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Abstract

The Fitzpatrick scale is a standard tool in dermatology
to classify skin types for melanin and sensitivity to sun expo-
sure. After an in-person interview, the dermatologist would
classify the person’s skin type on a six-valued, light-to-dark
scale. Various face image analysis researchers have re-
cently categorized skin tone in face images on a six-valued,
light-to-dark scale in order to look into questions of bias
and accuracy related to skin tone. Categorization of skin
tone on the basis of images rather than personal interview
is not, on that basis alone, strictly speaking, on the Fitz-
patrick scale. While the manual assignment of face images
on a six-point, light-to-dark scale has been used by various
researchers studying bias in face image analysis, to date
there has been no study on the consistency and reliability of
observers assigning skin type from an image. We analyze a
set of manual skin type assignments from multiple observers
viewing the same image set and find that there are inconsis-
tencies between human raters. We then develop an algo-
rithm for automated skin type assignments, which could be
used in place of manual assignment by observers. Such an
algorithm would allow for provision of skin tone annota-
tions on large quantities of images beyond what could be
accomplished by manual raters. To our knowledge, this is
the first work to: (a) examine the consistency of manual
skin tone ratings across observers, (b) document that there
is substantial variation in the rating of the same image by
different observers even when exemplar images are given
for guidance and all images are color-corrected, and (c)
compare manual versus automated skin tone ratings. We
release the automated skin tone rating implementation so
that other researchers may reproduce and extend the results
in this paper.

1. Introduction

The problem of skin tone analysis from images and how
skin tone affects face recognition and face analytics algo-
rithms is currently of high interest. A significant step to un-
derstanding the impact of skin tone on face recognition and
analytics accuracy is the retrospective estimation of skin
tone from face images. Many existing large-scale face im-
age datasets available to the research community generally
do not have skin tone annotations included as metadata. In
this paper, we report on an experiment to measure skin tone
from face images in accordance with a Fitzpatrick-inspired
scale and individual typology angle.

The Fitzpatrick scale is a six-valued, I (lighter) to VI
(darker) skin tone rating that is widely used in dermatol-
ogy [5] and dates back over 30 years [17]. Traditionally,
in dermatology, Fitzpatrick skin type is assigned in-person
by a trained practitioner, and a Fitzpatrick rating of this
type might be considered a measure of “true” skin tone.
Various researchers in face image analysis have recently
used a six-valued, light-to-dark scale for rating face im-
ages [8, 31, 33, 25]. When such a rating is assigned ret-
rospectively to images, whether manually or by an algo-
rithm, it does not meet the strict definition of a Fitzpatrick
rating. However, all six-valued light-to-dark skin tone rat-
ings obviously have that much in common with Fitzpatrick
ratings. Some recent studies in face image analysis has used
a six-point, light-to-dark skin tone rating and made no ref-
erence to the Fitzpatrick scale [24, 31] while others have
made explicit reference to Fitzpatrick [8, 26, 25]. Since re-
cent research in face image analysis is coming some 30+
years into the use of the Fitzpatrick scale in dermatology, it
seems unlikely that recent researchers were unaware of the
Fitzpatrick scale when they chose to use a six-point, light-
to-dark rating. In this paper, we analyze “apparent” skin
tone (that is, the skin tone apparent in a given image), using
a Fitzpatrick-inspired six-tone rating scheme which we call
the Apparent Skin Tone (AST) scale. Our proposed AST
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scale is in alignment with the Fitzpatrick scale, with the un-
derstood caveat that only apparent skin tone is measurable
from images.

We also use individual typology angle (ITA) to mea-
sure apparent skin tone. Prior research [14, 32] assessed
skin tone from images using an automated ITA measure-
ment. ITA measurements are, again, categorized on a six-
valued, light-to-dark scale - very light, light, intermediate,
tan, brown, and dark.

There are three major contributions of this work. First,
we present an analysis of the consistency of human rating
of skin tones from images. This analysis suggests that cate-
gorical labeling of skin tone in images by human observers
is subjective, and there is a level of inconsistency across ob-
servers. Second, considering the cost and time associated
with manual ratings, along with the level of inconsistency,
we develop an automated approach for skin tone assess-
ment based on ITA. Automated ratings produce a level of
agreement with manual ratings that is similar to the level of
consistency between multiple human raters using the AST
scale. The proposed algorithm presents an alternative to
manual ratings and thus has obvious advantages in speed,
scalability, cost, and consistency. Third, to encourage trans-
parency and reproducibility of the experimental results, the
automated skin tone assignment implementation is made
available to other researchers.

