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Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD, USA

{emavrou1@, rvidal@}jhu.edu, bindalprashast@gmail.com

Abstract

We address the problem of detecting human and vehicle
activities in long, untrimmed surveillance videos that cap-
ture a large field of view. Most existing activity detection
approaches are designed for recognizing atomic human ac-
tions performed in the foreground. Therefore, they are not
suitable for detecting activities in extended videos, which
contain multiple actors performing co-occurring, complex
activities with extreme spatio-temporal scale variations. In
this paper, we propose a modular, actor-centric framework
for real-time activity detection in extended videos. In par-
ticular, we decompose an extended video into a collection
of smaller actor-centric tubelets of interest. Each tubelet
is a video sub-volume associated with an actor and in-
cludes adaptive visual context for recognizing the actor’s
activities. Once these tubelets are extracted via an object-
detection-based approach, we are able to detect activities
in each tubelet by focusing on the actor situated in its fore-
ground. To accurately detect the activities of a tubelet’s
actor we take into account the interactions with other de-
tected actors and objects within the tubelet. We encode
such interactions with a dynamic visual spatio-temporal
graph and process it with a Graph Neural Network that
yields context-aware actor representations. We validate our
activity detection framework on the MEVA (Multiview Ex-
tended Video with Activities) dataset and the ActEV 2021
Sequestered Data Leaderboard and demonstrate its effec-
tiveness in terms of speed and performance.

1. Introduction
As the amount of unconstrained video data gathered

daily by surveillance cameras increases, the need for au-
tomatic systems that can detect events of interest in secu-
rity videos is also growing. The majority of such security
videos are extended in time and space [31, 8], i.e., they are
long untrimmed videos that capture multiple actors of var-
ious types (people, vehicles) performing multiple activities
in various regions of indoor or outdoor scenes.
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Figure 1: Overview of our proposed actor-centric frame-
work for complex activity detection in extended videos. It
consists of two main components: (a) actor-centric tubelet
generation and (b) activity detection per tubelet. The first
component generates spatio-temporal tubelets of interest,
which are associated with a single primary actor (person
or vehicle) and capture all the relevant spatio-temporal vi-
sual context (scene cues, interacting objects, etc.). The sec-
ond component predicts the activities performed by an ac-
tor over time based on local motion cues (optical flow) and
spatio-temporal actor-object interactions. Details for their
implementation are provided in Sec. 3.

whole video frames and large datasets with rich human an-
notations, modern video understanding systems are capable
of accurately detecting hundreds of human action classes in
benchmark datasets [6, 38]. However, many of these pop-
ular datasets hide the inherent complexity of action recog-
nition, by either focusing on trimmed videos with a single
actor performing a single activity [38] or videos capturing
activities performed by a few actors [20, 17, 15], occupy-
ing mostly foreground pixels. They also contain only ac-
tivities performed by humans. The performance of state-
of-the-art frameworks is indeed shown to degrade as (a)
the number of actors in a scene increases [45], (b) their
scale decreases [45], and (c) the complexity of activities in-
creases [15]. Moreover, most activity recognition methods
are not suitable for processing extended videos in real time.
These limitations affect the ability to deploy these systems
for real-time activity detection in extended videos contain-
ing a large number of actors (e.g., an average of around 30
actors) of varying types and scales, including tiny actors,

172



performing multiple activities of varying durations [8].

Existing approaches for activity detection in extended
videos narrow down the visual search space by identifying
video sub-volumes, such as cuboids [14], action tubes [33],
or actor tracks [36], that might contain activities. A cuboid
is a sequence of bounding boxes with the same spatial co-
ordinates, thus it can be used to crop a valid sub-video and
can be fed as input to modern action recognition models.
However, the rigid cuboid shape does not necessarily cap-
ture the versatile nature of actions. In contrast, action tubes
are flexible spatio-temporal sub-volumes capturing relevant
spatial contextual cues, but they are typically very short and
fail to capture long-term temporal context. Actor tracks are
ideal for capturing such temporal context, but might be im-
practical for real-time activity detection in extended videos
for two reasons. First, in typical surveillance videos, such
as videos of crowded parking lots, there is a large num-
ber of person and vehicle tracks. It is infeasible to process
all these tracks under the real-time action recognition con-
straint. Second, it is not trivial to combine tracks in order to
obtain the relevant visual context for detecting various types
of activities, such as activities involving a single actor, in-
teraction between actors or actor-object interactions.

In this work, we propose an actor-centric framework
for real-time action detection of complex human and vehi-
cle activities of varying spatio-temporal scales in extended
surveillance videos. Our framework is composed of two
main modules: tubelet generation and temporal activity de-
tection per tubelet. First, we propose an object-detection-
based tubelet generation module that decomposes an ex-
tended video into a collection of action-agnostic actor-
centric tubelets of interest. Each actor-centric tubelet con-
sists of an actor tracklet and a context tubelet. The for-
mer is a sequence of bounding boxes of variable size that
contain the actor (human or vehicle), and the latter is a
sequence of bounding boxes of constant size that captures
adaptive, long-range spatio-temporal context for recogniz-
ing the activities of that actor. Each actor-centric tubelet
is then passed to the second module, which detects the
activities performed by an actor over time based on lo-
cal motion cues (optical flow) and spatio-temporal actor-
object interactions. A popular approach for actor-centric
action detection applies action classifiers on top of local
actor features pooled from an intermediate feature map of
a 3D CNN model [15, 10]. However, these local actor
features do not capture the rich spatio-temporal interac-
tions of the actor with other actors and objects within the
tubelet. We model these interactions with a visual spatio-
temporal graph, whose nodes correspond to detected actors
and objects in the tubelet and whose edges encode differ-
ent types of potential interactions, and obtain context-aware
actor features by applying the recently proposed Visual ST-
MPNN [28] on this heterogeneous spatio-temporal graph.

