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Abstract

In this paper we present a system for word-level sign
language recognition based on the Transformer model. We
aim at a solution with low computational cost, since we see
great potential in the usage of such recognition system on
hand-held devices. We base the recognition on the esti-
mation of the pose of the human body in the form of 2D
landmark locations. We introduce a robust pose normaliza-
tion scheme which takes the signing space in consideration
and processes the hand poses in a separate local coordi-
nate system, independent on the body pose. We show ex-
perimentally the significant impact of this normalization on
the accuracy of our proposed system. We introduce several
augmentations of the body pose that further improve the ac-
curacy, including a novel sequential joint rotation augmen-
tation. With all the systems in place, we achieve state of the
art top-1 results on the WLASL and LSA64 datasets. For
WLASL, we are able to successfully recognize 63.18 % of
sign recordings in the 100-gloss subset, which is a relative
improvement of 5 % from the prior state of the art. For the
300-gloss subset, we achieve recognition rate of 43.78 %
which is a relative improvement of 3.8 %. With the LSA64
dataset, we report test recognition accuracy of 100 %.

1. Introduction

Sign Languages (SLs) are the main form of communi-
cation in Deaf communities. They are composed of manual
and non-manual components through which complex
semantics can be conveyed. The manual component is
represented by the movement of the arms and hands, the
non-manual component represents (micro-)motions such as
facial expression or posture. In this work we are concerned
with the automatic SL recognition (SLR) from RGB videos.
There are two levels of SLR - isolated SLR (sometimes
referred in literature as word-level) which classifies record-

ings of individual signs into glosses and continuous SLR
which recognizes whole utterances. Fingerspelling is a
special case of isolated SLR, when gestures are classified
into individual characters of an alphabet.
Furthermore, the methods can be divided according to the
form of input data. One form is a sequence of RGB or
RGB-D images. Methods using this form usually perform
better in terms of accuracy, but are computationally more
demanding. The other form is a sequence of body poses
represented by locations of skeletal joints and facial land-
marks. Methods based on this representation achieve lower
accuracy, but the classification models are lightweight and
suitable for e.g. mobile devices. Making SLR able to run
on such devices dramatically increases their potential in
everyday use.
There are several datasets referenced in literature for the
purpose of model training and evaluation. They differ in
the SL that has been recorded, the size of the data, and
the sensors used to capture them. The most prominent
datasets include: LSA64 - A Dataset for Argentinian Sign
Language [30], which uses colored gloves for trivial hand
segmentation. DGS Kinect 40 [26] dataset of German SL
was recorded using a depth sensor. The GSL [1] dataset
of Greek SL provides both RGB and depth recordings.
AUTSL [35] is a recent dataset of Turkish SL used in the
ChaLearn competition [34]. MS-ASL - A Large-Scale
Data Set and Benchmark for Understanding American Sign
Language [37] is a collection of publicly available record-
ings of American SL, similar to WLASL [21] dataset. We
provide an overview of the datsets in Table 1.

In this work we focus on isolated SLR based on the
body pose representation. We analyze the capabilities of
the Transformer model [38]. These models are relatively
computationally cheap and have outstanding performance
in sequence processing tasks. This makes them a perfect
choice for computationally lightweight solution capable of
running on modern mobile devices.
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Dataset Language Sensor Classes Inst.
LSA64 Argent. RGB 64 3,200
DGS German Depth 40 3,000
GSL Greek RGB+D 310 40,785

AUTSL Turkish RGB+D 226 38,336
MS-ASL Americ. RGB 1.000 25,000
WLASL Americ. RGB 2.000 21,083

Table 1. Overview of existing datasets. D means that a depth sen-
sor was used, Inst. represents the number of recordings in the
dataset.

The main contributions of this paper include:

• Constituting state of the art on the WLASL-100,
WLASL-300, and LSA64 datasets when considering
pose-based SLR.

• Novel normalization scheme.

• Sequential joint rotation augmentation of the body
pose.

• Analysis of the pose-based vs appearance-based ap-
proaches.

2. Related Work
In the following section, we review existing approaches

to isolated SLR and relevant overlaps from the general task
of action recognition.