2. Related Work
The Fitzpatrick scale [17] is a I (lightest) to VI (dark-

est) rating of skin tone, used in dermatology to classify
sensitivity to sun exposure. Skin tone, of course, varies
among African-American individuals and among Caucasian
individuals. Additionally, face morphology varies by race,
gender, and individual, independent of skin tone variation.
Lester et al. [28] reviewed the research literature on Covid-
19 skin manifestations in the context of the skin tone of sub-
jects represented in research studies. A set of images from
the literature were given Fitzpatrick skin tone categoriza-
tion by a board-certified dermatologist [28] “with expertise
in diagnosing and treating patients with skin of colour (Fitz-
patrick type IV-VI)”. Lester et al. also spoke to the sub-
jective nature of skin type assessment from photographs,
commenting that lighting conditions “may have led to some
misclassification across one or two skin types” [28].

The Lester et al. [28] study underscores several impor-
tant points. Their research on important current research is-
sues is performed using a (single) board-certified dermatol-
ogist’s subjective assessment of Fitzpatrick skin type from
photos. This is evidence that, whatever shortcomings sub-
jective Fitzpatrick ratings from images have, there is not
yet anything better to replace them. Furthermore, the un-
certainty due to varying illumination between images is
acknowledged as possibly causing skin type misclassifica-

tions. Our experience with multiple observers rating the
same set of controlled-acquisition face images is consis-
tent with Lester et al. [28] on this point - the more var-
ied the illumination in a set of images, the larger the po-
tential misclassification range. In comparison to imagery
in dermatology research publications, in-the-wild imagery
should be expected to have even more misclassifications
of skin type. In the context of our research in this paper,
controlled-acquisition images such as those in the MORPH
dataset will have less serious skin type misclassifications
than would any of the in-the-wild datasets popular in face
recognition research.

The use of skin tone ratings for face image analysis
in the computer vision community appears to have started
with the IARPA Janus dataset [24]. The Janus face image
datasets [31] have meta-data for six-valued, light-to-dark
skin tone ratings obtained via Amazon Mechanical Turk,
a crowd-sourcing website for completion of discrete tasks
(here, assignment of skin tone ratings to face images). How-
ever, [31] provides no basis for how the six skin tone lev-
els were derived. Lu et al. [30] analyzed the Janus dataset
and reported that recognition accuracy generally degraded
with darker skin tone. Buolamwini and Gebru’s [8] Gender
Shades study appears to have been the first to explicitly state
the name of the scale used as being Fitzpatrick. A “board-
certified surgical dermatologist” provided the definitive la-
bels for the Fitzpatrick skin type for images collected off the
web in the Gender Shades study [8] reported that each of the
three gender classification tools studied was more accurate
for lighter skin types than for darker. There are also studies
in the literature which are contradictory to these findings.
For example, Muthukumar et al. [34] followed up with an-
other study on gender classification tools and suggested that
skin tone may not be the driving factor for accuracy differ-
ences. Krishnapriya et al. [25] analyzed the distribution of
skin tone ratings for images sampled from the center and
from the high-similarity tail HST of the impostor distribu-
tion for African-American males. They reported that same-
skin-tone image pairs occur more frequently in the HST of
the impostor distribution, but that darker skin tone does not
appear to be a driving factor [25].

Cook et al. [13] analyzed recognition accuracy differ-
ences based on race meta-data and on a measure of skin
reflectance. Exploiting the 18% gray background in a con-
trolled enrollment image (similar to that in MORPH), they
computed a measure of relative skin reflectance for each
subject. They reported that darker skin tone is associated
with longer image acquisition times and lower similarity
scores for genuine image pairs, and that the skin reflectance
measure was a better predictor than self-reported race la-
bels. Groh et al. [20] annotated dermatology clinical im-
ages using Fitzpatrick skin type labels as well as ITA. They
trained a deep neural network model to classify skin con-
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ditions and reported that the skin type in the images on
which a model was trained affected the accuracy scores
across Fitzpatrick skin types. Bahmani et al. [6] devel-
oped a data-driven skin color measure by leveraging the
dichromatic reflection model and considering different il-
luminations across the face. They reported that their ap-
proach over black and white subjects with uncontrolled illu-
mination produced a meaningful progression from darker to
lighter skin tone without relying on consistent background,
illumination or camera sensitivity.