Our actor-centric activity detection module is trained only
with actor-level supervision, without requiring annotations
of relevant objects. Finally, activity detections from all
tubelets are aggregated to generate the output set of activity
detections for the input video.

In summary, the contributions of this work are three-fold.
First, we introduce an actor-centric framework for real-time
activity detection in extended security videos. Second, we
propose an object-detection-based approach for generating
action-agnostic actor-centric tubelets of interest that capture
an adaptive spatio-temporal context for recognizing the ac-
tivities of the corresponding actor. This module helps us
localize activities in space on an actor-level and also re-
duces the number of regions that need to be processed in
order to detect activities, reducing our overall processing
time. Third, we encode spatio-temporal actor-object inter-
actions within each optical flow tubelet with a visual spatio-
temporal graph and leverage state-of-the-art Graph Neural
Networks [28] for obtaining context-aware, discriminative
actor representations. We evaluate the proposed approach
on the MEVA (Multiview Extended Video with Activities)
dataset [8] and the ActEV21 Sequestered Data Leaderboard
and obtain competitive activity detection results compared
to published methods in terms of both speed and perfor-
mance.

2. Related Work

Action Detection in Extended Videos. Most prior work
on action detection focuses on long, untrimmed videos with
activities performed by a few adult actors. Approaches
that temporally detect activities by processing whole frames
with convolutional networks, such as the RC3D [46], with-
out determining spatio-temporal regions that might contain
activities, have been shown not to be able to handle ex-
tended videos [8]. Thus, we focus our brief review of re-
lated work on approaches that first identify candidate spa-
tial locations of activities. Activities are either localized
per frame by leveraging person detections [10, 40, 45],
or are localized via spatio-temporal volumes, like short
tubes [12, 34, 37, 23, 18] or tracks [7]. However, these ap-
proaches become impractical for detecting activities in ex-
tended surveillance videos, not only because they are not
able to detect vehicle activities, but also because they will
typically result in a large number of proposals, hurting run-
time performance.

Detecting complex activities in extended, multi-person
videos [31] is a more challenging and computationally de-
manding task, which requires narrowing down the visual
search space by identifying regions that might contain ac-
tivities. Our proposed approach, that leverages actor track-
lets to spatially localize activities, is inspired by early work
which tracked moving objects [21, 41] obtained by object
detectors [36] or background subtraction [39, 50], and rep-
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resented those tracks with hand-crafted, global representa-
tions. However, we lift simplifying assumptions, such as ac-
tivities being only human-vehicle interactions and a single
activity happening in each region at a time [36], or videos
being temporally pre-segmented [1]. Furthermore, we com-
bine actor tracklets with tubelets [22], which allows us to
capture adaptive, dynamic spatio-temporal context. Our
work is also complementary to recent approaches that em-
ploy global deep representations of cuboids [14, 13, 26] or
short tubes [33], and offers additional benefits, e.g., model-
ing of spatio-temporal interactions and long-term temporal
context, as well as localization of the actors.
Interaction-based Region Representation Learning.
Modeling spatio-temporal interactions between actors and
objects has a long history in video understanding [19, 29,
4, 32]. However, most of prior work has focused on mod-
eling interactions between regions with undirected graphi-
cal models in a discrete label space [49, 43, 30], where the
regions were represented with hand-crafted features. In-
stead, the focus of our work is to leverage such interac-
tions for learning context-aware actor representations (con-
tinuous features). Our activity detection model builds upon
recently developed deep architectures called Graph Neural
Networks (GNNs) [9], which enable representation learn-
ing on graph-structured data. Although GNNs have recently
been applied to video understanding [42, 40, 11, 48, 2], they
have not been explored for activity detection in extended
videos. Our work adapts the Visual ST-MPNN [28], a GNN
tailored to representation learning on heterogeneous spatio-
temporal graphs, to the task of actor-centric activity detec-
tion on tubelets and replaces appearance actor/object fea-
tures with local motion features.

3. Actor-Centric Activity Detection
This section presents our proposed actor-centric frame-

work for human and vehicle activity detection in extended
videos. The overview of our framework is illustrated in Fig-
ure 1. An extended video is decomposed into basic units,
called actor-centric tubelets of interest. Each tubelet is asso-
ciated with an actor tracklet and ideally captures all the rele-
vant spatio-temporal visual context (scene cues, interacting
objects, etc.) for recognizing the activities of the actor. For
the purposes of activity detection in extended surveillance
videos, we consider humans and vehicles as actors, since
the activities of interest include atomic human activities
(e.g., person closes facility door), group human activities
(e.g., person embraces person), human-vehicle interactions
(e.g., person closes trunk) and atomic vehicle activities
(e.g., vehicle turning left). Our action recognition module
encodes the rich spatio-temporal visual context in spatio-
temporal actor-object visual graphs and learns context-
aware actor representations with the Spatio-Temporal Mes-
sage Passing Neural Network (ST-MPNN). In the follow-

ing, we first define the actor-centric tubelet. Then, we de-
scribe in details our approach for (a) actor-centric tubelet
generation and (b) supervised temporal multi-label action
recognition per tubelet. Finally, we discuss how to post-
process the time series of action scores per tubelet in order
to output final action detections in the input extended video.

