] and GTA5 [32]), Virtual KITTI consists
of videos and allows to learn ego-motion in source domain,
which is crucial for our method.

There are two versions of Virtual KITTI available. Both
cover the same scenes and are almost identical, but more
recent v2 is supposedly more photo-realistic. We use both
v1 and v2 to compare our offline baseline to other methods,
but perform all other experiments utilizing only v2, since
the annotations of v1 for classes such as pole, traffic light
and traffic sign are inconsistent with the annotation policy
of KITTI for these classes. More details can be found in the
supplementary materials.
KITTI. KITTI [12] is a huge driving dataset consisting of
videos taken in urban, residential and road environments.
For offline evaluation, we follow the protocol of [4]. In

particular, 200 unannotated frames from KITTI semantic
segmentation [1] test set are used as the training set for
UDA, whereas 200 annotated images from the official train-
ing set are used for evaluation. For our online protocol,
the annotated images from the segmentation benchmark are
mapped to the videos from KITTI raw [12] (as in develop-
ment kit) and odometry set [13] (manually). This resulted in
30 videos with 9070 frames total, 148 of which are semanti-
cally annotated. The length of obtained videos ranges from
35 to 943 frames, and the number of annotated frames per
video varies from 1 to 12. On average, the annotated frames
have approximately 200 preceding frames. The complete
mapping is provided in the supplementary materials.
Cityscapes. Cityscapes [7] is an urban driving dataset with
big amount of high quality semantic annotations. Anno-
tated images are surrounded by 30-frames video snippets,
with 18 preceding frames each. This, however, is not suffi-
cient for online adaptation setup. For online protocol, we
selected the video from Frankfurt – the only long video
from Cityscapes with semantic annotations available. This
video consists of 106917 frames, 267 of which are anno-
tated and used for evaluation. Since the video is huge, we
perform adaptation step once every 10 frames.

4.2. Model Setup

For shared depth-semantics and for pose encoders, we
employ ResNet18 [16]. We use depth and pose heads from
Monodepth2 [14]. For segmentation head, we use the depth
decoder architecture with the last layer modified: the num-
ber of output channels is set to be equal the number of
classes used for training, and sigmoid activation is replaced
with softmax. Our training configuration in source domain
is following. We keep the parameters of the image recon-
struction loss as proposed in [14]. Semantic segmentation
loss weight α is set to 0.1, and the warm-up schedule is used
for the bootstrapped cross-entropy parameter k:

k = h ·w ·b ·
(
0.15 + 0.85 ·max

(
1− epoch

10
, 0

))
. (6)

We resize Virtual KITTI images to height h = 320
and width w = 1024. Our model is initialized with Im-
ageNet [34] pre-trained parameters, and is trained for 80
epochs with Adam optimizer [21], learning rate 0.0001 and
batch size b = 6. We use same data augmentation strat-
egy as [14]. During both online and offline UDA we keep
most model parameters (including α) unchanged. We resize
KITTI and Cityscapes images to 1024×320 and 1024×512
px respectively. Offline baseline is trained for 40 epochs in
target domain. Horizontal flip augmentation is used at test
time. Due to geometric guidance relying on camera mo-
tion cues, we do not perform back-propagation when cam-
era translation is not sufficient. Car movement can be deter-
mined either by thresholding translation predicted by pose
network, or using CAN bus.
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Model Road Building Pole T.light T.sign Vegetation Terrain Sky Car Truck Mean

Source 58.0 53.0 42.6 26.9 25.4 61.5 16.4 87.4 68.1 10.4 45.0
Baseline (offline) 89.7 66.0 40.1 34.1 30.4 83.1 62.1 90.6 83.4 9.9 59.0

Online (GG + CR) 87.8 51.2 40.3 35.7 30.4 76.6 55.5 88.4 81.6 26.9 57.3
Online (GG) 86.7 48.5 41.0 36.6 28.4 74.4 50.6 86.9 80.8 23.2 55.7
Online (CR) 79.4 32.6 17.6 25.2 8.7 73.6 52.3 87.8 61.3 31.5 47.0

Table 1. Semantic segmentation results for UDA from Virtual KITTI v2 to KITTI online semantics benchmark.
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Figure 3. Semantic segmentation predictions for Virtual KITTI v2 → KITTI UDA. Cityscapes color coding is applied.

Due to experience sampling being a stochastic process,
we report semantic segmentation results averaged over 10
runs for every online experiment. For most online exper-
iments we draw 5 past samples for experience replay at
every step, so that the total batch size remains unchanged.
The only exceptions are experience replay ablation studies
and online adaptation on Cityscapes, where we had to re-
duce batch size to 4 in order to fit into Nvidia GTX 1080Ti
GPU memory. Maximum replay buffer size is set to 2000
samples, which easily fit into RAM. The procedure for pre-
venting buffer overflow (only relevant for Cityscapes) is de-
scribed in the supplementary materials.

