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Figure 5. Hyperparameter analysis: Performance of UBNA on
the Cityscapes validation set for the adaptation from GTA-5 (DS)
to Cityscapes (DT) in dependence of the batch decay factor
αBATCH. Here, αLAYER = 0.0 for all UBNA experiments.

A. Additional Experimental Evaluation

With this section our main aim is to provide a more com-
plete overview on the results of our method. This in particu-
lar means that we provide a hyperparameter analysis, show
our conducted experiments on other source/target domain
combinations, provide results for more network architec-
tures, and give a deeper analysis on the variance of different
experiments with the same hyperparameter setting but dif-
ferent random seeds. Note that most subsection names are
equal to the ones in Sec. 6 of the main paper, and thereby
correspond to these respective sections.

A.1. Hyperparameter Analysis

To give a further insight into the hyperparameter selec-
tion for our UBNA method, we show for all three consid-
ered dataset settings in Figs. 5, 6, and 7 the performance
(ordinate) in dependence of the number of adaptation steps
(abscissa). Here, we can already see that the adaptation
consistently converges after κ = 50 adaptation steps and
a further adaptation does not improve the performance any-
more. Note, that Figs. 5, 6, and 7 show the adaptation until
κ = 100 adaptation steps, though we do not observe any
change in performance after κ = 50 adaptation steps. For

0 20 40 60 80 100
26

28

30

32

34

36

adaptation step κ

m
Io

U
(%

)

No Adaptation αBATCH = 0.0 (UBNA0)
αBATCH = 0.05 αBATCH = 0.08

αBATCH = 0.2 αBATCH = 0.4

Figure 6. Hyperparameter analysis: Performance of UBNA on
the Cityscapes validation set for the adaptation from SYNTHIA
(DS) to Cityscapes (DT) in dependence of the batch decay fac-
tor αBATCH. Here, αLAYER = 0.0 for all UBNA experiments.
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Figure 7. Hyperparameter analysis: Performance of UBNA on
the KITTI validation set for the adaptation from Cityscapes
(DS) to KITTI (DT) in dependence of the batch decay factor
αBATCH. Here, αLAYER = 0.0 for all UBNA experiments.

αBATCH = 0.08, using less adaptation steps could poten-
tially still improve the results (cf. Fig. 5), however, this opti-
mal point does not generalize well across different datasets
(cf. Figs. 6 and 12), which is why we use κ = 50 adap-
tation steps in the main paper, where we observe a stable
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Figure 8. Hyperparameter analysis: Performance of UBNA+++

on the Cityscapes validation set for the adaptation from GTA-5
(DS) to Cityscapes (DT) in dependence of the layer decay fac-
tor αLAYER. Here, αBATCH = 0.08 for all UBNA+++ experiments.
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Figure 9. Hyperparameter analysis: Performance of UBNA+++ on
the Cityscapes validation set for the adaptation from SYNTHIA
(DS) to Cityscapes (DT) in dependence of the layer decay fac-
tor αLAYER. Here, αBATCH = 0.08 for all UBNA+++ experiments.

convergence.
We also show the influence of using different batch-

wise decay factors αBATCH. Interestingly, we observe that
adapting the statistics to the target domain is beneficial re-
gardless of the used value for αBATCH. However, the con-
vergence is quite optimal for values around αBATCH =
0.08. For GTA-5 to Cityscapes (Fig. 5) and SYNTHIA
to Cityscapes (Fig. 6), this yields the optimal performance,
and for the Cityscapes to KITTI adaptation only a value of
αBATCH = 0.2 yields a slightly better performance. Much
smaller values of αBATCH lead to an unstable convergence
and a lower performance gain (as observed in UBNA0 with
αBATCH = 0, yellow curves in Figs. 5, 6, and 7). On the
other hand the more rapidly decreasing BN momentum for
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Figure 10. Hyperparameter analysis: Performance of UBNA+++

on the KITTI validation set for the adaptation from Cityscapes
(DS) to KITTI (DT) in dependence of the layer decay factor
αLAYER. Here, αBATCH = 0.08 for all UBNA+++ experiments.

larger values of αBATCH seem to stop the adaptation too
rapidly and lead to a convergence much below the optimal
point. Still, the approximate optimal hyperparameter val-
ues of αBATCH = 0.08 and κ = 50 generalize well across
different dataset settings, which is essential for practical ap-
plications of our UBNA method.