3.1. Actor-Centric Tubelets of Interest

An actor-centric tubelet of interest is defined as a tuple of
two bounding box sequences of the same length: (a) an ac-
tor tracklet, i.e. a sequence of actor bounding boxes linked
by an actor tracker, and (b) a context tubelet, i.e. a sequence
of bounding boxes of constant height and width that contain
the actor in addition to relevant spatial context. Formally,
given an extended video with spatio-temporal dimensions
(H,W, T ), each actor-centric tubelet, denoted τi, is de-
scribed as: τi = (tis, t

i
e,Bia,Bic), where tis is the start frame,

tie is the end frame, Bia is the actor tracklet, and Bic is the
context tubelet. Both actor tracklet and context tubelet are
sequences of bounding boxes of length L = te−ts+1 ≤ T
denoted as Ba = [(xa0 , y

a
0 , w

a
0 , h

a
0), . . . , (x

a
L, y

a
L, w

a
L, h

a
L)]

and Bc = [(xc0, y
c
0, w

c, hc), . . . , (xcL, y
c
L, w

c, hc)], respec-
tively, such that for each frame t the actor bounding box is
included in the context bounding box and the context boxes
have constant height and width, i.e.:

0 ≤ xct ≤ xat < xat + wat ≤ xct + wc ≤W − 1 (1a)
0 ≤ yct ≤ yat < yat + hat ≤ yct + hc ≤ H − 1 (1b)

The actor-centric tubelet of interest has the following desir-
able properties: (1) it captures long-term temporal context
of the actor’s actions, since it is associated with an actor
tracklet of arbitrary length, (2) it includes long-range spatial
context, which complements the actor’s appearance for rec-
ognizing the actor’s activities (since each tubelet can have a
different height and width), (3) it defines a valid sub-video
with constant height and width, which can be fed to any
modern backbone deep neural network for feature extrac-
tion, and (4) it can be annotated with unambiguous ground-
truth activities at each timestep (given actor-level annota-
tions). We should emphasize that our tubelet is not an ac-
tion proposal, since it can be associated with zero or mul-
tiple actor activities. Rather, it is a sub-volume of interest
that is likely to contain activities and is focused on a single
actor, similar to videos in most benchmark datasets.

3.1.1 Object-detection-based tubelet generation

Our actor-centric tubelet generation method filters out
tracks that are not likely to contain an activity (such as
parked vehicles) or are secondary to other actor tracks (such
as vehicles involved in person-vehicle interactions). It also
determines an adaptive spatial extent for each actor-centric
tubelet based on interactions. It achieves this by relying
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Figure 2: Types of regions of interest with their associated primary actors for sample frames from the VIRAT [31] dataset.
For example, regions of Type 5 correspond to recently active vehicles, i.e., vehicles that were (will be) moving or were (will
be) associated with an actor detection within a look-back (look-ahead) window of K frames.

only on object detections without requiring training with
action spatio-temporal annotations. In particular, it consists
of four stages: object detection, actor tracking, actor-centric
region of interest extraction, and tubelet generation.

Object Detection. We initialize our tubelet generation
pipeline by detecting objects per frame with the Faster R-
CNN [16] off-the-shelf object detector, which was trained
on the external MSCOCO [25] image dataset.

Actor Tracking. We track detections from each actor
class (person or vehicle) using the SORT [3] off-the-shelf
tracker, which predicts a trajectory using a Kalman filter
and matches tracks to detections using a simple IoU met-
ric. Tracking not only provides the basis for linking regions
of interest across time to generate actor-centric tubelets, but
also helps fill in missing object detections.

Actor-Centric Region of Interest Extraction. The goal of
this step is to (a) find actors at each frame that are likely to
be involved in activities and (b) identify other actors they
might be interacting with. This information will be used to
filter out track segments that are not likely to contain ac-
tivities, such as static vehicles without any people in their
vicinity, thus reducing the number of regions fed to our ac-
tivity detection module with minimal impact on the recall. It
will also aid in determining the adaptive, spatial context that
is relevant for recognizing the activities of each actor. We
use a rule-based approach to find Regions of Interest (ROIs)
per frame, where each region corresponds to one out of 5
potential types of ROIs and is associated with a primary ac-
tor detection. Such regions are automatically extracted from
actor detections by associating them with hand-crafted rules
based on scale-normalized distance thresholds. An intuitive
illustration of the five types of actor-centric RoIs and their

corresponding primary actors, as well as the rules used for
their construction, is shown in Figure 2.Note that an actor
detection can be the primary actor of zero, one or multiple
actor-centric RoIs. For example, a person can be associated
with multiple nearby people and vehicles.

Tubelet Generation. Given the actor-centric RoIs extracted
per frame, we are now ready to describe the generation of
actor-centric tubelets. First, we construct a context bound-
ing box for each actor detection that is the primary actor
of at least one actor-centric RoI. This context box is con-
structed by computing the union of all RoIs which have
this actor as their primary actor. Leveraging the extracted
actor tracks, context bounding boxes associated with the
same primary actor instance are linked over time to con-
struct an actor-centric tubelet of interest, with the sequence
of context boxes generating the context tubelet Bc, and the
sequence of primary actor bounding boxes generating the
actor tracklet Ba. We would like to emphasize that in con-
trast to track-based methods, our actor-centric tubelets do
not necessarily include a whole actor track, but only track
segments that contain actor detections that are primary ac-
tors of RoIs. For example, instead of predicting activities
for each timestep of a tracked vehicle, we only predict ac-
tivities for the temporal segments that this vehicle is either
moving or people are about to enter/exit it. Still, all detec-
tions of this vehicle can serve as context for other tubelets.