Howard et al. [22] collected face images from 345 sub-
jects. These were analyzed in the L∗a∗b∗ color space and
characterized with Face Area Lightness Measures (FALMs)
to capture the intensity of reflected light on face skin. The
FALMs and self-reported Fitzpatrick types were compared
to ground-truth measurements from a calibrated dermato-
logical device. The authors report that (1) intra-subject
FALMs vary significantly by image and (2) appropriate
estimation of skin tone from images requires controlled-
acquisition images corrected for neutral grey background.

A number of studies have used six-values, light-to-dark
skin tone ratings assigned by viewers from examining im-
ages (rather than in-person interviews) [28, 8, 31, 33, 34].
However, there is minimal research on the inter-rater agree-
ment or overall consistency of the ratings. Many of the
studies involve a single observer [28, 8, 33, 34] and a few
had multiple raters [24, 25, 21] (with a maximum of eight).
Unlike the IARPA Janus dataset skin tone annotations, the
study in [25] specified how they merge multiple observer
ratings to a rating for the image. Scholars used the ITA
[20, 32, 14] for skin tone measurements and a six-level cat-
egorization as specified in this paper. None of these pre-
vious studies have documented the level of agreement that
can be expected from two or more observers assigning six-
tone ratings to the same images. In addition, they have not
(1) investigated consistency on color-corrected images with
exemplar images provided or (2) compared any automated
approach to manually assigning skin types.

3. Dataset and Preprocessing
We used the MORPH dataset [2] containing mugshot-

style images for this study. MORPH was originally as-
sembled and distributed to support research in face aging
[35]. African-American males comprise the largest cohort
of MORPH, with 36,838 images of 8,850 subjects in the cu-
rated version used by Krishnapriya et al. [26]. We focused
on this single cohort to analyze skin tone data independent
of factors like gender and race. MORPH’S set of African-
American male subjects is larger than IJB-C’s set [31] of
3,531 subjects and the 562-subject set used by Cook et al.
[13] (which, unlike the IJB-C and MORPH datasets, is un-
available to the research community).

In this experiment, we sample 500 image pairs from two

different regions of the African-American male impostor
distribution: the center and the high-similarity tail. (The
motivation for sampling these two regions of the impostor
distribution is that no pairs in the center are in danger of
being false matches, and by definition the HST is where
the false-match pairs exist. It is important to understand
whether or not there is a difference in skin tone distribution
in these two regions.) Each of these two sets of image pairs
has nearly 1,000 unique images, as some individual images
are repeated in multiple image pairs (21 in common). There
are 982 unique images of 915 persons from the center and
967 unique images of 872 persons from the HST.

Of these two image sets, 13 from the center and 33 from
the HST had insufficient background - that is, there were not
enough visible background pixels for color-correction. The
two groups were combined for pre-processing with one set
of the 21 common images removed. During Dlib face de-
tection and cropping for automated ratings, 11 images had a
“failure to detect” result. Ultimately, we presented 1871 to-
tal images (959 from the center and 933 from the high simi-
larity tail minus one set of the 21 common images) for rating
by the six raters and automated system. Black rectangles
are added over the eye regions of example images shown in
this paper in an effort to protect individual anonymity and
privacy.

3.1. Color Correction

MORPH images are acquired in a controlled environ-
ment with the subject standing in front of an 18% gray back-
ground. This experiment is designed to normalize the face
images so that the 18% gray region is the same on average
across all images. The motivating hypothesis is that varying
color quality between images may contribute to inconsistent
manual Fitzpatrick ratings.

The 18% gray is defined based on reflection, i.e. an 18%
gray surface reflects 18% of the light that hits it [3]. The
idea of 18% gray in photography is to achieve middle gray
to human perception. In different color spaces, middle gray
may be defined differently; for example, in CIELAB, mid-
dle gray is defined to be 46.6% brightness [19], while in
24-bit color space, it is given by RGB (119, 119, 119) [1].
This experiment uses the latter measure.