The task of isolated SLR has been approached in various
manners of appearance and motion representations from the
videos. Such techniques can be either expertly designed us-
ing handcrafted features, so that findings from SL linguis-
tics can be employed. On the other hand deep learning can
be used so that the features and their classification is learned
by the model itself. Early works have used handcrafted fea-
tures [2, 4, 8, 25], which caused the models to lack greater
generalization ability. The onset of deep learning methods
resulted in a boost in the overall performance and general-
ization of such systems. In the following text we will mainly
focus on such methods.

There are two primary methods of both handcrafted
and deep feature representations for SLR commonly used
in recent works: either using raw RGB/RGB+Depth data
or leveraging skeletal representation of the signer’s pose.
Some methods also combine both of these approaches,
since they can complement each other [5, 16].

2.1. Visual data based methods

Initial works within the approach of utilizing raw RGB
data as input representations have employed Convolutional
Neural Networks (CNNs) to create holistic representations
of all video frames [6, 9, 10, 17, 29, 32], which can be used
for recognition. Then, recurrent neural networks such as

Long short-term memory (LSTM) network [9, 17], Bidi-
rectional LSTM network [10] or Transformers [5, 32] have
been used for temporal information encoding.

3D CNNs have also been employed for this task, as
they can, in addition to learning the representations of all
video frames, learn spatio-temporal features as well. Tran
et al. [15] proposed the C3D model, which was the first 3D
CNN for action recognition. This was soon followed by
many adaptations of 3D CNN action recognition architec-
tures for SLR, such as the I3D [7] architecture, which was
used for SLR in [21, 37].

The usage of depth cameras has also been studied in re-
gards to this task, as the depth stream can help the models
learn more complex gestures within the signing area, as well
as ignore the background of the videos. Early works used
ensemble models, such as conditional random fields [40] or
multi-layered random forests [20], for recognition on top of
such depth representations. Recently, Park et al. [27] pro-
posed the SUGO model for SLR based on 3D CNN, which
utilizes the LIDAR scanner and enables inference directly
on modern mobile devices with suitable computational pre-
dispositions.

2.2. Pose data based methods

Extraction of the human pose from images or video
recordings has proven itself expedient for the general task
of action recognition. Yan et al. [39] were the first to pro-
pose a spatio-temporal graph convolutional network for ac-
tion recognition, which was able to learn the temporal skele-
ton dynamics and classify them. Many architectures, such
as MS-G3D [24] or AS-GCN [23], followed this approach.
Nie et al. [25] later proposed a framework for joint pose es-
timation and action recognition built on top of a graphical
model.

Architectures based on skeletal data have recently been
applied to the specific task of SLR as well. This approach
assumes that all the necessary information for recognition
of a SL can be retrieved from the pose of the signer’s body,
hands, and optionally face. Works [13, 21] both employ
the extraction of body pose sequence from individual video
frames for SLR followed by graph convolutional neural net-
work [21] or complemented by a 3D CNN [13]. Both
of these works have shown that this approach can deliver
comparable results to the appearance-based representation
methods.

3. Dataset
We evaluate our model on two datasets: the Word Level

American Sign Language (WLASL) dataset [21] and the
LSA64 dataset [30]. The sign instances contained in the
WLASL dataset are always performed by native American
SL signers or interpreters. The data was collected from mul-
tiple public resources intended primarily for the teaching of
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Figure 1. Depiction of individual augmentations applied on single frames. From left to right, there is in-plane rotation, squeeze, perspective
transformation, and sequential joint rotation augmentation.

Subset Gloss Videos Mean Signers
WLASL100 100 2,038 20.4 97
WLASL300 300 5,117 17.1 109
WLASL1000 1,000 13,168 13.2 116
WLASL2000 2,000 21,083 10.5 119

Table 2. Overview of the WLASL dataset’s subsets. Column
“Mean” refers to the average number of video instances per gloss
(class).