Context Tubelet Post-processing. The generated context
tubelets might have an irregular shape with sudden changes
in the size of the consecutive bounding boxes, e.g., because
the number of interacting actors varies with time or because
of errors in the association of actors due to occlusions. To
alleviate this issue, we enlarge each context bounding box
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of the tubelet so that they have the same height and width,
with its dimension being determined by the largest bound-
ing box of the tubelet. A final refinement step ensures
that the tubelet consists of a smoother sequence of context
bounding boxes. In particular, a Savitzky-Golay [35] filter
is used to estimate smoothed values of the bounding box
centers. Then, the top-left context bounding box coordi-
nates are updated accordingly without modifying the tubelet
dimensions.

3.2. Actor-Centric Activity Detection on Tubelet

Once an extended video is decomposed into a set of
actor-centric tubelets of interest, our system seeks to tem-
porally detect the activities performed by the actor of each
tubelet. Our proposed structured activity detection model
builds upon the Visual ST-MPNN [28]. It encodes spatio-
temporal interactions between actors and objects in a visual
graph and learns graph-structure-aware actor embeddings
that can be used to recognize activities.

Visual Spatio-temporal Graph. Let τ = (ts, te,Ba,Bc)
be an extracted tubelet with length L = ts − te + 1. We
represent it with a visual spatio-temporal, attributed graph
G = (V, E), which consists of a set V of actor nodes and
object nodes, and a set of edges E . Actor nodes corre-
spond to the bounding boxes of the primary actor tracklet
Ba of the tubelet, while object nodes correspond to other
object detections within the context tubelet Bc, including
other visible humans and vehicles. The graph is built by
adding directed, typed edges that connect nodes. In par-
ticular, an edge connecting node j to node i is associated
with an edge type εij . There are three possible edge types:
object-to-actor spatial (εij = 0) and actor-to-object spatial
(εij = 1) edges connect actor and object nodes in the same
frame, while actor-to-actor temporal (εij = 2) edges con-
nect actors across frames. We constrain temporal edges to
connect only nodes of the same type between consecutive
frames. All graph node attributes h

(0)
i are initialized with

ROI-pooled features from a feature map that is obtained by
passing a cropped optical flow tubelet through a flow I3D
network [6]. Similarly, edge attributes h

(0)
ij are initialized

with the relative spatial location of the connected nodes.

Graph-based Actor Representation Learning. Given the
input visual st-graph, the ST-MPNN iteratively refines the
local node and edge features with spatio-temporal con-
textual cues. Specifically, at each iteration r, the Visual
ST-MPNN: (1) computes scalar visual edge weights using
edge-type-specific attention mechanisms; (2) computes a
message m(r)

ij along each edge (i, j) using the attention-
based scalar edge weight, the features of the connected
nodes and the edge feature; (3) updates the feature of every
node by aggregating messages from incoming edges with
an update function U ; and (4) updates the feature of every
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Figure 3: Graph-based activity detection module for actor-
centric activity detection in a tubelet.

edge by using the message that was computed alongside it.
Importantly, the message passing functions, M(·), are pa-
rameterized with learnable weights Wεij that depend on the
edge type εij ,

m
(r)
ij =M(h

(r−1)
i ,h

(r−1)
j ,h

(r−1)
ij ;Wεij ) (2)

h
(r)
i = U(m

(r)
ij ,h

(r−1)
i ). (3)

More details about the implementation of the message pass-
ing and update functions can be found in the original pa-
per [28]. After R layers of the spatio-temporal MPNN (or
equivalentlyR rounds of node and edge updates), we obtain
refined, visual context-aware node and edge features.
Temporal Activity Detection. Let xt be the context-aware
node feature that corresponds to the tubelet’s primary actor
bounding box at time t. A linear classifier is applied on xt
to predict scores for C action classes at time t:

ỹt =Wclsxt + bcls ∈ RC , t = 1, ..., L, (4)

where Wcls ∈ RC×d and bcls ∈ RC are learnable param-
eters. Since an actor might be performing multiple activi-
ties at the same time, we treat the problem as a multi-label
per-frame action classification problem, passing scores ỹt
through a sigmoid activation function to yield final action
probabilities ŷt ∈ RC .