Furthermore, we introduced a layer-wise weighting fac-
tor αLAYER, which causes the statistics in the initial layers
to be updated more rapidly than in the deeper layers. We
show the performance for different values of αLAYER in
Figs. 8, 9, and 10. We observe that for a suitable value
of αLAYER this weighting again improves on top of the
UBNA method (αLAYER = 0, yellow curves in Figs. 8,
9, and 10), resulting in the UBNA+ approach. This could
hint at the fact that the domain gap can be compensated to
a large extent in the initial layers, which extract domain-
specific knowledge, while the deeper layers already learned
more domain-invariant features that are rather task-specific.
The optimal αLAYER value of this method is, however,
dataset-dependent. On the synthetic-to-real settings GTA-5
to Cityscapes (Fig. 8) and SYNTHIA to Cityscapes (Fig. 9)
we found an optimal value of αLAYER = 0.03, while for
the real-to-real setting Cityscapes to KITTI (Fig. 10) the
optimal value was found to be αLAYER = 0.3. We suspect
that due to the larger domain gap in the synthetic-to-real
settings an adaptation only in the initial layers is not suffi-
cient, thereby requiring a smaller value of αLAYER. Con-
clusively, if one has access to a labelled validation set in the
target domain, one can tune this hyperparameter for better
performance.
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Figure 11. Comparison to normalization approaches: Perfor-
mance on the Cityscapes validation set for the adaptation from
GTA-5 (DS) to Cityscapes (DT) in dependence of the adapta-
tion step κ (batch size B = 6). We also show results when using
the statistics from the source domain (no adaptation) and from the
target domain (AdaBN by Li et al. [6]).

A.2. Comparison to Normalization Approaches

While our main paper’s comparison regarding baseline
approaches was on the adaptation setting from SYNTHIA
(DS) to Cityscapes (DT), in this part we want to show
the same results for the adaptation from GTA-5 (DS) to
Cityscapes (DT) and from Cityscapes (DS) to KITTI (DT)
in Figures 11 and 12, respectively. Here, we also observe
that the UBNA0 method has a peak after adapting with just
a few batches, which outperforms the no adaptation and
the AdaBN [6] baselines. Using our UBNA method allows
convergence of the performance close to or even above this
maximum performance, although there might still be a lit-
tle potential to optimize the hyperparameter αBATCH for
a more stable convergence at the performance maximum.
However, for the scope of this paper we rather wanted to
show that our hyperparameter setting generalizes to a large
degree over different dataset combinations. The more sta-
ble convergence of UBNA+ also shows that with further
hyperparameter tuning, the convergence behavior and max-
imum performance can even be imporved. In conclusion,
this shows that our results observed on other datasets are
consistent with the results on the SYNTHIA to Cityscapes
adaptation setting.

A.3. Comparison to UDA Approaches

To facilitate a more extensive comparison with respect to
past and future works, we extend our comparison to UDA
baseline approaches also to models using a ResNet-based
network architecture, which we demonstrate in Tables 8
and 9. For our experiments we use a ResNet-50 back-
bone, which provides a good trade-off between computa-
tional complexity and performance. When analyzing the
results we observe that UBNA improves the final model per-
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Figure 12. Comparison to normalization approaches: Perfor-
mance on the KITTI validation set for the adaptation from
Cityscapes (DS) to KITTI (DT) in dependence of the adapta-
tion step κ (batch size B = 6). We also show results when using
the statistics from the source domain (no adaptation) and from the
target domain (AdaBN by Li et al. [6]).

formance by 3.9% and 4.7/5.6% absolute for the adaptations
from GTA-5 to Cityscapes and SYNTHIA to Cityscapes,
respectively. Additionally, the performance on the single
classes improves for the large majority of classes. This
is in consistency with the results obtained using a VGG-
16-based model. Interestingly, for ResNet-50, the UBNA+

method does not give an improvement over UBNA, as the
hyperparameters were optimized for the VGG-16 backbone.
Accordingly, we can see that UBNA has a higher degree of
generalization over different network architectures, while
UBNA+ is a bit more hyperparameter-sensitive.

A.4. Few-Shot Capability

To give further insight into the number of images neces-
sary to obtain a stable adaptation using just a few images as
shown in Tab. 4, in Figures 13 and 14 we show the mean
value as well as the standard deviation over the results from
ten experiments. We observe that the standard deviation is
quite high for only one or two images per batch. The per-
formance slightly increases for three or more images per
adaptation batch. To reduce the dependency on a single im-
age, at least three images should be chosen for adaptation,
as from this number on, the standard deviation of different
experiments is significantly lower and the final performance
significantly higher as can be seen in Figures 13 and 14.

