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Abstract

As the COVID-19 pandemic rampages across the world,
the demands of video conferencing surge. To this end, real-
time portrait segmentation becomes a popular feature to
replace backgrounds of conferencing participants. While
feature-rich datasets, models and algorithms have been of-
fered for segmentation that extract body postures from life
scenes, portrait segmentation has yet not been well covered
in a video conferencing context. To facilitate the progress in
this field, we introduce an open-source solution named PP-
HumanSeg. This work is the first to construct a large-scale
video portrait dataset that contains 291 videos from 23 con-
ference scenes with 14K fine-labeled frames and extensions
to multi-camera teleconferencing. Furthermore, we pro-
pose a novel Self-supervised Connectivity-aware Learning
(SCL) for semantic segmentation, which introduces a self-
supervised connectivity-aware loss to improve the quality
of segmentation results from the perspective of connectiv-
ity. And we propose an ultra-lightweight model with SCL
for practical portrait segmentation, which achieves the best
trade-off between IoU and the speed of inference. Exten-
sive evaluations on our dataset demonstrate the superior-
ity of SCL and our model. The source code is available at
https://github.com/PaddlePaddle/PaddleSeg.

1. Introduction

Portrait segmentation [23] has brought great success
in various entertainment applications, such as virtual
background, beautifying filters, character special effects.
Among these applications, video conferencing has become
a major scenario for portrait segmentation, where partici-
pants could automatically replace their private backgrounds
(e.g., ones from private rooms) with virtual scenes.

The outbreak of coronavirus has further accelerated
the prevalence of video conferencing to dramatically re-
place the traditional face-to-face meetings, as working-
from-home has been desired [22]. Moreover, compared

Figure 1. An illustration of the proposed Self-supervised
Connectivity-aware Learning (SCL) approach for semantic seg-
mentation, which improves segmentation performance from the
perspective of connectivity.

to the traditional video conferencing that links participants
from different offices/conference rooms, the current meet-
ing scenes become much more diverse in surroundings and
lighting conditions, as live videos are recorded from each
participant’s home. Participants may show various postures
and actions, and even wear face masks. In addition, partici-
pants sometimes access to the teleconferencing using a thin
client, such as a webpage for chat based on JavaScript run-
ning on a browser, or a chat App running on mobile devices.
Thus, there frequently needs to serve portrait segmentation
tasks in resource-limited computing platforms (e.g., web-
pages and smartphones without powerful GPUs) while en-
suring real-time performance for teleconferencing on-the-
air. All these practical issues in post-COVID-19 video con-
ferencing have brought great challenges and opportunities
to the portrait segmentation field.

Actually, many works have been done on both datasets
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Figure 2. Examples of our dataset and existing datasets. (a) FVS contains only 4 green-screen videos. Due to the composition effect,
the labels are not smooth enough. (b) Maadaa contains a lot of similar images and irrelevant information of the interface of the software,
e.g. virtual buttons, small windows. (c) The proposed dataset contains various teleconferencing scenes, various actions of the participants,
interference of passers-by and illumination change. Note that all videos with human subjects in the proposed datasets have granted the
rights to use and disseminate for scientific research purposes.

and methodologies for portrait segmentation. For datasets,
there are EG1800 [23], AISeg [2], FVS [13], Maadaa [1],
as shown in figure 2. However, they are rarely applied for
video conferencing tasks. The datasets for video confer-
encing either are with low picture quality and high redun-
dancy or even contain synthesized images. Thus, a new
dataset with real-world teleconferencing videos of high pic-
ture quality and fine-grained labels is required.

In terms of segmentation methods, a great number of
works have been proposed to address context informa-
tion [30, 33, 5], multi-scale adaptation [4, 24], fine edge
processing [12, 31, 7, 6, 11], category imbalance loss [3, 19]
issues. However, these approaches are designed for generic
semantic segmentation yet not optimized for portrait seg-
mentation. Although portrait segmentation is a sub-type of
semantic segmentation, it has distinct characteristics com-
paring with other object segmentation. The person can be
regarded as a non-rigid object, so that the postures and ap-
pearances are varying, which is challenging in the semantic
segmentation task. In addition, generic semantic segmenta-
tion is pixel-level classification which ignores the complete-
ness of person instances. Thus, a new learning approach
that takes care of completeness of person instances, subject
to varying human actions/postures, is required for portrait
segmentation in teleconferencing.