We must also remove gamma non-linearity from images
prior to correcting color. PC monitors have intrinsic non-
linearity and apply a power of 2.2, denoted gamma, for dis-
playing images [16]. In order to make true 18% as mid-
dle gray, as 0.181/2.2 ∗ 255 ≈ 119, we calculate the color-
correction factor of each image with non-linearity removed.

The color-correction steps, with examples given for the
R color channel, are as follows:

• Semantic segmentation of person and background in
the given face image using a pre-trained model.
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• Compute the linear version of the image by raising
each pixel to γ = 2.2:
(R,G,B) = (Rγ , Gγ , Bγ)

• Extract all (R, G, B) pixel values corresponding to the
linear background.

• Find the mean linear background pixel value:
Ravg = mean(all R components of linear background)

• Compute the color-correction factor based on 18%
gray background:
Rconst = 0.18/Ravg

• Apply the color-correction factor to all pixels in the
linear image:
Rcorrected = Rconst * Rlinear

• Finally, add back non-linearity:
Rfinal = Rcorrected

1/2.2

We used pre-trained model DeepLab V3 [11] to segment
the person and the background. DeepLab has Xception
[12] as its network backbone and was pre-trained on Ima-
geNet [15]. Subjectively, color-correction improves the vi-
sual quality of the original image and makes the background
more consistent across images (see Figure 1). Additional
analysis is planned to assess the degree to which the color-
correction step improves consistency of auto-ratings across
multiple images of the same individual.

Figure 1: Original (top) and color-corrected images (bot-
tom).

4. Manual Assignment of Skin Tones
The manual ratings task was conducted in the same lab-

oratory environment for all raters with the color-corrected
images displayed on two monitors. Six different viewers
independently examined the same set of 1,871 images to
assign an AST score to each face. Alongside the ratings im-
ages, a set of exemplar images were displayed to encourage
the use of consistent reference points (see Figure 2). Ex-
emplars were selected from the well-known IJB-C dataset
(consisting of 3,531 subjects with 31,334 images) that has
per-subject skin tone annotations in its metadata [31]. The
six raters each assigned an AST score without knowing the

region of the impostor distribution that an image came from
and without knowing each others’ ratings.

Figure 2: Exemplar images of AST ratings I-VI.

Figure 3 shows inter-rater agreement via the difference
between the maximum and minimum ratings for each im-
age. For the 1871 images rated by all six raters, 2.5% of
images had no difference in rating among the six raters. The
six raters agreed within one-skin-tone-difference from min
to max rating for 966 images (51.6%) and within two-skin-
tone-difference for 1604 images (87.7%).

Figure 3: Count of images with given skin-tone-difference
in each manual rating set.

In determining how best to combine the six individual
ratings (“rating set”) for each image into a consensus man-
ual rating (“CMR”), we considered both rounded mean and
mode of each set. Figure 4 shows the level of difference
between automated ratings and CMR (“AvM Diff”) using
rounded mean versus mode of each rating set, as well as the
mean, median and mode (metrics) of all ratings with the re-
spective determination of CMR. Since the metrics of using
rounded mean versus mode for the CMR are highly simi-
lar, we chose to use rounded mean to minimize the impact
of misclicks (i.e. unintentional skin tone misclassifications)
from individual raters on a given rating set. In the following
sections of the paper, CMR refers to the rounded mean of
the rating set of a given image.
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Figure 4: Analysis of rounded mean versus mode as CMR.

5. Automated Assignment of Skin Tones
Automatic estimation of skin tone from face images

would give ratings that are 100% consistent across multiple
runs on the same image. Different research groups using
the same software on the same images would get the same
ratings, which cannot be said of CMR. Automated ratings
(“auto-ratings”) would also be cheaper and faster to acquire
than CMR, enabling larger-scale experimental studies.

The ITA is calculated in the CIELab color space where
L represents the lightness, a represents the chromaticity co-
ordinate from green to red, and b represents the chromatic-
ity coordinate from blue to yellow. In this approach, we
utilized ITA for representing the skin color [10], and it is
calculated according to equation 1.

