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Abstract

Activity detection has wide-reaching applications in
video surveillance, sports, and behavior analysis. The ex-
isting literature in activity detection has mainly focused
on benchmarks like AVA, AVA-Kinetics, UCF101-24, and
JHMDB-21. However, these datasets fail to address
all issues of real-world surveillance camera videos like
untrimmed nature, tiny actor bounding boxes, multi-label
nature of the actions, etc. In this work, we propose a real-
time, online, action detection system which can general-
ize robustly on any unknown facility surveillance videos.
Our real-time system mainly consists of tracklet generation,
tracklet activity classification, and prediction refinement us-
ing the proposed post-processing algorithm. We tackle the
challenging nature of action classification problem in var-
ious aspects like handling the class-imbalance training us-
ing PLM method and learning multi-label action correla-
tions using LSEP loss. In order to improve the computa-
tional efficiency of the system, we utilize knowledge distil-
lation. Our approach gets state-of-the-art performance on
ActEV-SDL UF-full dataset and second place in TRECVID
2021 ActEV challenge. Project Webpage: www.crcv.
ucf.edu/research/projects/gabriellav2/

1. Introduction

The problem of video understanding has wide-reaching
applications like action recognition [1–4], action detec-
tion [5–9], temporal action localization [10, 11], and video
synthesis [12, 13].

The task of spatio-temporal activity localization involves
detecting the actions present in the videos, and generat-
ing a spatial bounding box that tracks the activities over
time. The main two problem statements involving videos
are: Can we recognize the action in the video? and If so, can
we say where the activity is happening? The first problem is
termed as video classification, which involves labeling sin-

gle or multiple simultaneous activities present in a video.
The second problem targets annotating where the activity is
happening. This is referred as the task of spatio-temporal
activity localization.

The majority of works [14–18] on action detection focus
on benchmark datasets like AVA [19], AVA-Kinetics [20],
UCF101-24 [21] or J-HMDB [22]. These approaches are
not suitable for real-world surveillance video due to several
reasons: (1) actor size of the surveillance camera is tiny
compared to the actor-centric videos of the benchmarks,
(2) surveillance videos are untrimmed, unlike the 3 second
trimmed videos of AVA [19] and AVA-Kinetics [20], and
(3) real-time and online approach is required for the video
surveillance.

Prior works [6, 9, 23–30] present approaches for ac-
tion detection in surveillance video. One of the best per-
forming systems from the prior works is our prior system,
Gabriella [6], which is a real-time, online, action detection
approach. Gabriella adopts an end-to-end approach by first
detecting the action proposal using a pixel-wise localiza-
tion module which is followed by action classification and
post-processing. Although this system outperforms most of
the concurrent systems, it has two main limitations: (1) it
merges overlapping actor bounding boxes, which results in
huge regions for indoor scene and degrades performance of
action classification stage, and (2) localization network does
not generalize well on the unknown scene/facility camera,
which results in a high probability of missing actions.

In this work, we build upon our previous system,
Gabriella, to improve the system overall performance
and generalization capability in unknown facility cameras.
Firstly, in order to avoid merging in crowded scenes we
replace the pixel-wise localization network with the ob-
ject detector and tracker to get actor-centric trackelets.
Secondly, we strengthen the action classification unit by
utilizing state-of-the-art multi-label class-imbalance train-
ing, partial label masking (PLM), and learning class-
correlation through log-sum-exp pairwise (LSEP) loss.
We also utilize knowledge distillation to make the ac-
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tion classification component more computationally effi-
cient. Our system achieves state-of-the-art performance on
MEVA [31] ActEV-SDL UF-Full and places second in VI-
RAT TRECVID ActEV 2021 challenge.

2. Related Works

Spatio-Temporal Activity Localization: The task of rec-
ognizing and localizing actions across frames in videos is
termed as spatio-temporal activity localization. Primitive
works took inspiration from images and 2D models and ex-
tended such approaches to frames. With the introduction
of 3D convolutions, most of the works shifted from 2D-
CNN backbones [32–34] to 3D-CNN [35–37]. The main
limitation of the prior works is that they have been trained
and tested mostly on trimmed datasets such as UCF101-
24 [38], JHMDB-21 [22] or AVA [19]. In the real-world,
we deal with untrimmed videos. In the literature, only a
few large-scale datasets have been created to tackle this
problem [39–41]. ActEV UF-Full and TrecVID utilize the
MEVA dataset and VIRAT [42] datasets respectively to
develop more works on untrimmed videos for the spatio-
temporal localization task. What makes these datasets chal-
lenging, is the average length of videos, which is 20 to 30
times that of previously proposed datasets. The mains prob-
lem solved on untrimmed datasets is to approximate where
the activity is happening in the temporal dimension and de-
tect the type of action being localized. Also, the solutions
are not always real-time, which is a critical aspect for secu-
rity surveillance videos. In our work, we develop a real-time
spatio-temporal localization framework to detect actions in
these long untrimmed videos.