In addition, to achieve portrait segmentation on mobile
devices, several lightweight models for semantic segmenta-
tion have been proposed [20, 25]. However, the results of
these models [20, 25] evaluated on portrait dataset are un-
satisfactory. Thus, a lightweight model that could deliver
real-time portrait segmentation on resource-limited plat-
forms (e.g., mobile devices and browsers) is required.

Therefore, we introduce an open-source solution for
practical portrait segmentation named PP-HumanSeg. In
this work, we construct a large-scale video portrait dataset
including 291 meeting videos in 23 different scenes. To
facilitate researchers in the field, we provide 14,117 fine-
annotated images. To improve the completeness of person
instances, we propose a new Self-supervised Connectivity-
aware Learning (SCL) approach, where the connected com-
ponent concept is used to represent the completeness of
the person. The proposed approach improves the con-
sistent connectivity between the segmentation results and
the ground truth. Finally, we propose an ultra lightweight
segmentation network using SCL, which achieves the best
trade-off among mIoU and the inference speed. The contri-
butions of this paper are as follows:

• We release a large-scale video portrait dataset that con-
tains 291 videos from 23 conference scenes with 14K
fine-labeled frames provided, to facilitate the progress
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in portrait segmentation in video conferencing. Please
refer to figure 2 for comparisons with existing datasets,
such as FVS [13] and Maadaa [1].

• We propose a novel Self-supervised Connectivity-
aware Learning (SCL) framework for portrait seg-
mentation, which improves segmentation performance
from the perspective of connectivity.

• We propose an ultra-lightweight model with SCL for
practical portrait segmentation, which achieves the
best trade-off between performance and the inference
speed. Extensive evaluations on our dataset demon-
strate the superiority of SCL and our model.

To the best of our knowledge, it is the first video portrait
dataset with various scenes, character appearances and ac-
tions for video conferencing, with non-trivial baseline mod-
els/algorithms offered.

2. Related Works
While the main contributions of this paper include a new

dataset, a new learning framework, and a new lightweight
model all for portrait segmentation in teleconferencing set-
ting, we thus introduce and discuss the related works from
these three perspectives.

Datasets. There are several popular portrait datasets, such
as EG1800 [23], FVS [13], Maadaa [1] and AISeg [2].
Compared to EG1800 [23], AISeg [2], and FVS [13] that
provided (self-)portrait images and segmentation labels of
persons under various indoor/outdoor or even virtual back-
grounds, our work offers massive fine-labeled frames of
real-world videos for teleconferencing. Maadaa [1] also
provided images collected from video conferencing scenar-
ios, but they were all screenshots from the video conferenc-
ing applications that incorporate irrelevant and noisy pixels,
such as software interfaces. In addition, all existing datasets
do not include persons wearing face masks, which is un-
avoidable for post-COVID-19 teleconferencing.

Learning Methods and Lightweight Models. The exist-
ing learning algorithms for semantic segmentation mainly
incorporate cross entropy loss, lovasz loss [3], dice
loss [19], and RMI loss [35] for training. In addition,
upon these training methods, the multi-branch networks
have been proposed to improve the lightweight models [29,
20, 21, 18] for generic segmentation problem. Compared
to these works, we propose a new SCL framework that in-
corporates a new loss, namely self-supervised connectivity-
aware loss, to improve the completeness of segmentation
results for person instances and introduce a new model
design, namely ConnectNet to facilitate ultra-lightweight
connectivity-aware portrait segmentation.

Note that some face-related libraries, such as [26, 34],
also include face detection modules that can improve the
performance of portrait segmentation. Due to the page lim-
its, we do not include the discussion on them here.

3. The Proposed Dataset
In this section, we introduce the ways we collect and

label images and videos for portrait segmentation in real-
world teleconferencing settings.

3.1. Data Collection

In order to get closer to the real video conference data
distribution, we collect the videos in 23 common confer-
ence scenes including meeting rooms, offices, public office
areas, living room, classrooms, etc. In addition, the partic-
ipants perform various actions, e.g. waving hands, getting
up and sitting down, drinking water, using mobile phones,
shaking, etc. We also collected a large number of pictures of
people wearing masks. Finally, we get a large-scale dataset
of 291 videos with 1280x720 resolution. In order to re-
duce redundancy, we extract frames from the videos at a
low frame rate of 2.5 FPS to get 14117 HD images. The
diversity of collected images is shown in figure 2(c).

3.2. Data Labeling

We recruited several professional annotators to label the
collected data. They provide high-quality labels of our
dataset in both pixel level and video level.