The output of the previous step is a sequence of proba-
bilities for each activity a ∈ {0, . . . , C−1} for each tubelet
timestep t. To obtain final temporal detections for activity
a within the tubelet, we need to convert the action scores
sequence to a set of temporal segments with start, end times
and associated confidence scores. To achieve this, we first
apply a median filter to smooth the action prediction proba-
bilities [ŷa0 , . . . , ŷ

a
L−1]. We then initialize activity detections
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at the local maxima of the smoothed action score time-series
[sa0 , . . . , s

a
L−1]. The temporal boundaries of an activity de-

tected at local maximum location tk, with score satk , are ex-
tended by including previous and future timesteps until their
action score falls below a relative threshold θ · satk , where
θ < 1 is a hyperparameter. In this way, we can detect ac-
tivities of arbitrary lengths and can handle several instances
of the same activity performed by the tubelet’s primary ac-
tor, such as consecutive turning left activities correspond-
ing to the same vehicle tracklet. We assign the maximum
action score of the timesteps included in each action detec-
tion as the detection’s confidence score. Our system’s out-
put consists of action detections that are aggregated from all
tubelets.
Training. Our actor-centric activity detection module is
trained with actor-level annotations associated with the pri-
mary actor of each tubelet. Given the ground-truth activity
annotations for the primary actor of a tubelet, the ST-MPNN
network is trained jointly with the action classifiers by using
a Weighted Binary Cross-Entropy (WBCE) loss per class:

LWBCE(y
a
t , ŷ

a
t ) = βay

a
t log ŷ

a
t +(1−yat ) log(1−ŷat ), (5)

where yat ∈ {0, 1} is the ground-truth label for timestep t
and action a, and ŷat ∈ [0, 1] is our model’s prediction. To
handle the class imbalance, we apply a weighting factor βa
to positive examples of each class a, which is determined
based on the inverse class frequency.

4. Experiments
4.1. Datasets

We validate our method on the MEVA dataset and the
ActEV 2021 Sequestered Data Leaderboard. The MEVA
dataset [8] consists of 5-minute videos capturing indoor
and outdoor scenes. There is an ongoing effort for anno-
tating MEVA videos with actor-level annotations of 37 ac-
tivity classes by Kitware and the community. We use Kit-
ware annotations for 784 of these videos for training our
activity detection module and 172 for constructing an in-
ternal validation set for our ablation studies. The ActEV
2021 SDL 1 consists of sequestered surveillance videos,
which are not publicly available. Evaluating a method on
this dataset requires submitting an activity recognition sys-
tem that is compatible with the ActEV Command Line In-
terface (CLI) protocol and temporally detects instances of
37 activites. The submitted system is then executed on test
servers provided by NIST and scores are reported on the
public leaderboard.

4.2. Metrics

The activity detection performance of our system is eval-
uated with the official metrics of the ActEV SDL eval-

1https://actev.nist.gov/sdl

uation: (a) the probability of missed detection at fixed
time-based false alarm per minute (Pmiss@0.02tfa), and
partial area under the Detection Error Tradeoff curve
(nAUDC@0.2tfa). These metrics are calculated by find-
ing correspondences between system activity detections and
ground-truth activity instances, where a ground-truth activ-
ity instance is considered to be missed if it does not overlap
with a system detection for at least one second. For achiev-
ing a good performance under these metrics, our system
needs to accurately detect activities, while at the same time
it needs to minimize the Time-based False Alarm (TFA),
which is the proportion of time the system detected an ac-
tivity when there was none. We used the official scorer 2

for evaluating the system on our MEVA validation set. It
computes metrics per video and we report their average.

4.3. Implementation Details

Tubelet generation. Our actor detections correspond to
Person and Vehicle (bicycle, car, motorcycle, bus, truck) ob-
ject detections with confidence score above 0.5. The SORT
tracker [3] is used to separately track people and vehicles.
Tracks are terminated after not being associated with an ac-
tor detection for 64 frames. Afterwards, regions of inter-
est are identified in each frame by associating actor detec-
tions with hand-crafted rules, which are based on thresholds
of scale-normalized distances: θpp = 6000, θpv = 5000,
θvv = 500, and an active vehicle look-ahead/look-back
window of 256 frames.

Activity Detection Module. For activity detection on each
tubelet, we first crop the tubelets from an optical flow rep-
resentation of the input extended video. Optical flow is ex-
tracted from resized and downsampled RGB frames with
the TVL1 algorithm following the same setup as in [13]. To
build the visual graph, we first apply an optical flow I3D
network [6], which was trained for action classification on
MEVA cuboids and shared by the authors of [13], on con-
secutive 2-second non-overlapping chunks of the input flow
tubelet. In this way, we obtain a feature map with a tem-
poral stride of 8 frames for each chunk. We then instan-
tiate the graph on top of the primary actor detections and
10 most confident object detections (with score above 0.1)
at the corresponding tubelet frames. Note that we store the
centre coordinates of all object detections for a frame of the
original extended video in a KD-tree data structure, which
enables efficient rectangle range queries. We can then effi-
ciently retrieve all object detections whose centre lies within
a tubelet bounding box at a given frame. The initial node
features for actors/objects are pooled from the Mixed 4f 3D
feature map of the flow I3D for each detected region using
RoIAlign [16]. These features are refined to include con-
text by performing 3 rounds of node/edge refinement with

2https://github.com/usnistgov/ActEV_Scorer
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the Visual ST-MPNN [28], resulting in context-aware 512-
dimensional embeddings of actor regions that are fed to ac-
tion classifiers. The action detection threshold θ is set to 0.8
and median window size is 25 frames (3 chunks).

Training. We jointly train the Visual ST-MPNN and ac-
tion classifiers on 7151 tubelets extracted from MEVA train-
ing videos for 150 epochs using a batch size of 10 tubelets
(with a maximum length of 30 seconds). Given ground-
truth actor-level annotations, we assign a ground-truth ac-
tivity to the primary actor of a tubelet at a given frame if
its detected bounding box overlaps with the corresponding
ground-truth actor with IoU > 0.5. We use the Adam [24]
optimizer, with an initial learning of 1e−4.