Post-processing: In general, raw output of object de-
tection algorithm can’t be used as a finalized localization
map. It contains a lot of false positives indicating multi-
ple instances of a single object. These multiple instances
needs to be suppressed to generate a single instance per ob-
ject detected. There have been works [43–45] to tackle this
issue utilizing Non-Maximum threshold in parallel to ob-
ject detection approaches. T-CNN [46] imposes high con-
fidence score based on contextual information. [43], [44]
and [45] uses temporal overlap scores of bounding box
across frames. This approaches are mostly limited to Im-
ageNetVID [47] dataset. Since, most of the datasets are
trimmed, the problem of false alarms have mostly been
looked over spatially across frames. On the other hand, in
an untrimmed video, multiple actions have an abrupt start-
ing and ending time. Thus, we extend these approaches to
spatio-temporal dimension. We target multiple detection on
a frame (spatially), and, extend those detections across mul-
tiple frames (temporal) suppressing the false alarm detec-
tions. However, we use tracking ids of proposals instead of

object detections per frame. We also monitor the classifica-
tion score of detections over time. This procedure not only
helps us to link detections efficiently, it also suppresses the
contrastive fine-grained activities such as person standing
up versus person sitting down.

3. Method
An overview of our system is depicted in Figure 1. De-

tails of each component of our system is given in this sec-
tion.

3.1. Tracklet Generation

For tracklet generation, we first detect actors (per-
son and vehicle) in the frames of a clip using YOLOv5
object detector [48]. YOLOv5 is an optimized imple-
mentation of YOLO [49] single stage object detec-
tion framework using combination of universal features
like Weighted-Residual-Connections (WRC), Cross-Stage-
Partial-connections (CSP), Cross mini-Batch Normaliza-
tion (CmBN), Self-adversarial-training (SAT) and Mish-
activation with Mosaic data augmentation, DropBlock regu-
larization, and CIoU loss. The detected regions are provided
to mixture of gaussian (MoG) background subtractor to re-
move relatively static objects. The filtered detected actor
bounding boxes are joined based on a simple IoU based cri-
terion using SORT tracker [50]. Each tracklet coordinates
are stored in the memory with an object id which is carried
forward to the next trimmed clip to track an object through
different clips.

3.2. Activity Classification

After getting the tracklet from the tracker, it is downsam-
pled to a fixed size and sent to the action classifier.

3.2.1 Baseline Action Classification

Since multiple actions can be present at a time for an actor
tracklet, we formulate our baseline action classification ap-
proach as multi-label classification problem with each pre-
diction independent of each other. To train the baseline ac-
tion classifier, input tubelets are extracted directly from the
ground-truth annotations. Apart from action tubelets, we
also provide background tubelets (i.e. no spatio-temporal
overlap with the ground-truth actions) to the action classi-
fier which results in a total of C +1 classes, where C is the
number of activities present in the annotations. We utilize
various 3D-CNN backbone to get spatio-temporal features
and apply a linear classification layer followed by sigmoid
activation function. The baseline classifier is trained using
the BCE loss as shown in Equation 1.

LBCE(y, ŷ) = −
1

N

N∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] , (1)
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Figure 1: Schematic Diagram for UCF DIVA system: Firstly, an untrimmed video is divided into fixed temporal sized clips,
which are then passed to the object detector to detect the actors frame-wise. The actor bounding boxes in different frames of
the clip are then joined using a tracker to get tracklets. The action classifier predicts actions classes on each tracklet, which
are then post-processed through the proposed post-processing algorithm.

where N is batchsize, yi ∈ {0, 1} is the target label , ŷi
∈ [0, 1] is predicted output.

3.2.2 Adapting the baseline for the generated tracklets

The object detector in the inference pipeline gets a large
number of actors which are not participating in any action;
this results in increased number of false positives. This
problem arises because the action classifier is not trained
on any actor-centric background tubes from the ground-
truth. With this motivation, we train the action classifier
with the tracklets extracted from YOLO object detector and
action labels built from the spatio-temporal overlap with the
ground-truth. The schematic of the baseline adaptation for
the generated tracklets is shown in Figure 2 .