SL, thus unrestricted varieties of signing styles or dialects,
as well as video backgrounds are present. The authors of
the dataset created four subsets of data, named WLASL100,
WLASL300, WLASL1000, and WLASL2000, each con-
taining the respective number of glosses (classes). Detailed
statistics of the subsets can be found in Table 2. We follow
the public dataset split released by its authors.1

The LSA64 dataset holds 3200 videos of 64 differ-
ent glosses from the Argentinian SL, which were selected
among the most commonly used ones in the LSA lexicon
and include both verbs and nouns. The instances are per-
formed by 10 non-expert subjects.

4. Methodology

In this section, we describe the details and individual
components of our data pipeline and our proposed model
architecture. We call the method SPOTER - Sign POse-
based TransformER, which reflects the facts that we handle
the body pose according to the detected signing space, and
we use a Transformer to classify the pose sequence into a
sign gloss.

4.1. Preprocessing

We obtained pose (head, body, and hand landmarks) es-
timates from each video frame using the standard pose es-

1We requested and obtained all videos, which were no longer publicly
available, directly from the authors according to the provided instructions.

timation algorithm from Vision API2. This could be, how-
ever, substituted by any other pose estimation framework.
We generally assume that these estimations are correct and
we are able provide our estimates for the purpose of repro-
ducibility or for comparing the classification models. We
extract 54 body landmarks including 5 head landmarks and
21 landmarks per hand. Excluding the head landmarks, they
represent body joints. The head landmarks span the eyes,
ears, and nose. The hand joints follow the standard proto-
col from hand pose estimation task - four joints per finger
(including the fingertips) and one joint for the wrist. All
the landmarks are two dimensional, hence we obtain 108
dimensional pose vector per frame.

If there was no person located in the frame or any indi-
vidual landmark could not have been identified, zeros have
been filled for the respective coordinate values. We leave
the classifier to cope with this representation of such ab-
sence on its own.

The landmark coordinate values are relative to the frame,
where the bottom left corner is represented as [0; 0] and the
top right as [1; 1].

4.2. Augmentations

To prevent overfitting and boost the generalization capa-
bility of the model, we apply the following spatial augmen-
tations on the skeletal data during training. The parameters
of the augmentations are always randomly selected from
uniform distribution, but kept consistent for all the frames
within a sign instance.

In-plane rotation All the joint coordinates in each frame
are rotated by a random angle θ up to 13 degrees in the
following manner:

frotate(x, y) = ((x− 0.5) cos θ − (y − 0.5) sin θ + 0.5,

(y − 0.5) cos θ + (x− 0.5) sin θ + 0.5),

2https://developer.apple.com/documentation/
vision
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with the center of rotation lying in the center of the
frame, which is equal to [0.5; 0.5].

Squeeze All the frames are squeezed from both horizon-
tal sides. Two different random proportions up to 15% of
the original frame’s widthw1 (for left side) andw2 (for right
side) are cut. The x values of the joint coordinates are then
re-calculated with respect to the new plane as follows:

fsqueeze(x) =
x− w1

W − (w1 + w2)
,

where x is the original landmark’s x value and W de-
notes the width of the frame. The y values are kept the
same.

Perspective transformation The joint coordinates are
projected onto a new plane with a spatially defined center of
projection, which simulates recording the sign video with a
slight tilt. Each time, the right or left side, as well as the
proportion by which both the width and height will be re-
duced, are chosen randomly. This proportion is selected
from a uniform distribution on the [0, 1) interval. Subse-
quently, the new plane is delineated by reducing the width
at the desired side and the respective vertical edge (height)
at both of its adjacent corners.

Sequential joint rotation The joint coordinates of both
arms are passed successively, and the impending landmark
is slightly rotated with respect to the current one. The
chance of each joint to be rotated is 3:10 and the angle of al-
ternation is a uniform random angle up to ±4 degrees. This
simulates slight, negligible variances in each execution of a
sign, which do not change its semantic meaning.

The augmentations were tested in various combinations,
as described in Section 5.3. Their sample visualizations can
be seen in Figure 1.