3.2.1 Pixel-Level Labeling

In fact, the annotation of portrait segmentation usually has
two ambiguous instances, 1) hand-held items, 2) distant
passerby or people with backs. The annotation of them
depends on the practical applications, as well as the def-
inition of foreground and background. In video confer-
encing, the purpose of portrait segmentation is highlighting
participant-related parts rather than the surroundings. The
hand-held items highly related to the activities of partici-
pants, such as mobile phone, glasses and cup. However,
distant passerby or people with backs are not participants of
the video conference, which should be ignored. Therefore,
all hand-held items are labelled together with human body.
Distant passers-by or people with backs are not labelled,
even though they are usually labelled in other applications
of portrait segmentation.

3.2.2 Video-Level Labeling

Following the practice of VOC [9] and PSS [32], we anno-
tate our videos based on the objects appeared in the video.
Each video clip has multi-class attributes, e.g. the scene
id, the number of participants, the activity of participants,
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Figure 3. Examples of composited videos for teleconferencing.

wearing face mask, passers-by. The video-level annotation
can be used to video description and multi-task learning,
which also provides a good starting point to human activity
analysis study in video conferencing.

3.3. Video Synthesis for Teleconferencing

Besides the 14K fine-labeled images, we also collected
pure-background images in 90 different video conferencing
scenes. Then we use a simple video composition strategy to
augment the dataset further. The high-quality portrait masks
allow us to extract the portrait parts precisely, and much
more labeled images is composed of the extracted portrait
parts and pure-background images. Through data compo-
sition, we generate around one million images eventually.
Due to high-quality annotation, the edges of the composi-
tion data are smooth and look natural, as shown in figure 3.

4. SCL: Self-supervised Connectivity-aware
Learning for Portrait Segmentation

In this section, we present the design of Self-supervised
Connectivity-aware Learning (SCL) framework (shown in
figure 1) for semantic segmentation. To improve the com-
pleteness of segmentation results, we define a new con-
cept namely semantic connectivity to represent the portrait
segmentation results and ground truth. Specifically, in ad-
dition to using traditional semantic labels as supervision,
SCL extracts the connected components from semantic la-
bels and uses them as the supervision signal via a Seman-
tic Connectivity (SC) loss. Note that SCL framework com-
plement with other deep neural architectures (e.g. CNNs,
Transformer-based Networks [36, 15, 27, 8]) to boost the
performance of portrait segmentation.

4.1. Semantic Connectivity between Components in
Segmentation

In this work, we use the connected components to rep-
resent the completeness of the portrait segmentation. In
topology, connected component is a maximal subset of a
topological space that cannot be covered by the union of
disjoint subsets. In portrait segmentation, we take the re-
gion of a person instance as a connected component. Fig-
ure 4 shows an example for connected components calcula-

Figure 4. Connected components calculation and matching. (a) It
indicates prediction and ground truth, i.e. P and G. (b) Connected
components are generated through the CCL algorithm [10], re-
spectively. (c) Connected components are matched using the IoU
value.

tion and matching.
We find the connected components of predictions (P )

and ground truth (G), respectively. Connected components
calculation is a fundamental principle in image processing,
where there are many methods, e.g. connected component
labelling (CCL) and edge thinning. In our approach, we use
a CCL algorithm to calculate the connected components,
because of its robustness [10]. We then traverse all con-
nected components of G and P to find all pairs that inter-
sect with each other. In figure 4, there are three pairs, i.e.
[g2, p2], [g3, p5], [g4, p4], and three isolated components, i.e.
p1, p3, g1. Note that a connected component in G could
have intersections with multiple connected components in
P , which is not be indicated in the figure.

Assuming gi is paired with {p1, p2, ..., pk}, the connec-
tivity of gi is denoted as Ci, which is calculated with the
equation as follows.

Ci(P ) =
1

k
Σk

k=1IoU(gi, pk) ∈ (0, 1] (1)

IoU(gi, pk) =
|gi ∩ pk|
|gi ∪ pk|

(2)

In particular, when gi is only paired with one connected
component in P , e.g. pj , Ci equals to IoU between gi and
pj . If gi is an isolated component, Ci equals to 0.

Finally, we define the semantic connectivity (SC) of the
entire image given the graph of components in the ground
truth G and the graph in the prediction P as the follow.

SC(P,G) =
1

N
ΣN

i=1Ci(P ) (3)

whereN is the total number of both pairs and isolated com-
ponents. Note that for ∀P,G we have SC(P,G) ∈ [0, 1].