3.2.3 Class balanced training

The MEVA dataset and VIRAT dataset have a large class-
imbalance due to inherent nature of actions. For example,
talking is more common action than stealing. The vanilla
BCE loss of Equation 1 provides equal weight to each ac-
tivity class regardless of the number of samples. The tail-
classes have 0.001× sample size of the head class, which
results in low performance in the tail classes compared to
the head classes. In order to handle the class-imbalance we
opt of recent multi-class re-weighting scheme PLM [51].

The method balances the positive to negative ratio for each
class by randomly masking the training labels in the loss
computation.

3.2.4 Learning multi-label correlations

Equation 1 treats each action class independently which
fails in exploiting the inherent cooccurance of the multi-
ple action classes. For example, talking and standing heav-
ily cooccur in the VIRAT dataset. In order to exploit the
class correlations we use Log Sum Exp Pairwise (LSEP)
loss [52], which is a ranking type of loss introduced as a
baseline solution to learn the multi-label actions dependen-
cies in Multi-Moments in Time dataset [53]. The LSEP loss
is modified in a way to ignore loss computation for the ac-
tivity instances having ambiguous spatio-temporal overlap
with the ground-truth annotations. The original implemen-
tation of the LSEP loss is based on the BCE loss, in our use
case we implemented the LSEP loss on the foundation of
PLM loss to handle the class-imbalance problem as well.

3.2.5 Knowledge Distillation

Hinton et al. [54] proposed a technique to pass over the
“dark knowledge” learned by a neural network to another
network of different capacity. This Knowledge Distillation
method can be used for model compression and learning
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Figure 2: Action classifier training from tracklets obtained using object detector and tracker

Figure 3: Distillation from heavy backbone

multi-label action dependencies. We use knowledge distil-
lation to improve the compute efficiency of the system in
2 ways: (1) higher capacity, compute intensive networks
are distilled into lower capacity, lower compute networks
(Figure 3) , and (2) ensembles of distilled networks re-
quire fewer models to achieve similar performance. For the
knowledge distillation training setup we use L2-loss as the
distillation loss from distance between teacher and students
predictions. More details on model selection and computa-
tion savings is described in Section 5.4.

3.3. Post Processing

The first part of our post-processing algorithm is to use
a Tracklet Merge, Action Split (TMAS) algorithm, which
turns class-wise tracklet predictions into action tubes. This
is followed by Non-Maximum Suppression (NMS).

3.3.1 Tracklet Merge

The first task in post processing is to merge consecutive
tracklets with the same object id as determined by the SORT
tracker. These merged tracklets form “actor tracks”, so
termed because the object detected by the YOLO model is
a physical object, while we are concerned with the activity

in which the actor engages. Because the tracklets are gen-
erated using a sliding window, the score for a given tracklet
is given to the first half of the frames covered by the corre-
sponding sliding window.

3.3.2 Action Split

Once actor tracks have been obtained, we traverse each ac-
tor track, applying a sliding-window average to each class.
Then, for each frame, if the hard negative class exceeds the
0.8 background threshold, we discard all predictions of the
actor track at that time. Otherwise, we create “action tubes”
from each class that exceeds the 0.05 foreground threshold
at a given time. Two class-wise scores of the same class, A,
on the same actor track (but at different times) are contained
in the same action tube if and only if all consecutive frames
between them obtain a class score for A over the foreground
threshold, and a hard negative score below the background
threshold. If two predictions are not on the same actor track,
or not of the same class, they will never be on the same ac-
tion tube. A diagram of the full TMAS algorithm is given
in Figure 1.

3.3.3 NMS Deduplication

The object detection system faces an issues of overlapping
actor tracks as shown in Figure 4, in addition to multi-actor
actions. Both of these issues can cause multiple actor tracks
to include the same action.

