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Abstract

One of the key differences between video and image un-
derstanding lies in how to model the temporal informa-
tion. Due to the limit of convolution kernel size, most pre-
vious methods try to model long-term temporal information
via sequentially stacked convolution layers. Such conven-
tional manner doesn’t explicitly differentiate regions/pixels
with various temporal receptive requirements and may suf-
fer from temporal information distortion. In this paper,
we propose a novel Temporal Relocation Module (TRM),
which can capture the long-term temporal dependence in a
spatial-aware manner adaptively. Specifically, it relocates
the spatial features along the temporal dimension, through
which an adaptive temporal receptive field is aligned to
each pixel spatial-wisely. As the relocation is performed
within the global temporal interval of input video, TRM
can potentially model the long-term temporal information
with an equivalent receptive field of the entire video. Ex-
periment results on three representative video recognition
benchmarks demonstrate TRM outperforms previous state-
of-the-arts noticeably and verifies the effectiveness of our
method.

1. Introduction
Video understanding is an important computer vision

task and has been adopted in various scenarios [12, 2, 7, 6,
16, 31]. The recent success of video understanding can be
primarily attributed to the advancement of temporal model-
ing. However, it remains challenging to effectively aggre-
gate temporal information, especially for distinguishing ac-
tivities with various temporal lengths and complex spatial-
temporal contexts. In the former works, different algo-
rithms have been proposed for temporal information aggre-
gation. A series of works [18, 27, 32, 46] are established on
the two-stream 2D CNNs. In such framework, a separate
stream, which relies on extra temporal features (e.g. optical
flow), is employed to incorporate the temporal information.

Another line of works [28, 35, 15, 6, 7, 12, 30, 21, 36]
resort to 3D convolution networks to model spatial and tem-

poral information simultaneously. The spatial-temporal re-
ceptive field is progressively enlarged via stacking the 3D
local convolution kernels.

Different from all previous lines, Temporal Shift Mod-
ule (TSM) [22] provides a new perspective for aggregating
the temporal information. Via a parameter-free temporally
shift module, TSM aggregates the temporal information ef-
ficiently with only 2D convolutions. However, since the
temporal shift module is manually designed, the shift off-
sets are restricted in a small fixed temporal range and cannot
be adaptively adjusted during training or inference.

In summary, previous works sequentially stack local
temporal/spatial-temporal convolutions to model long-term
temporal information that may suffer from the temporal in-
formation distortion. Moreover, they perform temporal ag-
gregation in a spatial-agnostic way, ignoring the fact that
the optimal temporal receptive field may vary dramatically
for different regions of a frame. Although there are re-
cent works like ACTION-Net [33] which improved TSM
through adding attention modules, these methods still fol-
lowed the temporal shift operation and didn’t enhance the
long-term spatial-temporal modeling capability within each
operation.

In this paper, we propose a novel Temporal Relocation
Module (TRM). TRM aims to relocate the spatial features
along the temporal dimension to enable long-term temporal
modeling in a spatial-aware manner. Specifically, TRM ap-
plies convolution kernels on the temporal-channel dimen-
sions to determine the relocated locations of each pixel.
Through a linear sampling function, such relocation module
can be trained in an end-to-end schema. TRM can be im-
plemented with 2D CNNs to enable the subsequent convo-
lution layers the capability of performing spatial-temporal
aggregation with temporal relocated features. As the relo-
cation is performed within the whole temporal interval of
input, TRM can model the long-term temporal information
with an equivalent global temporal receptive field within
each relocation operation. Moreover, the learned temporal
relocation values are pixel-wise and adaptive according to
input videos.

In a nutshell, the contributions of our paper are summa-
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Figure 1. The Illustration of Temporal Relocation Module. For visualization, we merged the H and W dimensions to show the 4D input
feature. Each color represents a specific channel. The features are relocated within each channel on the temporal dimension pixel-wisely
according to the learned relocation matrix.

rized as follows:

• We propose a new perspective of modeling temporal
information through temporal relocation operation. It
enables 2D CNNs model spatial-temporal information
with a global temporal receptive field and enhances the
long-term temporal modeling capability.

• We propose Temporal Relocation Module (TRM),
which takes the difference of optimal temporal recep-
tive among pixels/regions into account and enables the
temporal receptive field for each location to be deter-
mined adaptively through temporal relocation opera-
tions.

• Experiment results on three video recognition bench-
marks (i.e. Kinetics, something-something V2, and
HMDB51) demonstrate the superiority of our method.