4.3. Normalization

Since the distances from the camera, tilting, and other
positional properties of the signers in the recordings largely
differ and the input landmark coordinates come in values
relative to the frame, without normalization, the model
would be learning many spatial features irrelevant to the
performed sign itself. Furthermore, we presume that it
would also require longer training and would not reach as
generalizable results, as those potentially unlocked by nor-
malization omitting most of the noisy properties such as the
signer’s body proportions, distance from the camera, or lo-
cation within the frame.

Hence, our normalization method utilizes findings from
the SL linguistics [3] concerning the use and delimitation
of space in order to project the body landmarks onto the
signing space. Its application on a single frame can be seen
in Figure 2. The signing area is a three-dimensional space in
front of the signer and their immediate surroundings within
the reach of hands for performing SL. While it does not

Figure 2. Visualized normalization applied to each frame of the
sign instance. The bounding boxes represent individual planes
whereby the corresponding landmarks are normalized, i. e. their
coordinates are transferred relatively to the bounding box.

have a detailed, universally accepted definition, in most of
the literature, it is outlined as the area from the waist to the
area slightly above the signer’s head, spanning transversely
from elbow to elbow when both arms are kept loosely bent.

We employ the known proportions of the human body
parts with respect to the height of the head [11], which are
indicative and applicable regardless of the individual body
structure and distance of the signer from the camera, and
define the signing area on the basis of the head metric. We
define one head unit as the height of the head, which we es-
timated by halving the distance between the signer’s shoul-
ders. We delimit the signing space as being 6 head units
wide with the nose as its horizontal center, and 7 head units
high. The vertical position of the bounding box is deter-
mined by the left eye, where the top edge of the bounding
box is 0.5 head units upright from it and the bottom edge is
6 head units below.

The hand pose landmarks are normalized according to
their own individual bounding boxes, which are found as
the smallest possible upright squares encompassing all the
joints of the corresponding hand while having its corners at
least one-tenth of both the bounding box’s width and height
distant from the protruding landmarks. This enables the
model to truly focus on the shape of the hand, rather than
combining its spatial anchoring within the whole frame.
The information of the hand location with respect to the
signing space is also crucial, however, we argue that the
model should be able to learn this anyway, since the body
landmarks contain both wrists.

Finally, the normalized coordinates are shifted by
[−0.5;−0.5], so that the mean lies in 0 and their spread
is 1. We have experimented with various spreads and mean
values and found this one to perform the best.
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Encoder Lay. Decoder Lay. heads hidden dim. feed-forward dim. input dim.
6 6 9 108 2048 108

Table 3. Summary of the parameters of the Transformer model.

4.4. Proposed architecture

The overall architecture of our model is a lightly mod-
ified Transformer as was proposed by Vaswani et al. [38].
The model is depicted in Figure 3. The input of our system
is a sequence of normalized body poses as described in Sec-
tion 4.3. The pose is composed of 54 joint locations, yield-
ing a 108 dimensional pose vector for each image. Next,
the positional encoding is added to the individual vectors.
We use a learned encoding with dimension of 108 and add
it element-wise to the pose vector. This gives us the input
sequence that is presented to the encoder layers of the trans-
former. There, the sequence flows through the self-attention
module and feed forward network composed of two layers,
same as in the original transformer. There are 6 encoder
layers in total and 9 heads in the self-attention module.
The decoder of the transformer has one query at the input.
This query is decoded into the class representing the sign
and hence we call it the Class Query. The class query passes
through a Multi-Head Projection module. This module is
a special case of the Multi-Head Attention module, when
there is only one element in the processed sequence. In this
case, the softmax in the attention module always results in 1
and thus the attention has no influence on the value vector.
Hence, only the projection of the input vector into the value
space has any meaning and we do not learn the key and
query spaces in this module. We keep several parallel pro-
jection heads as in the original multi-headed attention mod-
ule. These projections are then concatenated and processed
by the final linear layer of the internal hidden dimension.
Next, the output of the encoder is combined with the pro-
jected class query in another Multi-Head Attention module.
Again, we use 6 decoder layers and 9 heads. The decoded
class query is inputted into a linear layer with number of
neurons equal to the number of classes and the softmax ac-
tivation is used to predict the confidences of each class. The
parameters of the model are summarized in Table 3. We
also experimented with the architecture of a Vision Trans-
former [12], but we were not able to achieve the accuracy
of the proposed architecture. However, more experimenting
with the size of the Vision Transformer would be required
to come to conclusive results.