CLI System. The system submitted to the ActEV SDL
is customized to run on a hardware consisting of 4 GPUs
with 128GB RAM. It is implemented as a pipeline consist-
ing of several stages with each stage producing an output to
be used by the later stages. The stages can be enumerated
as follows: 1) Optical Flow Extraction 2) Object Detection
and Actor Tracking 3)Tubelet Generation 4) I3D Feature
Extraction 5) ST-MPNN Processing. Each stage is paral-
lelizable and spawns several subprocesses/workers which
work on multiple videos/chunks simultaneously. Among
the stages, stage 3 is CPU-intensive and the rest are GPU-
intensive. The pipeline processes the entire test set in
batches of 96 videos. Each stage maintains a processing
queue of 96 videos and any idle workers consume videos
from this queue until the entire video batch has been pro-
cessed. The number of workers for each of the stages are:
48, 24, 96, 8, and 8 respectively. In all stages except stage-
3, we are limited by the GPU memory and hence cannot
increase the number of workers anymore. The submitted
system slightly differs from the system evaluated on our in-
ternal validation set: (a) the object detector is applied on the
video with a stride of 4 frames for faster processing, while
repeating the bounding box detections in between to accom-
modate for the skipped frames, and (b) we keep at most 200
actor-centric tubelets from each input video, after ranking
them based on motionness cues.

4.4. Experimental Results

Comparison with the state of the art. Table 1 com-
pares the activity detection performance of our method
with recently published work and other submitted systems
on the ActEV 2021 SDL Known Facility Leaderboard 3.
Our actor-centric framework for real-time activity detec-
tion achieves activity detection performance that is close to
other published methods [33, 13, 47] (rows 1-3). Specifi-
cally, it achieves a nAUDC metric of 48% on the challeng-
ing sequestered dataset, while performing at 0.97 real-time.
Notably, it achieves this metric despite only training the

3https://actev.nist.gov/sdl#tab_leaderboard

System nAUDC pmiss@0.02tfa Rel. Time

Cuboids [13] 0.476 - 0.725
Gabriella [33] 0.438 - 0.362
Dense Prop. [47] 0.423 - -

CMU-DIVA 0.163 0.3424 0.413
UCF 0.232 0.3793 0.751
UMD 0.262 0.4544 0.380
IBM-Purdue 0.281 0.4942 0.631
Visym Labs 0.283 0.4620 0.721
UMD-Columbia 0.305 0.4716 0.516
UMCMU 0.323 0.5297 0.464
Purdue 0.332 0.5853 0.131
BUPT-MCPRL 0.799 0.9281 0.123

MINDS JHU (Ours) 0.483 0.6649 0.967

Table 1: Temporal detection results on the ActEV 2021
Known Facility SDL as of November 1st 2021. We report
the Pmiss@0.02tfa and nAUDC@0.2tfa metrics. Lower
nAUDC and pmiss values indicate a superior performance
since they are related to missing an activity.

Figure 4: Per-class nAUDC scores for systems on the
ActEV 2021 SDL. Our system ID is 25467 (light green).

GNN and action classifiers of our framework using actor-
level annotations, in under 3 hours using a single Titan XP
GPU (given the extracted visual graph), while relying on
off-the-shelf, pretrained networks for object detection and
flow feature extraction. When compared to recent system
submissions on the ActEV Challenge, which might utilize
additional training datasets, end-to-end training, and model
ensembles, our system lags behind most of them. How-
ever, as we can see in Fig. 4, our system (ID: 25467) per-
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forms on par with other methods for a wide range of activ-
ities, such as person-vehicle interactions (vehicle drops-off
person) and vehicle activities (vehicle u-turn), while per-
forming significanlty worse on person abandons package
and person interacts with laptop. Our overall performance
could be improved by including more samples of these ac-
tivities in our training set and by fine-tuning our object de-
tector on surveillance data. Furthermore, the I3D could be
fine-tuned jointly with the ST-MPNN.
Ablation analysis. We now discuss a variety of ablation
studies of different components of our framework. In Ta-
ble 2, we compare the total number of actor regions that are
included in actor tracks with the number of regions that are
the primary actors of our actor-centric tubelets. As we can
see, our tubelet generation method prunes a large number
of tracked actor detections that are unlikely to be perform-
ing activities and only feeds 37% of the actor regions to
the activity detection module. This helps our model per-
form real-time activity detection. Despite pruning a large
number of actor regions, our generated tubelets retrieve a
large number of ground-truth activities (around 80%), as
shown in Table 3. The primary cause for missed activity
detections are object detection failures of the off-the-shelf,
pretrained object detector. In Table 4, we first experiment
with two different action classification models to determine
the best architecture for our system. In particular, we com-
pare our context-aware feature obtained by applying the Vi-
sual ST-MPNN on our visual graph with a baseline fea-
ture that is obtained from locally-extracted actor features
passed through a trainable two-layer Multi-layer Perceptron
of hidden size 1024. Refining the local actor features with
the GNN improves performance, verifying our intuition that
spatio-temporal actor-object interactions are crucial for de-
tecting activities. Furthermore, we compare generating ac-
tivity detections of fixed duration (6 seconds) around each
local maximum of the score time-series per activity class,
instead of adaptively extending the detection to the past and
future by a relative score threshold. Surprisingly, fixed du-
ration activity detections lead to a better performance. This
can be attributed to the employed detection metrics, which
consider a ground-truth activity to be detected as long as 1
second of it overlaps with a system detection.