A.5. Ablation Studies

While the layer-wise weighting (UBNA+) worked
particularly well in the real-to-real adaptation setting
(cf. Tab. 7), the success on settings with a larger domain
gap is a little ambiguous, as can be seen in Tables 10 and
11. While the UBNA+ method always improves on top of
the non-adapted baseline, we observe that the performance



Table 8. Comparison to UDA approaches: Performance of UBNA and UBNA+++ in comparison to UDA methods on the Cityscapes
validation set for the adaptation from GTA-5 (DS) to Cityscapes (DT). We evaluate different models (first column), compare different
methods (second column, values from the respective papers), show if they use labeled source data during unsupervised domain adaptation
(third column), evaluate the IoU performance (%) on the single semantic classes, and finally give an mIoU (%) over 19 classes. For ResNet
results we use the ResNet-50 topology, as this yielded better results at lower computational complexity compared to the ResNet-101 often
used in UDA approaches. Best results for UDA and for UDA without source data are printed in boldface.
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Du et al. [3] yes 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4
Vu et al. [9] yes 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
Li et al. [7] yes 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
Dong et al. [2] yes 89.6 50.4 83.0 35.6 26.9 31.1 37.3 35.1 83.5 40.6 84.0 60.6 34.3 80.9 35.1 47.3 0.5 34.5 33.7 48.6
Wang et al. [10] yes 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
Yang et al. [11] yes 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5
Zhang et al. [13] yes 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
Kim et al. [4] yes 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
Yang et al. [12] yes 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
Mei et al. [8] yes 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
No adaptation - 58.1 23.8 70.5 14.8 19.2 30.5 29.0 17.7 79.1 21.8 83.1 56.4 14.8 72.3 19.5 4.5 0.9 16.5 5.6 33.6
UBNA no 81.8 32.3 79.5 18.2 23.8 34.9 29.5 19.8 74.2 17.9 82.4 57.5 11.1 81.6 16.1 19.0 2.5 21.3 9.8 37.5
UBNA+++ no 70.6 25.8 78.5 17.7 23.7 34.2 28.9 19.0 77.8 19.6 82.6 57.4 11.5 81.5 16.9 17.1 1.0 20.6 9.1 36.5
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Vu et al. [9] yes 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1
Du et al. [3] yes 88.7 32.1 79.5 29.9 22.0 23.8 21.7 10.7 80.8 29.8 72.5 49.5 16.1 82.1 23.2 18.1 3.5 24.4 8.1 37.7
Li et al. [7] yes 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
Dong et al. [2] yes 89.8 46.1 75.2 30.1 27.9 15.0 20.4 18.9 82.6 39.1 77.6 47.8 17.4 76.2 28.5 33.4 0.5 29.4 30.8 41.4
Yang et al. [12] yes 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
Kim et al. [4] yes 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3
Wang et al. [10] yes 88.1 35.8 83.1 25.8 23.9 29.2 28.8 28.6 83.0 36.7 82.3 53.7 22.8 82.3 26.4 38.6 0.0 19.6 17.1 42.4
Choi et al. [1] yes 90.2 51.5 81.1 15.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4 42.5
Yang et al. [11] yes 90.1 41.2 82.2 30.3 21.3 18.3 33.5 23.0 84.1 37.5 81.4 54.2 24.3 83.0 27.6 32.0 8.1 29.7 26.9 43.6
No adaptation - 55.8 21.9 65.9 15.2 14.7 27.5 31.0 17.9 77.8 19.5 74.4 55.2 12.1 71.7 11.9 3.3 0.5 13.2 9.6 31.5
UBNA no 80.8 29.4 77.6 19.8 17.1 33.9 29.3 20.5 73.9 16.8 76.7 58.3 15.2 79.1 13.6 12.5 5.7 14.1 10.8 36.1
UBNA+++ no 79.9 29.9 78.1 21.1 16.5 33.8 29.7 20.6 75.6 18.4 78.0 58.4 14.6 79.4 14.8 13.0 5.8 14.6 10.6 36.5
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Figure 13. Few-shot adaptation: Performance of UBNA+++ on the
Cityscapes validation set for the adaptation from GTA-5 (DS) to
Cityscapes (DT) for different numbers of total images used for
adaptation. We show the mean and the standard deviation over
10 different experiments after the κ = 50th step, whereby in each
experiment all batches contain the same image(s).

gains over the UBNA method are rather small and in some
cases, we even observe a better performance with UBNA

1 2 3 5 10
26

28

30

32

34

36

38

no adaptation

# of images B per batch

m
Io

U
(%

)

Figure 14. Few-shot adaptation: Performance of UBNA+++ on
the Cityscapes validation set for the adaptation from SYNTHIA
(DS) to Cityscapes (DT) for different numbers of total images
used for adaptation. We show the mean and the standard de-
viation over 10 different experiments after the κ = 50th step,
whereby in each experiment all batches contain the same image(s).