5. Experiments and analysis

In this section, we describe the experimental setup and
provide quantitative results of our architecture with com-
parison to current benchmarks.

5.1. Implementation details

The proposed SPOTER architecture has been imple-
mented in PyTorch [28]. We have edited the standard Py-
Torch implementation of the Transformer so as to prevent
the redundant computation of the query and key pair and
their successive scaled dot-product attentions in the decoder
multi-head attention module, which would otherwise take
place due to the passage of the Class Query through the
standard multi-head attention modules. We open-source our
code along with the preprocessed pose data of the WLASL
and LSA64 datasets extracted with Vision API3 for repro-
ducibility.

We train the model for 350 epochs using an SGD opti-
mizer with an initial learning rate of 10−3. No scheduler
is employed. We use the standard cross-entropy loss. The
weights are initialized randomly from a uniform distribu-
tion on the interval [0, 1). The momentum and weight decay
were both set to 0.

The pipeline is as follows: we obtain the image from the
recording, detect all relevant body landmarks, perform the
augmentation, and normalization. We process every frame
of the recording in this way and input it into the transformer
model.

5.2. Results

We report the top-1 macro accuracy on the WLASL100
and WLASL300 dataset subsplits, as well as the LSA64
dataset. The results with comparison to existing models
for the WLASL subsets are shown in Table 4. The ta-
ble is divided into two main sections, where the first con-
tains approaches based on the appearance representation,
whereas the second includes only pose-based representa-
tions. The results of appearance-based approaches are in-
cluded for convenience and potential comparison of devel-
opment in both main data representation streams for SLR.
However, we compare our model solely with the relevant
category of pose-based methods. By achieving 63.18% ac-
curacy, our proposed method surpasses the previous state
of the art pose-based approach by more than 3 percentage
points on the WLASL100. We establish state of the art
result of 43.78% accuracy on the WLASL300 subsplit as
well, surpassing the previous one by 1.6%.

Although the approaches leveraging appearance data still
outperform our model, we argue that these results come at
a distinctively larger computational cost originating mainly
from the additional dimensionality, which is reduced in

3The code and data are publicly available at https://github.
com/matyasbohacek/spoter.
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Model App. Pose Backbone WLASL100 WLASL300
I3D (baseline) [21] 3 7 3 65.89 56.14
TK-3D ConvNet [22] 3 7 3 77.55 68.75
Fusion-3 [13] 3 7 3 75.67 68.30
GCN-BERT [36] 7 3 7 60.15 42.18
Pose-TGCN [21] 7 3 7 55.43 38.32
Pose-GRU [21] 7 3 7 46.51 33.68
SPOTER (Ours) 7 3 7 63.18 43.78

Table 4. Top-1 macro average recognition accuracy achieved by each model (by row) on the WLASL100 and WLASL300 subsets. App.
denotes the usage of appearance representation (i.e. direct frame images) as the input to the model, Pose column then marks the usage of
skeletal data as inputs. All the entries used data augmentation techniques.

flatten flatten flatten

t0
 t1
 tN


Input Sequence

Feed
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Positional

Encoding

Nx

Class Query

Add & Norm

Feed

Forward

Add & Norm

Add & Norm
Add & Norm

Multi-Head

Attention

Add & Norm

Multi-Head
Projection

Multi-Head

Attention

Linear

Softmax

Class

Mx

Encoder Decoder

Figure 3. The proposed architecture. A standard Transformer is used with an Encoder and a Decoder part. There is however only one query
- Class Query - to be decoded, which renders the multi-head self-attention in the decoder useless. That is why we call it the Mutli-Head
Projection module instead, which can be implemented in a more computationally efficient way.

our system, even together with the pose estimation frame-
work, as studied in Section 5.4. Moreover, many of the
appearance-based methods require starting on the basis of a
pre-trained backbone. Even with the reduced dimensional-
ity and the backbone being absent, our model is closing on
the baseline I3D model with a relatively small difference of
absolute 3% in test accuracy.

