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1. Additional Implementation Details

In this section, we discuss implementation details of
existing Few-Shot Object Detection (FSOD) methods for
training on India Driving Dataset [4] (IDD). We adapt the
open-source implementation of respective methods for most
existing approaches and tune their hyper-parameters for
IDD data splits. Our proposed AGCM approach is built on
top of the Stronger Baseline (SB) proposed in FSCE, which
unfreezes the Region Proposal Network (RPN), RoI fea-
ture extractor, and Feature Proposal Network (FPN) [2] dur-
ing the few-shot adaptation stage. However, while adapting
this to AGCM for IDD data splits, we do not unfreeze the
FPN since few-shot samples tend to cause model overfit-
ting resulting in elevated catastrophic forgetting. For re-
implementing the FSCE approach for IDD datasplits we use
the contrastive loss weight as 0.5 and the temperature value
τ as 0.2 through extensive hyper-parameter tuning on the
IDD-OS split. The model has been trained until conver-
gence with a constant learning rate of 0.001 for all split and
shot settings.

2. Detailed Architecture

Figure 1 shows a detailed architecture of our proposed
method AGCM. RoI proposals are first passed to two fully
connected layers (FC1 and FC2) of the RoI Feature Extrac-
tor to produce the class-agnostic feature set P = f(I, θf ).
The feature representations for each proposal pi ∈ P
are normalized and fused with other similar RoI proposals
through the APF module.

The fusion occurs in 3 steps - (1) L2 Feature Normal-
isation (indicated as Norm in Figure 1) (2) Calculation of
attention weights wij via a cosine similarity metric (3) At-
tentive feature fusion is described in section 3.2.1 of the
main paper. The fused proposals are passed to the fully con-
nected linear layer of the classifier C(ϕ, θc), which is used
for calculation of the Cosine Margin Cross-Entropy Loss
Lcos-margin as described in section 3.2.2 of the main paper.

*Work done as an intern at Intel.

Figure 1: Detailed Architecture of our proposed AGCM
method highlighting the key architectural components, a
novel APF module, and a cosine margin cross-entropy loss
introduced in the classifier head of the Faster-RCNN object
detector.

3. Results on PASCAL VOC dataset

This section provides detailed comparative results from
the AGCM and FSCE approaches on the PASCAL-VOC
dataset [1]. We also discuss the reasoning behind the varia-
tion in performance scores obtained from the existing State-
of-The-Art (SoTA) FSOD framework, FSCE [3] in this
work with respect to the scores reported by the authors.
The results from FSCE are a reproduction of the official



Table 1: Seedwise Results on PASCAL VOC for our proposed method AGCM and FSCE. On an average, we outperform FSCE for all
shot and split settings.

K = 10 K = 5 K = 1
Split 1 Split 2 Split 3 Split 1 Split 2 Split 3 Split 1 Split 2 Split 3

Seed FSCE AGCM FSCE AGCM FSCE AGCM FSCE AGCM FSCE AGCM FSCE AGCM FSCE AGCM FSCE AGCM FSCE AGCM
0 57.8 59.9 48.1 49.4 57.7 56.0 57.9 58.5 43.2 42.2 53.2 54.2 40.3 39.3 22.3 23.9 40.1 42.1
9 53.2 57.0 48.8 49.8 46.3 50.0 46.4 53.4 44.4 49.3 48.0 50.8 28.3 28.0 18.9 19.2 10.3 11.6

10 54.2 55.0 43.5 46.3 41.4 45.2 41.0 49.8 40.0 41.4 43.0 42.2 25.9 24.9 9.9 9.5 26.4 25.3
12 54.8 52.4 41.2 44.0 51.9 53.3 51.3 46.2 32.3 34.2 49.8 50.8 33.9 34.5 17.5 16.7 24.9 25.7
13 51.4 53.7 48.2 47.3 44.9 45.9 44.2 47.7 33.7 35.6 46.2 46.1 41.0 40.3 27.3 27.5 32.1 29.1
14 49.1 51.0 40.5 46.3 48.0 50.5 36.8 40.5 31.2 34.7 45.9 46.6 26.2 25.9 6.6 6.3 25.3 27.1
17 58.1 57.5 48.7 50.6 51.8 53.1 42.8 49.7 42.4 45.9 40.6 43.0 21.7 25.2 17.9 19.1 17.5 19.1
18 56.6 55.2 47.0 48.1 52.6 56.2 47.3 47.1 37.3 38.2 46.2 48.0 16.5 15.0 15.0 15.2 18.9 18.2
24 51.2 51.1 36.8 42.7 47.1 48.1 47.4 49.8 27.9 30.9 43.4 45.5 21.7 23.3 9.6 13.4 16.1 18.4
25 54.9 55.4 49.8 45.7 52.4 54.6 46.5 47.2 26.5 32.4 37.6 38.3 26.9 26.6 20.1 21.2 10.6 12.3