4.3. Results

In this section, we discuss the performance of our
method for both semantic segmentation and depth estima-
tion, and assess the effects of its individual components us-
ing the benchmark proposed in Section 4.1. We also explore
how our method behaves over time, adapts to Cityscapes
Frankfurt, and to changing weather conditions. In addition
to this, we demonstrate another interesting scenario (post-
adaptation) in the supplementary materials.
Performance Analysis. As shown in Table 1 and Fig. 3,
online adaptation (Online) significantly improves over the
non-adapted model (Source) on all classes except building
and pole. The most dramatic performance gain is achieved
for big classes: 39.1% IoU for terrain, 29.8%, 16.5%,
15.4%, 13.5% – for “road”, “truck”, “vegetation” and “car”

respectively. Despite using a curated target domain train-
ing set, offline Baseline surpasses our online method by
only 1.7% mean IoU. Interestingly, online adaptation per-
forms better on hard classes. For instance, online adaptation
demonstrates substantially better performance for “truck”
compared to offline baseline. This presumably happens be-
cause the adaptation is performed separately for each video,
and, if a truck is present in a video, the frequency of the
truck appearance in its frames is noticeably higher than in
the training set.

Both confidence regularization (CR) and geometry guid-
ance (GG) are important for our method. While geom-
etry guidance alone allows to obtain mean IoU gain of
10.7% compared to the non-adapted model, adding confi-
dence regularization to it further improves performance by
1.6% mean IoU. In contrast to geometry guidance, confi-
dence regularization does not perform well as the primary
source of domain adaptation. When used alone, it demon-
strates substantially lower IoU for four classes – “building”,
“pole”, “sign” and “car”.

Effect of Experience Replay. Fig. 4 shows the effects
of utilizing Random and Sequential sampling for expe-
rience replay compared to no experience replay (No ER).
While random sampling was previously explained in Sec-
tion 3.3, sequential sampling refers to the use of past sam-
ples (triplets) at times t − 1, t − 2, ... when adapting at t.
Increasing the number of past samples used for every adap-
tation step improves performance at seemingly same rate
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Figure 4. Semantic segmentation results (mean IoU) for online
UDA from Virtual KITTI v2 to KITTI online semantics bench-
mark wrt experience sampling strategy and the number of past
samples drawn from replay buffer. Horizontal axis shows total
adaptation batch size, and candlesticks define regions within µ±σ.

Figure 5. Running mean IoU gain (y axis) of our online UDA com-
pared to non-adapted model when transferring from Virtual KITTI
v2 to KITTI online semantics benchmark.

for both random and sequential experience replay. How-
ever, the addition of only one random sample noticeably
increases mean IoU, which is not the case with sequential
sampling. Thus, we expect the performance gap of about
1.5% IoU between random and sequential experience re-
play to hold if the number of samples per batch is further
increased. We also expect further mean IoU growth for both
sampling strategies, but, unfortunately, could not test this
hypothesis due to the GPU memory limitations.
Adaptation Performance over Time. Since online adap-
tation is a continuous process, we explore how the adapted
model behaves over time. For this, we depict the run-
ning mean IoU difference between online-adapted and non-
adapted models (Fig. 5). Running mean IoU at time t is
computed in the following way: First, annotations from all
videos and the corresponding predictions are sorted accord-
ing to their timestamp f relative to the start of a video.
Then, the mean IoU is obtained for the set of annotated
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Figure 6. Depth maps for Virtual KITTI v2 → KITTI UDA.
Brighter pixels correspond to closer regions.

Model Abs Rel↓ Sq Rel↓ RMSE↓ δ<1.25 ↑
Source 0.246 2.420 8.205 0.585
Baseline 0.183 2.495 7.884 0.783
Online-CR 0.151 2.035 7.089 0.835
Online 0.145 1.878 6.907 0.842

Table 2. Depth estimation performance for UDA from Virtual
KITTI v2 to KITTI online benchmark. Metrics definition can be
found in [8], ↓ and ↑ indicate whether lower or higher values are
better. “-CR” denotes no confidence regularization.

frames with f ≤ t. Even though IoU is a very sensitive met-
ric and can be significantly influenced by only one frame,
Fig. 5 shows that our method benefits from adapting for at
least 100 frames. In particular, Pearson correlation coef-
ficient between mean IoU gain and frame “timestamp” in
video is 91.8 for first 100 video frames. The performance
drop after approximately 100 frames can be explained by
the sensitivity of IoU and the influence of videos, for which
online adaptation improves the model slower. E.g., there are
videos with car being static in the beginning and the anno-
tations only available after 100 frames.
Depth Estimation Results. Table 2 and Fig. 6 demon-
strate that our semantic segmentation method also improves
depth. Table 2 also illustrates two interesting findings: 1)
Online-adapted model achieves significantly better depth
estimation performance compared to the model trained of-
fline in target domain; 2) Unsupervised semantic cues such
as confidence regularization (CR) may be useful for online
depth adaptation.
Adaptation to Cityscapes. The results for our method
adapting to Cityscapes Frankfurt video are shown in Ta-
ble 3. On average, online-adapted model (Online) achieves
10.7% IoU higher performance for big classes compared to
the non-adapted one (Source), and 7.6% – for all classes re-
spectively. While the observed performance gain is less im-
pressive compared to online adaptation to KITTI, we point
out that the adaptation was only performed for every 10-th
frame. Thus, when evaluating the predictions for a partic-
ular frame, the last image used for adaptation can be up to
10 frames behind. Besides, the domain shift from Virtual
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Model Road Building Pole T.light T.sign Vegetation Terrain Sky Car Truck Mean Mean∗