To solve this problem, we perform class-wise Non-
Maximum Suppression (NMS) using an IoU threshold to
remove many of the duplicates. This is done for each frame
and each class. To perform NMS for a given frame and
given class, we first make a list of all action-tube bounding
boxes in that frame of the given class. Then, we remove
from that list, the bounding box with the highest class con-
fidence, and additionally remove all bounding boxes with
sufficient IoU overlap. The bounding boxes removed be-
cause of IoU overlap are removed from their correspond-
ing tubes entirely. This is repeated until the original list is
empty. If a frame in the middle of an action tube is removed,
all frames after the removed frame are moved to a new ac-
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Figure 4: Example of duplicate instance in the predictions.
Green boxes show the square form of the detected objects.
In the red box we have a bigger tube (left) covering pur-
chasing and reading activity, however, the overlapping tube
on the right outputs reading activity at the same time, which
creates a false alarm for reading activity.

tion track. Otherwise, the frame is at the beginning or end,
and it is removed with no extra steps.

4. Experiments

4.1. Implementation Details

Dataset: The videos we use are taken at 30fps, and we
consider only every other frame by using a skip rate of 2
(so 16 fps effective) everywhere except as noted in train-
ing. ActEV SDL21 contains the UF116hr-R13 subset
of MEVA videos. TRECVID-2021 ActEV data contains
VIRAT videos with split provided on https://actev.
nist.gov/trecvid21#tab_data

Tracklet generation: We generate bounding boxes every
8th frame and use a YOLOv5x model pretrained on MS-
COCO [55] dataset. SORT tracker is used with a memory
of 1 detection instance i.e. 8 frames with an IoU threshold
of 0.25.

Action Classification: The cropped tracklet is linearly
down-sampled to a 16×112×112 fixed size as an input the
action classifier. All action classifiers are pretrained on
Kinetics-400 [56] dataset and finetuned using a base learn-
ing rate of 1e-4 with Adam optimizer. A cosine annealing
learning rate is used with a linear warm-up upto 5 epochs.

4.2. System Evaluation

Firstly, we explain the performance measurement for the
evaluation protocols and then we show results on ActEV-
SDL 21 [57] and TRECVID-21 ActEV evaluation proto-
cols.

4.2.1 Performance Metrics

In the evaluation protocol, we consider the relative process-
ing time, Pmiss@Xtfa, and nAUDC@Xtfa. The relative
processing time is computed as the time required to process
a video on four NVIDIA 1080Ti’s divided by the video’s
running time. Pmiss is the ratio of activities where the sys-
tem did not detect the activity for at least one second. TFA
(tfa) refers to the time-based false alarm rate, i.e. the por-
tion of the time that the system detected an activity when,
in fact, there was none. A detection is determined as being
”present” or not based on a confidence threshold, so Pmiss
and tfa are functions of this confidence threshold, c.

Pmiss = Pmiss(c) (2)

tfa = tfa(c) (3)

To obtain a Pmiss@0.02tfa score, we calculate the Pmiss
and tfa at multiple confidences until a 0.02 tfa is obtained,
and take the corresponding Pmiss score. Notice that tfa
and Pmiss are both monotone in the confidence threshold.
Therefore Pmiss as a function of tfa is well defined, except
for possible vertical jumps (in which case, we use lower
Pmiss).

Pmiss@0.02tfa = Pmiss(tfa−1(0.02)) (4)

The above process of checking various confidence thresh-
olds gives a relationship between Pmiss and tfa. We can
compute the nAUDC@Xtfa as

nAUDC@Xtfa =

∫ X

0
Pmiss(tfa−1(f))df (5)

where we are integrating over the false alarm rate.

4.3. Comparison with other teams

We evaluate our system on 2 protocols: ActEV-SDL Un-
known Facility Full set and TRECVID 2021 ActEV pro-
tocol. As shown in Table 1 our system is the best per-
forming system among other teams in terms of mean pmiss
and second best system in nAUDC@0.2tfa metric. We
use pmiss@0.02tfa for ranking in Table 1, as it is the pri-
mary performance measurement for DIVA program. Table
2 shows our system gets second best performance among
all participants of TRECVID 2021.
Trade-off between processing time and performance for
different teams is shown in Fig. 6. Our system achieves the
best trade-off among other teams.
Generalization from Known to Unknown Facility cam-
era is shown in Fig. 5. We report the difference between
the best systems of known and unknown facility for each
team to evaluate the generalization capability. Our system
gets consistently lower performance drop across activities,
which shows superiority of our system in terms of general-
ization compared to other teams.
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Rank Team Name sub id mean
p miss@0.01tfa

mean
p miss@0.02tfa

mean
nAUDC@0.2tfa

relative
processing time

1 UCF 25908 0.62 0.5372 0.3518 0.6840
2 CMU-DIVA 26095 0.65 0.5438 0.3330 0.7760
3 IBM-Purdue 26113 0.65 0.5531 0.3533 0.5750
4 UMD 26619 0.68 0.5938 0.3898 0.5150
5 UMD-Columbia 25031 0.68 0.5975 0.4002 0.5200
6 UMCMU 25576 0.75 0.6861 0.4922 0.6140
7 Purdue 25782 0.80 0.7294 0.4942 0.2390
8 MINDS JHU 24666 0.84 0.7791 0.6343 0.8980

Table 1: ActEV-SDL Unknown Facility Full-set leaderboard. Best and second best scores are highlighted.