ITA =
arctan( (L−50)

b ) ∗ 180
π

(1)

ITA measurements are categorized into six skin type groups
- very light (skin type I), light (skin type II), intermediate
(skin type III), tan (skin type IV), brown (skin type V), and
dark (skin type VI).

5.1. Implementation Workflow

The selection of suitable color space for skin detection
is an important factor in determining a higher probability of
success. Prior research [9, 36] has shown that the Y CbCr
color space is preferable to RGB for color segmentation
analysis because in the latter space the brightness (lumi-
nance) component is not decoupled from the color informa-
tion (chrominance). Y CbCr is also preferred over HSV
for straightforward transformation and efficient separation
of color and intensity information even for images with
nonuniform illumination conditions. We can effectively uti-
lize the chrominance information in Y CbCr color space
for modeling the human skin color, and hence we propose
thresholding on Y CbCr color space channels for skin de-
tection. The Y channel representing the brightness cannot
be constrained here because when we are evaluating differ-
ent datasets, and the images can be taken in different light-
ing conditions. Hence, with the Y channel, it is difficult to
determine if the variation in distribution is caused by differ-
ent skin color or different lighting condition. In Figure 5,

we can see similar Cr and Cb distributions of skin color for
Caucasian (see Figure 5a) and African-American (see Fig-
ure 5b) images, and they do not seem to be affected by the
variations in luminance. The evaluation ofCb andCr chan-
nels across different sets of images showed that they are
consistent across different demographic groups, and hence
we can achieve better skin detection based on the threshold-
ing on those two channels from an input image. The ranges
mentioned forCb andCr in equation 2 were found to be the
most suitable and representative of skin color for different
sets of images we have tested, and slight variations of these
ranges were also found to be adopted in many human skin
detection studies [9].

pixel =

{
skin, if 136 ≤Cr≤ 173&77 ≤Cb≤ 127

non-skin, otherwise

(2)

(a) (b)

Figure 5: Frequencies of Y, Cb, and Cr values across face
skin pixels for (a) Caucasian (b) African-American.

This automated approach utilizes color-corrected images
for skin tone assignments. The BiSeNet (Bilateral Segmen-
tation Network) [37] model used for the face skin segmen-
tation task was pre-trained on the CelebAMask-HQ [27]
dataset that has 30,000 face images from CelebA [29] and
CelebA-HQ [23]. The eyes and lips regions are masked
out intentionally to avoid any noise or occlusions like sun-
glasses while estimating the actual skin tone. The extracted
face skin may contain over-exposed or under-exposed skin
pixels due to illumination conditions. Thresholding on the
Y CbCr color space is done to select the best skin pixels that
are representative of a person’s skin tone. The auto-rating
workflow steps are:

1. Face detection and cropping on color-corrected images
using Dlib face detector (Figure 6a).

2. Semantic segmentation of face skin from detected face
using BiSeNet pre-trained model (Figure 6b).
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3. Conversion to Y CbCr color space and application of
thresholding given in equation 2 on Cb and Cr chan-
nels for skin pixel selection (Figure 6c).

4. Calculation of mean pixel value and corresponding
ITA using equation 1.

5. Mapping final ITA measurement to skin type group:
light (type I) to dark (type VI) (Figure 6d).

(a) (b) (c) (d)

Figure 6: Auto-rating workflow: (a) face detection, (b) face
skin segmentation, (c) Cb and Cr thresholding, (d) skin tone
estimate.

Figure 7: ITA classification thresholds based on minimal
overlap of CMR mapped onto the standard ITA scale.

6. Manual versus Automated Assignments
We devised the Apparent Skin Tone (AST) scale to

mimic the in-person Fitzpatrick scale for measurement of
apparent skin tone from a face image. The AST scale is
communicated to raters via exemplar images shown in Fig-
ure 2: one male and one female for each skin type (I-VI)
as specified in IJB-C annotations [31]. These twelve im-
ages were manually selected by the authors with the goal
of having a consistent set of exemplars. Raters are asked to
reference the presented face images against the exemplars
in their determinations of skin type.