5. Conclusion
In this paper we introduced an actor-centric framework

for detecting complex human and vehicle activities of vary-
ing spatio-temporal scales in extended surveillance videos.
Our system decomposes an extended video into a collec-
tion of actor-centric tubelets of interest, which capture long-
range spatial and temporal context for an actor. It then pre-
dicts the activities performed by an actor over time based
on local motion cues (optical flow) and spatio-temporal
actor-object interactions. The modular design of our system

Tubelet type Nb. Actor RoIs

Tracks 6783972
ACToIs 2553404

Table 2: Impact of tubelet generation method on the number
of actor regions that are fed to the activity detection module.
Tracks: baseline tubelets spanning each actor track of an ex-
tended video. ACToIs: our proposed Actor-Centric Tubelets
of Interest. Results are reported on our internal validation
set of Kitware-annotated MEVA videos.

R@30 R@8 R@1

ACToIs (train) 69.0 81.7 85.0
ACToIs (val) 67.9 81.5 84.0

Table 3: Activity recall of our proposed Actor-Centric
Tubelets of Interest on our MEVA training and validation
sets. Recall R@T is computed by considering an activity
instance as retrieved when at least one tubelet’s primary ac-
tor overlaps with the ground-truth actor with IoU > 0.5 for
at least T consecutive frames.

Feat Duration nAUDC pmiss@0.04 pmiss@0.02

Local Dynamic 0.558 0.556 0.680
Context-Aware Dynamic 0.531 0.501 0.663
Context-Aware Fixed 0.492 0.469 0.565

Table 4: Ablation experiments on our internal MEVA val-
idation set for different design choices of the activity de-
tection module. Local Actor Feat: baseline approach that
recognizes actor activities based on locally-extracted actor
features. Context-aware Actor Feat: our proposed approach
that learns context-aware actor features with the Visual ST-
MPNN. Dynamic Duration: generating activity detections
of varying durations. Fixed Duration: generating activity
detections of fixed duration (6 sec) around local maxima.

makes it amenable to improvements. The current off-the-
shelf object detection, tracking and feature extraction back-
bones can be easily replaced by state-of-the-art networks,
such as DETR [5], Joint Detection and Embedding (JDE)
multiple-object tracker [44], and TANet [27], respectively.
Furthermore, they can be additionally fine-tuned on surveil-
lance data. We leave such improvements to future work.
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[7] Guilhem Chéron, Anton Osokin, Ivan Laptev, and Cordelia
Schmid. Modeling spatio-temporal human track structure for
action localization. CoRR, abs/1806.11008, 2018.

[8] Kellie Corona, Katie Osterdahl, Roderic Collins, and An-
thony Hoogs. Meva: A large-scale multiview, multimodal
video dataset for activity detection. In IEEE Winter Confer-
ence on Applications of Computer Vision, 2021.

[9] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. Neural Message Passing for
Quantum Chemistry. In International Conference on Ma-
chine learning, pages 1263–1272, 2017.

[10] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew Zis-
serman. A better baseline for AVA. CoRR, abs/1807.10066,
2018.

[11] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zis-
serman. Video action transformer network. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2019.

[12] Georgia Gkioxari and Jitendra Malik. Finding action tubes.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 759–768, 2015.

[13] Joshua Gleason, Carlos D. Castillo, and Rama Chellappa.
Real-time detection of activities in untrimmed videos. In
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV) Workshops, March 2020.

[14] Joshua Gleason, Rajeev Ranjan, Steven Schwarcz, Car-
los D. Castillo, Jun Cheng Chen, and Rama Chellappa. A
proposal-based solution to spatio-temporal action detection
in untrimmed videos. In IEEE Winter Conference on Appli-
cations of Computer Vision, 2019.

[15] Chunhui Gu, Chen Sun, David A. Ross, Carl Von-
drick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijaya-
narasimhan, George Toderici, Susanna Ricco, Rahul Suk-
thankar, Cordelia Schmid, and Jitendra Malik. AVA: A video

dataset of spatio-temporally localized atomic visual actions.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018.

[16] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-
CNN. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2018.

[17] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. ActivityNet: A large-scale video
benchmark for human activity understanding. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2015.

[18] Rui Hou, Chen Chen, and Mubarak Shah. Tube convo-
lutional neural network (T-CNN) for action detection in
videos. In IEEE International Conference on Computer Vi-
sion, 2017.

[19] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Rus-
sell, and J. Weber. Automatic symbolic traffic scene analysis
using belief networks. In Proceedings of the National Con-
ference on Artificial Intelligence, volume 2, 1994.

[20] Haroon Idrees, Amir R. Zamir, Yu Gang Jiang, Alex Gorban,
Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The thu-
mos challenge on action recognition for videos “in the wild”.
Computer Vision and Image Understanding, 155, 2017.

[21] Yuri A. Ivanov and Aaron F. Bobick. Recognition of visual
activities and interactions by stochastic parsing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22,
2000.

[22] M. Jain, J. C. van Gemert, H. Jegou, P. Bouthemy, and
C. G. M. Snoek. Tubelets: Unsupervised action proposals
from spatiotemporal super-voxels. International Journal of
Computer Vision, 2017.

[23] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari,
and Cordelia Schmid. Action tubelet detector for spatio-
temporal action localization. In IEEE International Confer-
ence on Computer Vision, Oct 2017.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, 2014.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, pages 740–755,
Cham, 2014. Springer International Publishing.