Source 59.2 66.3 20.3 5.4 21.7 65.8 13.6 73.6 62.4 4.2 39.3 49.3
Online 85.0 72.6 19.2 9.1 20.8 67.5 29.3 83.9 72.1 9.4 46.9 60.0

Table 3. Semantic segmentation results (IoU) for online adaptation (Online) from Virtual KITTI v2 to Cityscapes Frankfurt video. Mean∗

IoU is computed excluding “pole”, “light” and “sign”. For labeling consistency reasons,“sidewalk” class from Cityscapes is also considered
to be “terrain” for the experiments in this table.

Method Road Building Pole T.light T.sign Veg. Terrain Sky Car Truck Mean

V
1

DADA [44]∗ 90.9 76.2 12.4 30.3 30.8 73.5 24.1 88.4 86.8 17.2 53.0
Chen et al. [4] 81.4 71.2 11.3 26.6 23.6 82.8 56.5 88.4 80.1 12.7 53.5
Saha et al. [35] 90.9 78.9 18.1 32.2 38.9 73.7 22.0 88.2 86.2 16.7 54.6
Baseline 91.1 67.6 18.4 24.5 24.5 80.0 59.0 87.5 81.9 8.5 54.3

V
2

DANN [11]∗ 70.3 49.4 39.5 28.0 22.2 67.0 23.1 82.0 69.4 5.1 45.6
GUDA [15] 86.8 72.7 46.2 41.4 44.6 77.3 29.1 88.5 86.1 9.8 58.25
Baseline 90.1 72.4 37.8 31.3 34.9 83.9 58.9 89.6 84.0 10.9 59.4

Table 4. Semantic segmentation results (IoU) for UDA from Virtual KITTI to KITTI. First column indicates the version of Virtual KITTI
used. ∗ Results for [44] and [11] are taken from [35] and [15] respectively.

Weather mIoU
Source Target NA OA

Normal → Fog 57.8 → 71.4
Normal → Rain 72.2 → 82.2

Table 5. Semantic segmentation results under conditions of
weather changes in Virtual KITTI v2. NA and OA denote non-
adapted and online-adapted models respectively.

KITTI to Cityscapes is larger than to KITTI.
Weather Variations. Weather conditions are an interest-
ing special case of domain change, so we performed a few
specific experiments in this context. We utilize Virtual
KITTI v2 videos rendered with different weather settings.
In particular, normal (sunny) videos are used as source do-
main, while foggy and rainy – as target respectively. In this
videos, every 10-th frame is evaluated while car is mov-
ing. Table 5 shows that online adaptation allows to increase
mean IoU by 13.6% and 10.0% for foggy and rainy condi-
tions respectively.

4.4. Baseline Comparison

Unfortunately, it is not possible to compare our online
method to existing offline approaches using the frames se-
lected for KITTI online semantics benchmark, since neither
predictions nor code (or KITTI configuration for [35]) are
available for these works. To indicate how our method per-
forms relative to existing methods, it is first compared to our
offline baseline in Section 4.3, and the baseline is further
evaluated against other offline works on complete KITTI
semantics in this section.

Table 4 shows that our source-free baseline achieves

higher mean IoU than Chen et al. [5] and DADA [44],
demonstrating best performance for “road”, “pole” and “ter-
rain” classes. State-of-the-art method by Saha et al. [35]
reaches 0.3% higher mean IoU score compared to our base-
line, but they employ a bigger backbone (ResNet101 [16]
vs. ResNet18).

Similarly to Saha et al. [35], GUDA, which is a concur-
rent work, also employ ResNet101 encoder. Despite this,
and the possible use of the entire Eigen train set [55] (39810
images) for offline UDA to KITTI, our source-free baseline
achieves 1.15% higher mean IoU compared to their method.
GUDA demonstrates better performance for such classes as
“pole”, “light” and “sign”, presumably due to the explicit
use of source data and Eigen train set during UDA, or sur-
face normal regularization. However, our baseline compen-
sates for this by achieving 31.5% higher IoU for “terrain”.

5. Conclusion
In this paper, we proposed a new framework – online

UDA for semantic segmentation, which poses a more ap-
plied alternative to offline approaches. We show that the
presented pipeline is competitive with state-of-the-art of-
fline UDA methods when transferring from simulated (Vir-
tual KITTI) to real (KITTI) environment. Extensive exper-
imental evaluation demonstrates the importance of individ-
ual components of our algorithm and the effectiveness of
proposed design choices in various online UDA scenarios.
Finally, in order to encourage further research on the pre-
sented topic, we proposed the online semantic segmentation
benchmark composed of KITTI subsets.
Acknowledgment. The authors thankfully acknowledge
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