(e.g., the last three rows in Tab. 10). Also, we had to reduce
the layer-wise weighting factor by a factor of 10 to a value



Table 9. Comparison to UDA approaches: Performance of UBNA and UBNA+++ in comparison to UDA methods on the Cityscapes
validation set for the adaptation from SYNTHIA (DS) to Cityscapes (DT). We evaluate different models (first column), compare different
methods (second columns, values from the respective papers), show if they use labeled source data during unsupervised domain adaptation
(third column), evaluate the IoU performance (%) on the single semantic classes, and finally give an mIoU (%) over 13 classes and over
16 classes (the latter including also wall, fence and pole) as in [5, 9]. For ResNet results we use the ResNet-50 topology, as this yielded
better results at lower computational complexity compared to the ResNet-101 commonly used in other approaches. Best UDA results and
best UDA without source data results are printed in boldface.
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Vu et al. [9] yes 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 - 84.1 57.9 23.8 73.3 - 36.4 - 14.2 33.0 41.2 48.0
Du et al. [3] yes 84.6 41.7 80.8 - - - 11.5 14.7 80.8 - 85.3 57.5 21.6 82.0 - 36.0 - 19.3 34.5 - 50.0
Li et al. [7] yes 86.0 46.7 80.3 - - - 14.1 11.6 79.2 - 81.3 54.1 27.9 73.7 - 42.2 - 25.7 45.3 - 51.4
Wang et al. [10] yes 83.0 44.0 80.3 - - - 17.1 15.8 80.5 - 81.8 59.9 33.1 70.2 - 37.3 - 28.5 45.8 - 52.1
Yang et al. [11] yes 85.1 44.5 81.0 - - - 16.4 15.2 80.1 - 84.8 59.4 31.9 73.2 - 41.0 - 32.6 44.7 - 53.1
Dong et al. [2] yes 80.2 41.1 78.9 23.6 0.6 31.0 27.1 29.5 82.5 - 83.2 62.1 26.8 81.5 - 37.2 - 27.3 42.9 47.2 -
Mei et al. [8] yes 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 - 85.0 65.5 30.8 86.5 - 38.2 - 33.1 52.7 49.8 57.0
No adaptation - 36.5 18.6 68.3 2.0 0.2 30.3 6.0 10.2 74.5 - 81.6 51.9 10.6 41.3 - 9.5 - 2.2 22.6 29.1 34.1
UBNA no 62.5 22.8 75.6 3.1 0.5 32.5 8.6 11.3 73.0 - 82.7 42.5 12.5 67.1 - 12.5 - 5.7 27.8 33.8 39.7
UBNA+++ no 57.4 22.3 75.0 3.6 0.4 33.8 8.5 11.1 76.2 - 82.6 46.8 12.8 61.2 - 12.8 - 4.8 28.5 33.6 39.4
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Vu et al. [9] yes 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 - 74.9 74.9 35.4 9.6 67.8 - 21.4 - 4.1 15.5 31.4 36.6
Lee et al. [5] yes 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 - 78.9 52.7 13.1 75.9 - 25.5 - 10.0 20.5 36.8 42.4
Dong et al. [2] yes 70.9 30.5 77.8 9.0 0.6 27.3 8.8 12.9 74.8 - 81.1 43.0 25.1 73.4 - 34.5 - 19.5 38.2 39.2 -
Yang et al. [11] yes 73.7 29.6 77.6 1.0 0.4 26.0 14.7 26.6 80.6 - 81.8 57.2 24.5 76.1 - 27.6 - 13.6 46.6 41.1 -
No adaptation - 49.4 20.8 61.5 3.6 0.1 30.5 13.6 14.1 74.4 - 75.5 53.5 10.6 47.2 - 4.8 - 3.0 17.1 30.0 35.2
UBNA no 72.3 26.6 73.0 2.3 0.3 31.5 12.1 16.6 72.1 - 75.6 45.4 13.6 61.2 - 8.5 - 8.5 30.1 34.4 40.7
UBNA+++ no 71.5 27.3 72.9 2.5 0.3 32.0 12.7 16.7 74.6 - 75.4 47.1 13.6 61.4 - 8.5 - 8.3 29.2 34.6 41.0