[26] Wenhe Liu, Guoliang Kang, Po Yao Huang, Xiaojun Chang,
Lijun Yu, Yijun Qian, Junwei Liang, Liangke Gui, Jing Wen,
Peng Chen, and Alexander G. Hauptmann. Argus: Efficient
activity detection system for extended video analysis. In
IEEE Winter Conference on Applications of Computer Vision
Workshops, 2020.

[27] Zhaoyang Liu, Limin Wang, Wayne Wu, Chen Qian, and
Tong Lu. Tam: Temporal adaptive module for video recogni-
tion. In IEEE International Conference on Computer Vision,
pages 13708–13718, October 2021.

[28] E. Mavroudi, B.B. Haro, and R. Vidal. Representation learn-
ing on visual-symbolic graphs for video understanding. In
European Conference on Computer Vision, volume 12374
LNCS, 2020.

[29] Darnell J. Moore, Irfan A. Essa, and Monson H. Hayes. Ex-
ploiting human actions and object context for recognition

180



tasks. In IEEE International Conference on Computer Vi-
sion, volume 1, 1999.

[30] Nandita M. Nayak, Yingying Zhu, and Amit K. Roy Chowd-
hury. Hierarchical graphical models for simultaneous track-
ing and recognition in wide-area scenes. IEEE Transactions
on Image Processing, 24, 2015.

[31] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cun-
toor, Chia Chih Chen, Jong Taek Lee, Saurajit Mukherjee,
J. K. Aggarwal, Hyungtae Lee, Larry Davis, Eran Swears,
Xioyang Wang, Qiang Ji, Kishore Reddy, Mubarak Shah,
Carl Vondrick, Hamed Pirsiavash, Deva Ramanan, Jenny
Yuen, Antonio Torralba, Bi Song, Anesco Fong, Amit Roy-
Chowdhury, and Mita Desai. A large-scale benchmark
dataset for event recognition in surveillance video. In IEEE
Conference on Computer Vision and Pattern Recognition,
2011.

[32] A. Prest, V. Ferrari, and C. Schmid. Explicit modeling of
human-object interactions in realistic videos. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2013.

[33] Mamshad Nayeem Rizve, Ugur Demir, Praveen Tirupattur,
Aayush Jung Rana, Kevin Duarte, Ishan Dave, Yogesh Singh
Rawat, and Mubarak Shah. Gabriella: An online system
for real-time activity detection in untrimmed security videos.
In IEEE International Conference on Pattern Recognition,
2020.

[34] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip H.S.
Torr, and Fabio Cuzzolin. Deep learning for detecting mul-
tiple space-time action tubes in videos. In British Machine
Vision Conference, 2016.

[35] Abraham. Savitzky and M. J. E. Golay. Smoothing and dif-
ferentiation of data by simplified least squares procedures.
Anal Chem, 36(8):1627–1639, 1964.

[36] Yasaman S. Sefidgar, Arash Vahdat, Stephen Se, and Greg
Mori. Discriminative key-component models for interaction
detection and recognition. Computer Vision and Image Un-
derstanding, 135, 2015.

[37] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip H.S.
Torr, and Fabio Cuzzolin. Online real-time multiple spa-
tiotemporal action localisation and prediction. IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017, 2017.

[38] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. CoRR, abs/1212.0402, 2012.

[39] Chris Stauffer and W. Eric L. Grimson. Learning patterns
of activity using real-time tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22, 2000.

[40] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-
phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric
relation network. In European Conference on Computer Vi-
sion, pages 318–334, 2018.

[41] Namrata Vaswani, Amit Roy Chowdhury, and Rama Chel-
lappa. Activity recognition using the dynamics of the config-
uration of interacting objects. In IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, 2003.

[42] Xiaolong Wang and Abhinav Gupta. Videos as space-time
region graphs. In European Conference on Computer Vision,
pages 413–431, 2018.

[43] Xiaoyang Wang and Qiang Ji. Video event recognition with
deep hierarchical context model. In IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[44] Zhongdao Wang, Liang Zheng, Yixuan Liu, and Shengjin
Wang. Towards real-time multi-object tracking. CoRR, 2019.

[45] Jianchao Wu, Zhanghui Kuang, Limin Wang, Wayne Zhang,
and Gangshan Wu. Context-aware RCNN: A baseline for
action detection in videos. In European Conference on Com-
puter Vision, pages 440–456, 2020.

[46] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: region
convolutional 3d network for temporal activity detection. In
IEEE International Conference on Computer Vision, pages
5794–5803. IEEE Computer Society, 2017.

[47] Lijun Yu, Yijun Qian, Wenhe Liu, and Alexander G. Haupt-
mann. CMU informedia at TRECVID 2020: Activity detec-
tion with dense spatio-temporal proposals. In TREC Video
Retrieval Evaluation, TRECVID, 2020, 2020.

[48] Yubo Zhang, Pavel Tokmakov, Martial Hebert, and Cordelia
Schmid. A structured model for action detection. In IEEE
Conference on Computer Vision and Pattern Recognition,
2019.

[49] Yingying Zhu, Nandita M. Nayak, and Amit K. Roy-
Chowdhury. Context-aware modeling and recognition of ac-
tivities in video. In IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

[50] Yingying Zhu, Nandita M. Nayak, and Amit K. Roy-
Chowdhury. Context-aware activity modeling using hierar-
chical conditional random fields. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 37, 2015.

181