We compared the consistency of CMR to automated
ITA values with ranges for skin types I-VI specified in
[10]. Mapping the CMR-assigned images on the ITA scale
showed that there is substantial overlap across the ITA

ranges; all images with the same CMR do not fall into a
single corresponding ITA category. In order to relate AST-
based CMR and auto-assigned ITA values, we determined
custom threshold ranges for the ITA skin types, as shown
in Figure 7. These thresholds were selected to minimize
overlap between CMR values mapped onto the standard ITA
scale.

6.1. Inter-Rater Variability

CMR and auto-ratings were assigned for 1871 images
from the center and HST as previously described. Figure 8
shows the distributions of skin tone ratings for center and
HST images. CMR and auto-ratings are remarkably con-
sistent regardless of the image’s location in the impostor
distribution.

Figure 8: Distribution of CMR and auto-ratings on center
and high-similarity tail images.

Figure 9 shows the count of skin-tone-difference be-
tween CMR and auto-rating values for images from the two
regions of the impostor distribution. For center images,
ratings agreed on 24.6% of images, within one skin-tone-
difference for 71.9% of images and within two for 94.5%
of images. For HST images, ratings agreed on 25.1% of
images, within one skin-tone-difference for 75.5% of im-
ages and within two for 95% of images. These two results
suggest that region of impostor distribution has little effect
on CMR and auto-rating. That is, congruent with [25], we
find no clear evidence to support the idea that images with
darker skin tone ratings are more frequent in the false match
pairs. However, this deserves to be examined with a more
substantial image set in future studies.

For the entire set of 1871 images, CMR and auto-ratings
agreed on 73.7% of images within a one-tone difference and
94.7% within a two-tone difference. We also see from Fig-
ure 8 that CMRs were higher in general than auto-ratings.
In fact, the mean auto-rating is 4.2 (with standard deviation
of 1 and mode of 4), while the mean CMR is 5.2 (with stan-
dard deviation of 0.65 and mode of 5).
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Figure 9: Count of images with given skin-tone-difference
in CMR and auto-ratings.

One potential reason CMR tended toward higher val-
ues than auto-ratings is the presented image. Manual raters
were shown the entire color-corrected image, while the au-
tomated system was presented only with skin pixels of the
face (“face mask”). Figure 10 shows four images with a
four-skin-tone difference between CMR and auto-ratings.
The three face images in the top row had CMRs of 6 on the
AST scale. Their corresponding face masks in the bottom
row were given ITA-based auto-ratings of 2.

Figure 10: Full face images for AST-based manual ratings
and corresponding face masks for ITA-based auto-ratings.

We speculate that manual raters consider skin tone in
context - that is, considering factors like illumination and
shadows. The four subjects in Figure 10 are illuminated
on their forehead, cheek and nose regions. In the more
shadowed regions of the images (e.g. jaw and neck), skin
appears visibly darker. Manual raters may look at these
shadow regions to better assess skin tone, understanding
that highlighted regions appear lighter than the rest of the
subject’s skin. However, the automated rating system only
received skin pixels from the face (which already tend to
be lighter due to illumination) and calculated ITA based on
mean pixel value alone, without consideration of other fac-
tors affecting apparent skin tone.

6.2. Intra-Rater Variability

The intra-rater variability is evaluated here by examining
the consistency of CMR and auto-ratings on different im-
ages of the same individual. In theory, a subject’s apparent
skin tone should be the same across multiple instances since
the images were taken in the same controlled 18% grey set-
ting and subsequently color-corrected. In practice, however,
variations in illumination and pose can cause the subject’s
skin tone to appear lighter or darker in each instance.

Of the 1,638 subjects represented in the image set, only
25 were represented in 3-4 image instances. The subset of
the MORPH data set used in this study did not contain a
sufficient number of multi-image subjects for a statistically
significant assessment of intra-rater variability. Anecdotal
examples, however, can provide insight into a limitation of
the automated system.

Table 1 gives the auto-ratings (A) and CMR (M) for the
five subjects with four image instances. For each subject,
CMR is either the same or within one-skin-tone difference
across all four of their image instances. Auto-ratings, alter-
nately, vary by one and two-skin-tone differences across all
same-subject instances.