Table 10. Network topology ablation: Performance of UBNA0,
UBNA, and UBNA+++ on the Cityscapes validation set for the
adaptation from GTA-5 (DS) to Cityscapes (DT) for various net-
work topologies; best results for each network topology in bold-
face; mIoU values in %; batch size B = 6; αBATCH = 0.08
(UBNA, UBNA+++); αLAYER = 0.03 (UBNA+++).
Network No adaptation UBNA0 UBNA UBNA+++

VGG-16 31.5 33.9 36.1 36.5
VGG-19 31.2 35.3 37.4 37.5
ResNet-18 34.1 29.4 34.8 35.5
ResNet-34 33.6 34.3 36.0 35.5
ResNet-50 33.6 35.6 37.5 36.5
ResNet-101 30.0 33.4 34.6 32.6

αLAYER = 0.03 to obtain decent results, which shows the
higher hyperparameter dependency compared to the plain
UBNA method. Therefore, on a new setting we would rec-
ommend to start with the UBNA method and (if possible)
tune afterwards with the layer-wise weighting characteriz-
ing our UBNA+ method.

B. Additional Qualitative Results

To emphasize also the qualitative effects our method
has on the results, we show images of the adaptations
from GTA-5 (DS) to Cityscapes (DT), SYNTHIA (DS) to
Cityscapes (DT), and Cityscapes (DS) to KITTI (DT) in
Figures 15, 16, and 17, respectively. In these figures, we

Table 11. Network topology ablation: Performance of UBNA0,
UBNA, and UBNA+++ on the Cityscapes validation set for the
adaptation from SYNTHIA (DS) to Cityscapes (DT) for vari-
ous network topologies; best results for each network topology in
boldface; mIoU values in %; batch size B = 6; αBATCH = 0.08
(UBNA, UBNA+++); αLAYER = 0.03 (UBNA+++).
Network No adaptation UBNA0 UBNA UBNA+++

VGG-16 30.0 32.6 34.4 34.6
VGG-19 30.9 29.1 30.8 31.7
ResNet-18 28.6 31.3 31.9 31.7
ResNet-34 27.4 30.1 30.0 30.3
ResNet-50 29.1 32.9 33.8 33.6
ResNet-101 30.8 30.0 31.8 34.3

show the input images, the ground truth segmentation mask,
the predicted segmentation mask when using the model
without adaptation, and the results from the adapted model
using the UBNA method, from left to right. Interestingly,
the qualitative effects are quite similar for all three dataset
setups as already observed in the class-wise improvements
in Sec. A.3. First of all, the overall artifacts present in dif-
ferent parts of the image are significantly reduced, which
is especially well observable on the synthetic-to-real adap-
tation (e.g., Fig. 15, row 1, or Fig. 16, row 4). However,
even in the real-to-real adaptation setting, where the base-
line approach already is significantly better, we observe that
artifacts are removed by UBNA+ from the image, as visible



in the last three rows of Fig. 17, where the human-class arti-
fact in the center of the image is removed. Also, in all three
dataset setups, the detection of the road class is significantly
improved (e.g. Fig. 15, rows 4 and 5). Also, cars are better
distinguished from their surrounding and less wrongfully
predicted cars are present in the semantic segmentation pre-
diction (e.g. Fig. 16, rows 6 and 7). Nevertheless, there are
also some classes that are not detected as good as before
(cf. Tables 8 and 9) which is also visible qualitatively, e.g.,
the vegetation class contains slightly more artifacts than be-
fore the adaptation (cf. Fig. 16, row 2).
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Input image Ground truth No adaptation UBNA

Figure 15. Qualitative comparison: Qualitative results of UBNA in comparison to no adaptation and the ground truth on the
Cityscapes validation set for the adaptation from GTA-5 (DS) to Cityscapes (DT). The figure is best viewed on screen and in color.
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Figure 16. Qualitative comparison: Qualitative results of UBNA in comparison to no adaptation and the ground truth on the
Cityscapes validation set for the adaptation from SYNTHIA (DS) to Cityscapes (DT). The figure is best viewed on screen and in
color.
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Figure 17. Qualitative comparison: Qualitative results of UBNA+ (αLAYER = 0.3) in comparison to no adaptation and the ground
truth on the KITTI validation set for the adaptation from Cityscapes (DS) to KITTI (DT). The figure is best viewed on screen and in
color.