4.2. Learning with SC Loss

To enable the self-supervised connectivity-aware learn-
ing, the SCL frameworks uses a novel loss function based
on the proposed semantic connectivity, which minimize the
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Figure 5. ConnectNet: an Ultra-lightweight Model for Portrait
Segmentation.

inconsistency of connectivity between the prediction and
the ground truth. In addition, when no intersection between
the prediction and the ground truth, we use an area-based
loss function to better optimize the model.

The mathematical notation is the same as in the previous
section, we denote Semantic Connectivity-aware (SC) Loss
as LSC. If there is at least a pair between P and G, LSC is
defined as follow.

LSC(P,G) = 1− SC(P,G) , (4)

where for ∀P,G we have LSC(P,G) ∈ [0, 1].
Note that there is a special case that no pair exists be-

tween P and G, and connectivity is becoming to be 0.
It could happen in the beginning of training, due to ran-
dom initialization of parameters. However, 0-connectivity
in SCL would lead to zeros gradients, and the weights can-
not not be updated accordingly the connectivity. For such
special case, we design a non-trivial loss function to cold
start the process. Specifically, to ensure the continuity and
differentiability of the loss function in the cold-start phase,
we write the SC loss LSC as follow.

LSC(P,G) =
|P ∪G|
|I|

, (5)

where I represents the image and | · | represents the area
of the region (total number of pixels in the region), and for
∀P,Q we have LSC(P,G) ∈ (0, 1].

Finally, SCL incorporates the SC Loss as a regularizer to
complement with the segmentation losses (denoted as LS .
e.g. cross entropy loss) in the form of L = LS + λ ∗ LSC

to optimize the model. The hyper-parameter λ denotes a
weight to make trade-off between the SC loss and the seg-
mentation loss.

5. ConnectNet: an Ultra-lightweight Neural
Network for Portrait Segmentation

We propose an ultra-lightweight segmentation network
to work with SCL, namely ConnectNet, as shown in fig-
ure 5. ConnectNet adopts an encoder-decoder structure.

The encoder follows an inverted bottleneck block [16] de-
sign with channel-shuffle operation to extract features ef-
ficiently. To reduce the computation loads while maintain-
ing high resolutions, ConnectNet compresses the number of
stages and channels, where every stage is stacked by mul-
tiple inverted bottleneck blocks. Moreover, ConnectNet in-
corporates depth-wise separable convolution to improve the
decoding efficiency in the decoder, where depth-wise sepa-
rable convolution decomposes the ordinary convolution into
depth-wise convolution and point-wise convolution so as to
further reduce computation loads.

With features extracted in an encoder-decoder network
with bottleneck layers, the encoder would lower the resolu-
tion of the feature map and lose the spatial details. Spatial
information is critical in segmentation tasks. Therefore, the
proposed network connects the encoder and decoder across
layers through a skip connection to integrate the underly-
ing texture features, which is more conducive to generating
fine masks. At the same time, the skip connection directly
reuses the features extracted by the encoder without addi-
tional computation costs.

6. Experiments
6.1. Experiment settings

All of our experiments are conducted on two Tesla V100
GPUs of 32GB using PaddlePaddle1 [17]. Code and pre-
trained models are available at PaddleSeg2 [14]. During
training, we use polynomial decay with power equal to 0.9,
and the learning rate equals to 0.05 and 0.025 for HRNet-
W18-small and other networks respectively. We use SGD
as our optimizer with weight decay parameter being 0.0005.
We apply data augmentation methods including scale, crop,
flip, and color distortion for training. We use BBDT algo-
rithm [10] for connected component labeling.

In order to avoid similar images in the validation set and
test set, we divide the dataset by scene level. The pro-
posed dataset is randomly divided into a training set with
11 scenes and 9006 images, a validation set with 6 scenes
and 2549 images, and a test set with 6 scenes and 2562 im-
ages. We train our model with the batch size of 128. For
all experiments, we take mIoU and pixel accuracy as evalu-
ation metrics.

6.2. Experiment Results

6.2.1 Hyper-parameter

SCL optimizes the network using a weighted combination
of cross entropy loss and SC loss. Different combination
coefficient may bring different effects. In order to show that
the SC loss is parameter in-sensitive and robust. We conduct

1https://github.com/PaddlePaddle/Paddle
2https://github.com/PaddlePaddle/PaddleSeg
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5 experiments with different weight coefficients, i.e. 0.01,
0.05, 0.1, 0.5, and 1.0.