The results on the LSA64 dataset are presented in Ta-

ble 5. All of the reported approaches utilized the appear-
ance representations, which were in some cases also sup-
plemented with the pose data. We establish state of the art
result by achieving 100% test accuracy.

5.3. Ablation study

The results of an ablation study investigating the effects
of our normalization and data augmentation techniques are
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Model App. Pose Accuracy
LSTM + LDS [19] 3 7 98.09 ± 0.59 *
LSTM + DSC [18] 3 3 99.84 ± 0.19 *
DeepSign CNN [33] 3 7 96.00
MEMP [41] 3 7 99.06
ELM + MN CNN [14] 3 3 97.81
I3D 3 7 98.91
SPOTER (Ours) 7 3 100.00 ± 0 *

Table 5. Top-1 macro average recognition accuracy achieved by
several models on the LSA64 dataset, as reported in respective pa-
pers. App. denotes the usage of appearance representation (i.e.
direct frame images) as the input to the model, Pose column then
marks the usage of skeletal data as inputs. The metric was ob-
tained by using a single random split of 80% of the data for train-
ing and the rest 20% for testing, stratified uniformly to preserve
class distributions. Entries marked with an * were obtained using
cross-validation over 5 repetitions.

shown in Table 6. In order to evaluate the importance of
each superstructural component, we first trained a baseline
model (A) without normalization nor any augmentations ap-
plied to the data, which achieved 44.96% test accuracy on
the WLASL100 subsplit.

Normalization We evaluate the importance of normal-
ization by training the model (B) with the custom normal-
ization approach described in Section 4.3 applied to all data.
A significant increase of over 14% in accuracy can be ob-
served, which confirms its crucialness for achieving good
results. We hence fix the normalization for all subsequent
configurations.

Augmentations For the following model variants (C, D,
E, F), we always incorporate a single augmentation tech-
nique to assess its contribution to learning. The augmen-
tations are executed randomly with the chance of 0.5 on
the fly. Surprisingly, we find that the standard augmen-
tations (In-plane rotation, Squeeze) provide approximately
identical benefits as the augmentations specifically designed
to address the SL characteristics (Perspective transforma-
tion, Arm joint rotation). Regardless, all of the augmen-
tations boost the overall model performance by approxi-
mately 1 − 2%, which vindicates their benefits for the pre-
vention of overfitting and enhanced generalization. When
all of the proposed augmentations are combined, an even
better result of 62.79% test accuracy is achieved, as has
been demonstrated with the model (G). Once we have es-
tablished the clear benefits of the outlined augmentations,
we have trained the final model configuration (H) with the
addition of Gaussian noise4 applied on the training set. This
has produced the best result of 63.17% accuracy.

4The used Gaussian noise transformation has the mean of 0 and the
standard deviation of 10−3.

Model Norm. Aug. Accuracy
A 7 7 44.96
B 3 7 58.97
C 3 Rotate 61.24
D 3 Squeeze 60.85
E 3 Perspective t. 60.47
F 3 Arm joint rotate 61.24
G 3 All 62.79
H 3 All + Gaussian noise 63.18

Table 6. Ablation study results on the WLASL100 dataset split.
Perspective t. denotes the perspective transformation augmenta-
tion technique described in Section 4.2.

5.4. Performance study

In order to assess the performance and efficiency proper-
ties of the pose- and appearance-based models, we perform
a comparative analysis of SPOTER and the baseline I3D ar-
chitecture. We started with the counts of model parameters:
SPOTER has 5.92 million parameters, whereas the I3D has
12.35 million parameters, more than twice as much.