Average 54.1 54.8 45.3 47.0 49.4 51.5 46.2 49.0 35.9 38.5 45.4 46.5 28.2 28.3 16.5 17.2 22.2 22.9
Std.dev ±2.96 ±2.87 ±4.45 ±2.53 ±4.72 ±4.31 ±5.74 ±4.72 ±6.49 ±6.07 ±4.49 ±4.69 ±8.00 ±7.71 ±6.37 ±6.41 ±9.43 ±9.06

Figure 2: t-SNE plots of feature representations from the classifier head of (a) FsDet [5] (b) FSCE [3] and (c) AGCM (ours)
approaches. The plots for FsDet and FSCE show significant overlaps among feature representations (depicted in red) from
object classes. Our AGCM technique is able to reduce this overlap by forming tighter and more separated feature clusters
(depicted in green).

open-source implementation1 released by the authors. The
implementation details of our proposed AGCM approach
are mentioned in detail in section 4.2 of the main paper.
The performance of FSOD techniques varies based on the
choice of image samples used during the few-shot adapta-
tion stage [5]. This introduces an uncertainty in the perfor-
mance scores reported by individual methods. Following
[5], we evaluate FSCE and AGCM over a series of randomly
sampled image sets for 1, 5, and 10-shot settings. We sam-
ple these images using randomly selected seeds as shown
in Table 1. We also observe a variation in the performance
owing to the randomness in the data ingestion pipeline dur-
ing fine-tuning. For a fair comparison, we fix the seed for
data ingestion as a constant value. In the main paper, we re-
ported the best results for FSCE and AGCM and an average
across 10 random seeds to alleviate any form of uncertainty

1https://github.com/MegviiDetection/FSCE

associated with the choice of few-shot data samples.
Table 1 shows the results of our proposed algorithm

AGCM and our reproduced results for the SoTA metric
learner FSCE on the PASCAL-VOC dataset. We see that
for a higher shot (K = 5 and K = 10) value, AGCM outper-
forms FSCE by 1.5 and 2.2 mAP points for 10-shot and
5-shot settings, respectively. However, for the 1-shot set-
ting, we do not see high improvements (0.5 mAP points on
average) over our baseline, FSCE. The lack of feature in-
formation from a single data sample increases the effect of
intra-class variance and inter-class bias in the AGCM ap-
proach leading to this drop in novel class performance.

4. Additional Qualitative Results

Figure 3 shows additional qualitative results for our pro-
posed AGCM method on the challenging IDD-OS split. We
show that our AGCM approach can detect objects in low-

https://github.com/MegviiDetection/FSCE


light conditions and is resistant to occlusions. It can be seen
that our method shows relatively lower catastrophic forget-
ting by predicting instances of the base classes person, mo-
torcycle etc., alongside novel classes like street cart, water
tanker, etc., after few-shot adaptation with significant con-
fidence. We also quantitatively prove this finding in section
5.4 in the main paper.

We also demonstrate few example predictions from the
IDD dataset (depicted in the bottom row of figure 3) where
our proposed AGCM approach fails to overcome the chal-
lenges of class confusion and catastrophic forgetting. As
mentioned in the main paper, this can be attributed to
a significant feature representation sharing among object
classes.

5. Comparison of Class confusion
Figure 2 shows a t-SNE visualisation of feature rep-

resentations for FsDet, FSCE and AGCM. We observe a
large overlap between the feature representation of object
classes in FsDet. Although contrastive learning in FSCE
can produce better feature clusters, it does not create suf-
ficient inter-class margin among classes causing overlaps
between confusing classes such as bus, autorickshaw, and
truck. Our proposed cosine margin Cross-Entropy loss en-
courages inter-class separation and therefore reduces class
confusion among such classes.
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Positive results from novel classes in IDD-OS for 10-shot setting.

Negative predictions on IDD-OS split in 10-shot setting.

Figure 3: Qualitative results from our proposed AGCM approach on the few-shot India Driving Dataset (IDD-OS split). The
first three rows in the figure indicate positive predictions from the AGCM approach on novel classes in IDD-OS. The final
row indicates failure cases where we continue to observe class confusion and catastrophic forgetting.