Rank team name team abbrev nAUDC@tfa0.2 p miss@tfa0.15

1 BUPT-MCPRL BUPT-MC 26542 0.4085 0.3249
2 UCF UCF 26546 0.4306 0.3408
3 INF INF 26532 0.4444 0.3508
4 M4D 2021 M4D 202 26467 0.8466 0.7941
5 TokyoTech AIST TOKYOTE 26508 0.8516 0.8197
6 Team UEC TEAMUE 26530 0.9640 0.9503

Table 2: Official results for TRECVID 2021 ActEV challenge. Best and second best scores are highlighted.

4.4. Progress over the time

The overall progress of our system over time is sum-
marized in Table 3. Our system’s final performance on
ActEV’s Sequestered Data Leader board (SDL) Unknown
Facility micro set is summarized in Table 1. Overall, we
have improved over 11% in nAUDC and 8% in Pmiss
compare to GabriellaV1 system [6]. Qualitative result
videos can be found on our project webpage. 1

5. Ablations

5.1. Activity recall

An ideal action localization model is expected to have
100% recall. To evaluate the performance of actor tracklets,
we use activity recall at different spatio-temporal overlap
of the ground-truth annotation as shown in Figure 7. From
bounding box visualization of the output, we observe that
80% spatio-temporal overlap with the ground-truth annota-
tion is the best point for recall measurement. GabriellaV1
system using I3D based localization model [6] gets an av-
erage recall of 0.65 at 80% overlap whereas our proposed
method gets recall of 0.87, which is 22% higher than that
of [6].

1www.crcv.ucf.edu/research/projects/
gabriellav2/

5.2. Action classification: Architectures

We use various 3D-CNN architectures as backbone of
action classifier task. The performance of each architecture
with the baseline training scheme is shown in Table 4. To
evaluate the performance of action classification task, we
use macro average metrics like macro-mAP, macro-recall,
and background-precision on the validation set. We also
report number of parameter and inference cost for a single
batch to measure the compute efficiency. We observe that
R2+1D-34 layer architecture performs the best in all met-
rics, however, at high inference computation cost.

5.3. Action classification: Training losses

We train the action classifier using different train-
ing schemes using different losses like BCE, Soft-
max+CrossEntropy, PLM [51], LSEP [52], LSEP based
on PLM, Multilabel Margin Loss and BCE loss using la-
bel smoothing. All of the experiments are performed on
R2+1D-34 layer model, shown in Table 5. Our first obser-
vation is that training with Softmax activation with a high
temperature leads to lower recall(-10%) and higher back-
ground precision(+20%), which provides us a very different
model than the baseline and provides diversity in ensemble.
Secondly, LSEP based on PLM loss works best among all
training losses, which shows importance of resolving class-
imbalance and learning class-correlations in activity detec-
tion problem. Thirdly, introducing label smoothing greatly
improves recall(+5%) of the baseline.
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Figure 5: Activity-wise generalization from Known Facility (KF) to Unknown Facility (UF) camera of MEVA SDL test
set. Lower value indicates better generalization. Our system gets the minimum drop in performance while generalizing from
known to unknown facility camera in comparison of the other teams.

Date System Details nAUDC@0.2tfa PMiss@0.02tfa

2021-04-30 GabriellaV1 system [6] 0.497 0.647
2021-05-03 New pipeline(GabriellaV2) 0.5198 ↓ 2.28% 0.6693 ↓ 2.25%
2021-05-11 Ensemble (Yolo+ ResNet18 and 34) 0.4941 ↑ 0.29% 0.6411 ↑ 0.59%
2021-05-13 Memory Optimization (Mixed Precision) 0.4775 ↑ 1.95% 0.6396 ↑ 0.74%