We then assessed the computational difficulty of both
architectures by measuring their inference efficiencies and
times. For our approach we include the Vision Pose Esti-
mation into this measurement. We used the Deepspeed [31]
library’s Flops profiler to gauge the floating point opera-
tions (FLOPs) performed during inference. As the length
of the input video affects the number of necessary com-
putations for inference on the I3D model, we have ran-
domly chosen 100 videos from the LSA64 dataset and av-
eraged the required FLOPs, as well as the inference times
for both models. The evaluation of SPOTER and I3D has
been performed on a single NVIDIA Tesla T4 GPU ma-
chine, whereas the Vision API’s pose estimation has been
examined on a machine with the Apple M1 chip, as the li-
brary relies on macOS. Our approach greatly outperforms
the I3D model. The combined inference of the Vision Pose
Estimation and SPOTER required by average 1.42 GFLOPs
and took 0.05 second, while the I3D required 5.22 GFLOPs
and took 0.55 second. All of these performance attributes
are depicted relatively in Figure 4.

We also tested the ability of both models to learn and
generalize from only smaller training sets by sampling the
sizes of the training dataset and comparing the resulting
models against a constant test set. We chose the smaller
LSA64 for this experiment.

We fixed the seeds and split a 20% set for testing. Next,
we trained 10 SPOTER and I3D models, each time with a
different proportion of the training set, starting with a 10 %
subset all the way to the full set, adding 10 % each time.
All the sets were stratified uniformly to preserve class dis-
tributions. Each model has then been evaluated on the orig-
inal testing set. We followed the baseline I3D implemen-
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Figure 4. Relative comparison of the SPOTER and I3D model at-
tributes: model parameters, average inference FLOPs, and average
inference time. All of the metrics were measured and later aver-
aged on 100 random videos from the LSA64 dataset.

tation from [21] and their accompanying repository, where
we only doubled the original frame cut-off threshold to 128
to accommodate the characteristics of the LSA64 dataset.

The results are shown in Figure 5. Even the small-
est SPOTER model trained on just 10% split was able to
achieve an accuracy of 88.68%, while the I3D model lagged
behind with just 45.47%. SPOTER continued to improve
until it eventually reached the accuracy of 100.00% at the
90% train set split. The I3D improved as the training split
grew, however, it did not manage to catch up with SPOTER
at any split. It came the nearest at the final split, where it
achieved the testing accuracy of 98.91%.

We attribute this behavior to the necessity for the I3D
model to first learn general concepts required for SL se-
mantic decoding (such as human body mechanics), which is
harder on a small training set. The SPOTER architecture, on
the contrary, does not need to acquire such understanding,
as the handcrafted input feature representation of body and
hand pose already contains sufficient information for such
decoding, and thus requires a substantially smaller training
set to gain ample results.

Both of the previous experiments demonstrate the
SPOTER’s dominance on small instance datasets. Com-
bined with the model size, inference computational de-
mands, and speed, SPOTER proves much more suitable for
applications in the wild as opposed to appearance-based ap-
proaches, such as I3D.

6. Conclusion
In this paper, we explore the application of Transformer

in the task of isolated SLR. Previous works tackling this
problem have frequently used a computationally heavy ap-
proach to obtain sensible results or relied on pre-trained
backbones, which we are preventing by using handcrafted
pose feature representations and hence reducing the dimen-

Figure 5. Top-1 macro accuracies of the SPOTER and I3D models
trained on 10 gradually enlarging portions of the training set. A
fixed 20% split of the LSA64 dataset is used for evaluation, while
the rest is used for training. All the seeds were fixed beforehand.

sionality. Furthermore, previous systems could not fully uti-
lize any normalization or augmentations beyond the stan-
dard ones applied to visual data. We propose a novel ap-
proach of utilizing Transformer for this task. Since our
model operates on top of body pose sequence representa-
tions, we apply knowledge from SL linguistics to create a
robust normalization technique as well as new data augmen-
tation techniques specific for the SL.

We validated our approach on two datasets for isolated
SLR. We achieved overall state of the art results for the
LSA64 and established state of the art results in the pose-
based model category for the WLASL. We have also per-
formed a performance study comparing our model to the
I3D baseline, which proved that the newly proposed archi-
tecture is substantially less demanding and generalizes well
even on very small training sets.

Apart from the obvious reason of computational effi-
ciency, the SPOTER model could be utilized in a Human
in the Loop fashion. A relatively small portion of human
labeled data could be used to train the model to predict rela-
tively precise labels to be corrected by the annotators. Then
these data could be used to train a appearance-based model
if needed.
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