Subject Image Rating (A) Rating (M)
A 4 6
B 2 5
C 4 61

D 4 5
E 6 6
F 5 6
G 6 62

H 6 6
I 3 5
J 4 5
K 3 53

L 5 5
M 5 6
N 4 6
O 5 64

P 5 5
Q 5 6
R 5 6
S 4 55

T 5 6

Table 1: Same-subject skin tone ratings across multiple im-
age instances.

Highlighted in the first two rows of Table 1, CMR and
auto-ratings for Subject 1 were least consistent across im-
ages and most consistent for Subject 2. The visual differ-
ences between Subject 1’s four images (shown in the top
row of Figure 11) are apparent. The backgrounds of im-
ages 1B and 1C vary in shade from the consistent 18%
gray visible in images 1A, 1D, and 2E-H; this may have
resulted from the erroneous inclusion of hair (1B) and shirt
(1C) pixels in the segmented background used for the color-
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Figure 11: Subject 1 images A-D and Subject 2 images E-H
from Table 1.

correction step. Additionally, while all of Subject 1’s im-
ages have some highlights in the forehead, nose and cheek
regions, image 1B in particular is brighter and has wider
highlight regions than the other images. While the CMR
is relatively consistent across the four image instances of
Subject 1 (two ratings of skin type 6, two of type 5), the
auto-rating is affected by the increased illumination in 1B,
giving a rating of 2 versus otherwise consistent 4s (1A, 1C,
1D).

Subject 2, alternately, was consistently rated across
nearly all image instances. Visually, Subject 2 has very
dark skin. Logically, lighting variations for subjects with
skin tone at the extremes of any tone-rating scale (very light
or very dark) are less likely to cause a shift in tone assign-
ment than subjects with middling skin tones. On the ITA
scale in Figure 7, for example, types III-V have 25◦ ranges,
while types I and VI include any value above 50◦ or below
-50◦, respectively.

7. Conclusion and Discussion
This paper systematically analyzes approaches to esti-

mate a person’s skin tone from an image with an 18% gray
background using the Morph dataset. It describes a method
for manual rating and proposes an automated approach for
greater ease of use, scalability, and reproducibility.

The categorical labeling of skin tone by human observers
can be subjective and inconsistent. The same images may
be rated differently by different raters. Several studies men-
tion that labeling is subjective even by trained practition-
ers [7, 4]. Allowing for one- and two-skin-tone-differences,
manual raters agreed on 51.6% and 87.7% of images, re-
spectively (see Figure 3).

While rating skin tone from a color image may seem sim-
ple in theory, it is a challenging task in practice. Prior re-
search has been conducted on re-purposed images with skin
tone rating assessed by humans on a six-valued, light-to-

dark scale (as with the Fitzpatrick scale [18, 17]), and more
recently by computer-based individual typology angle mea-
surement [32]. Both of these techniques are flawed in that
the human ratings (for example, see Figure 12) and auto-
mated ratings (Figure 13) are often on non-ideal images that
have been taken in non-controlled environments.

Figure 12: Example misclassifications in the IJB-C dataset.

Figure 13: Example misclassifications in the DiF dataset.
All given ITA values map to the“dark” skin type.

The effort to automate the process of skin tone label-
ing from images is complex. The Lester et al. study [28]
states that “it is unlikely that lighting issues alone would
result in skin types V or VI appearing as skin type I–III.”
In our experiment, this statement does seem true for con-
sensus manual ratings but not for automated ratings, where
variations in lighting appeared to be a determining factor in
ITA value (see Figure 8). Furthermore, human raters may
have grown aware of the fact that they were viewing images
of African-American individuals and considered this factor
in their assignment of skin tone ratings. In future studies,
only a segment of skin from a given image will be shown to
manual raters to reduce bias and remove image context.

The analysis of ITA distributions for images consistently
rated as I to VI with CMR shows promise in our quest
to perform retrospective labeling of images using the AST
scale as a guide. The results, however, will be inher-
ently noisy. We have not found strong evidence to sup-
port that this noise is due to the experience level of the
raters but more likely can be attributed to the range of colors
for skin-related pixels that are induced by varying lighting
conditions and sensor characteristics. The automated-to-
consensus-manual consistency is as good as the consistency
between individual raters. However, the efficacy of the au-
tomated approach on other datasets (e.g. in-the-wild face
images) is unknown and will be assessed in future work.
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