Bigger Classifier Ensemble
2021-05-14 Ensemble (include PIP dataset) 0.4684 ↑ 2.86% 0.6438 ↑ 0.32%
2021-05-16 Spatio-Temporal Deduplication 0.4458 ↑ 5.12% 0.6010 ↑ 4.60%
2021-06-26 Post-Processing tuning: Sigmoid threshold 0.3973 ↑ 9.97% 0.6041 ↑ 4.29%

and Deduplication threshold
2021-07-23 MEVA drop11 annotations 0.3791 ↑ 11.79% 0.5760 ↑ 7.10%
2021-07-31 Knowledge Distillation 0.3869 ↑ 11.01% 0.5634 ↑ 8.36%

Table 3: Progress of our system over time on SDL-UF micro leaderboard ↑% or ↓% indicates absolute change with respect
to GabriellaV1 baseline
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Figure 6: Trade-off between pmiss@0.01tfa vs Relative
processing time for UF-Full leaderboard.

5.4. Knowledge Distillation

Distillation from heavier backbone teacher As seen from
Table 4, we observe that the R2+1D-34 performs best how-

ever with the higher computation cost, whereas irCSN-152
model performs 8% worse at 2× lower computation cost.
The first goal of the knowledge distillation is to distill the
knowledge of higher capacity R2+1D-34 layer model to the
lighter irCSN-152 model. The results of such knowledge
distillation scheme is shown in Table 7. The distilled stu-
dent model not only performs at lower computation cost
but also able to outperform the teacher performance. Our
conjecture is that, this is due to the fact of distillation loss
(L2-loss) helps in learning multi-label class correlations.

Distillation from multiple teachers Our system can fit 5
action classifiers which were differently trained eg. training
on BCE loss, PLM loss, LSEP loss, or training on different
set of annotations like Kitware-UMD or PIP dataset. We
want to distill knowledge of all these 5 classifiers into a sin-
gle classifier to reduce ensemble cost, and this saved com-
putation budget can be used to accommodate include more
classifiers. The results of learning from multiple teachers
are shown in Table 7. The student model improves 4%
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Architecture mAP Recall BG-Prec Params(M) Inf Cost (MB)

R2+1D-18 [58] 46.2 0.826 0.601 31.5 809.7
R2+1D-34 [59] 51.1 0.879 0.701 63.5 1319.6
SlowOnly- R3D50 [60] 48.9 0.801 0.695 32.5 756.6
ir-CSN152 [61] 44.4 0.841 0.602 29.0 613.7
Wide-ResNet-50 [1] 44.1 0.759 0.417 157.5 567.5

Table 4: Action classification performance for various 3D-CNN backbones

Figure 7: Activity Recall at different %overlap of the
groundtruth. Red curve shows proposed method whereas
the blue curve shows the performance of localization model
of GabriellaV1 system [6]

Training Loss mAP Recall BG-Prec

Binary Cross Entropy 51.1 0.879 0.701
Softmax + Cross Entropy 50.9 0.762 0.901
PLM + LSEP 52.0 0.911 0.673
LSEP 51.4 0.884 0.679
PLM 51.2 0.852 0.725
Multilabel Margin 49.7 0.853 0.601
Label Smoothing 51.7 0.922 0.751

Table 5: Action classification performance for various train-
ing losses

Model mAP Recall BG-Prec

Teacher R2+1D-34 51.1 0.879 0.701
Student CSN-152 44.4 0.841 0.602
Student CSN-152 (distilled) 51.6 0.883 0.760

Table 6: Results of knowledge distillation from higher to
lower capacity (lighter) model

from its baseline, however, it gets slightly worse (1%) per-

Model mAP Recall BG-Prec

Teacher Ensemble 56.4 0.943 0.861
Student 51.1 0.879 0.701
Student (distilled) 55.3 (+4.2%) 0.929 0.887

Table 7: Results of knowledge distillation from multiple
teachers

formance compared to ensemble of 5 classifiers. We believe
it can be improved by changing the weightage of L2-loss
and BCE loss, which is equal in the existing setup.

6. Conclusion
In this paper, we propose GabriellaV2, a real-time sys-

tem to detect activities from untrimmed surveillance videos.
Our system is based on tracklet generation using state-of-
the-art object detector with tracker, which is followed by
tracklet action classification and post-processing units. We
solve various aspects of the challenging action classifica-
tion problem such as multi-label class-imbalance training
using PLM method and learning multi-label action corre-
lations using LSEP loss. We also demonstrate the impor-
tance of knowledge distillation in improving the computa-
tion efficiency of our system. We show state-of-the-art per-
formance on ActEV-SDL UF-full dataset and second place
in TRECVID 2021 ActEV challenge.
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