As shown in Table 1, the connectivity of model’s predic-
tion is improved on different combination of SC loss and
segmentation loss. We set λ as 1.0 in the following experi-
ment settings.

loss ratio baseline 0.01 0.05 0.1 0.5 1.0

mIoU 93.0 94.2 93.9 94.5 92.6 94.6
Table 1. Robustness of SC loss under different ratios

6.2.2 Ablation study on various models

We evaluate the effectiveness of our SC loss on
light-weight networks including HRNet-W18-small [25],
BiseNetV2 [28] and ConnectNet. As shown in table 2, SC
Loss is effective across these networks, where the mIoU
metric improves in HRNet-W18-small, BiseNetV2, and
ConnectNet respectively. Through enhancing the connec-
tivity of the connected components, the models obtain the
better segmentation performance.

Model mIoU Pixel Acc

HRNet-W18-small 93.0 97.2
HRNet-W18-small + SCL 94.5 97.8

BiseNetV2 85.8 94.2
BiseNetV2 + SCL 87.5 94.8

ConnectNet 94.1 97.6
ConnectNet + SCL 94.6 97.6

Table 2. Ablation study on light-weight networks

6.2.3 Comparision with other SOTA losses

In this section, we prove the superiority of SC loss over
other state-of-the-art losses including lovasz loss [3], and
RMI loss [35]. We conduct these experiments on HRNet-
W18-small with learning rate being 0.5. For fair compari-
son, we set the coeffecient of the compound losses as 0.01
for all of the experiments.

As shown in Table 3, the SC loss we propose outper-
forms other loss methods. The experiment with SC loss has
the best score in mIoU and pixel accuracy. These loss fo-
cus on different aspects of semantic segmentation like class
imbalance and structural information. The evaluation result
shows the SC loss has SOTA performance for portrait seg-
mentation.

6.3. Effectiveness of ConnectNet

In order to validate the performace of our pro-
posed model, we compare its performance compared

Loss mIoU Pixel Acc

CE Loss (baseline) 93.0 97.2
CE Loss + Lovasz Loss 93.0 97.2
CE Loss + RMI Loss 94.3 97.7
CE Loss + SC Loss 94.5 97.8

Table 3. Comparision with SOTA losses

with other light-weight state-of-the-art models, including
BiseNetV2 [28], Fast SCNN [20], HRNet [25]. As shown
in Table 4, our model is faster and more effective than other
SOTA light-weight models. Compared with HRNet-W18-
small, our model has greater performance and 41% faster.
Compared with Fast SCNN and BiseNetV2, our model is
1.5-3ms slower, but 1.2% and 8.5% higher in mIoU than
BiseNetV2 and Fast SCNN, respectively.

The experimental results show that our model outper-
forms BiseNetV2 and Fast SCNN to a great extend, but
only have less than 10% of their parameters. This is crucial
in mobile and web applications considering that the storage
requirement is rather strict.

Model mIoU Pixel Acc Infer Time Params

BiseNetV2 85.8 94.2 10.0 2.32
Fast SCNN 85.7 93.9 8.6 1.44
HRNet-W18-small 93.0 97.2 19.76 3.95
ConnectNet 94.2 97.6 11.5 0.13

Table 4. Benchmark on the state-of-the-art lightweight models.
The unit of inference time is ms and the unit of Params is M.

6.3.1 Qualitative Comparison

In order to qualitatively show the performance of our net-
work, We visualize the predictions of different networks on
test images. As shown in figure 6, our model has better
completeness than other models, and it is less prone to make
disperse predictions.

7. Conclusion
To facilitate the progress in portrait segmentation in a

video conferencing context, we introduce an open-source
solution named PP-HumanSeg. In this work, we first con-
struct a large-scale video portrait dataset that contains 291
videos from 23 conference scenes with 14K fine-labeled
frames provided. To improve the completeness of segmen-
tation results, we propose a Self-supervised Connectivity-
aware Learning (SCL) framework incorporating a novel Se-
mantic Connectivity (SC) loss. Such SC loss models the
topology of portrait segmentation as a graph of connected
components and measures the inconsistency between the
graphs (i.e., connectivities) extracted from the ground truth
labels and the prediction results as the loss. Furthermore,
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Figure 6. Semantic segmentation results of different light-weight networks

we propose an ultra-lightweight model, namely Connect-
Net, with SCL for practical portrait segmentation. The pro-
posed solution achieves the best trade-off between IoU and
inference time in the dataset. Extensive evaluations on our
dataset demonstrate the superiority of SCL and ConnectNet.
The comparisons with other algorithms also show the ad-
vantage of proposed datasets from the perspectives of cov-
erage and comprehensions.
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