2. Related Work
Two-stream 2D CNN These methods operate con-

volution independently over the temporal dimension and
resort to temporal motion information like optical flow
or RGB diff of adjacent frames for temporal modeling
[18, 27, 32, 46, 25]. The usage of motion information
makes them different from image-level understanding
works[38, 24, 39, 37, 42]. For example, Wang proposes
a framework for video-based action recognition with
parallel spatial convolution network and temporal con-
volution network [32]. Karen Simonyan and Andrew
Zisserman propose a two-stream convolution architecture
that incorporates spatial and temporal networks through
the usage of optical flow.[27] As we mentioned before,
such methods contain fewer parameters and are easier for
training. However, the motion information is extracted

through adjacent images and can not represent long-term
temporal information.

3D CNN Different from 2D CNN, 3D CNN can
extract temporal and spatial information simultaneously.
Works[15, 14, 6, 7] with 3D CNNs have achieved state-of-
the-art (SOTA) results on many data sets, especially after
the release of large video action data sets like Kinetics[19]
and Activity Net[1]. For example, Du proposes a sim-
ple, yet effective approach for spatio-temporal feature
learning using deep 3D CNN[28]. Carreira implements a
two-stream inflated 3D convolution network [2]. Through
stacked 3D convolutions, 3D CNN can capture long-range
temporal relationships. However, given set temporal kernel
size, it can only extract temporal information from frames
within a certain temporal window once. What’s more, 3D
CNNs contain many more parameters and make them more
difficult to train.

Temporal Modeling Through 1D Convolution Given
the drawbacks of traditional 2D CNN and 3D CNN
mentioned above, Du proposed R(2+1)D which factorizes
the 3D convolutional filters into 2D spatial convolution
kernel and 1D temporal convolution kernel[30]. Although
TRM also implements convolution kernels for temporal
modeling, the convolution kernels are used for temporal
relocation instead of aggregation. Furthermore, TRM
has much larger temporal receptive field and considers
the temporal receptive requirements of different regions.
The experiments in the ablation study section show the
improvements brought by integrating TRM as an adaptive
temporal receptive extension module.

Temporal Shift Operation Different from other meth-
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ods, temporal shift module does not contain convolution op-
eration and can be inserted easily into 2D CNNs to achieve
temporal modeling at zero computation and zero parame-
ters. Compared with our work, their temporal shift module
only moves the feature map along the temporal dimension
one frame forward or backward. Although it is computa-
tionally free, the shift distance is a fixed parameter which
can’t get updated during training procedure and may make
it not the optimal one for different kinds of videos. The
extension works[44, 10, 26] make the temporal shift val-
ues learnable and unifies the shift operation in temporal and
spatial realm. But, they did not take the temporal receptive
requirements of different regions into consideration. Mean-
while, RubiksNet[10] sets the temporal shift values as free
parameters. Although it is learnable in training procedure, it
won’t update according to the input videos during inference.
The temporal relocation values learned by TRM, however,
is extracted from the feature map through convolution ker-
nels and can be updated adaptively according to the input
video during inference. In other words, RubiksNet learns a
”3D CNN” for each channel and TRM learns how to adap-
tively combine a group of ”3D CNNs” for input video.

3. Temporal Relocation Module (TRM)
In this section, we will firstly illustrate temporal relo-

cation operation. Then we will introduce the structure of
TRM, which enables the spatial-aware temporal relocation
values updated adaptively and end-to-end according to the
loss back-propagated from the final target. Finally, we
will introduce how to integrate TRM into video recognition
methods.

3.1. Temporal Relocation Operation

The convolution operation consists two steps. Firstly, it
samples candidates through a grid matrix G over the input
features. Then the sampled candidates are multiplied with a
weight matrix W and summed up. For example, for a 3× 3
2D convolution kernel with stride set as 1, its grid matrix

is: G2D =

 (−1,−1) (−1, 0) (−1, 1)
(0,−1) (0, 0) (0, 1)
(1,−1) (1, 0) (1, 1)

. Given an

input feature map X whose size is C × T ×H ×W . C rep-
resents the number of channels, T represents the number of
frames, and HW denotes the spatial resolution. Two-stream
2D CNN methods implement 2D CNNs frame by frame di-
rectly for video understanding. For simplicity, we use p to
represent the location of a pixel on the spatial dimension (H
and W). For each spatial location p0 on the output feature
map Y, the 2D convolution procedure is represented as:

Y (i, t0, p0) =

C∑
c=0

∑
pn∈Gi

2D

W i
2D(pn)X(c, t0, p0 + pn) (1)

where Wi
2D represents the weight matrix of the ith 2D con-

volution kernel and Gi
2D represents its grid matrix. pn enu-

merates the locations in Gi
2D. p0 + pn represents the sam-

pled spatial location on input feature map X. These meth-
ods extract the features temporal independently. Therefore,
they usually require extra temporal information, e.g. optical
flow, for temporal modeling. However, the motion informa-
tion only captures short-term changes and fails to extract
long-term real temporal relationship. Later methods resort
to 3D CNNs or factorizing it to a 2D spatial convolution
and a 1D temporal convolution. For simplicity, we ignore
the spatial convolution part and focuse on the temporal con-
volution operation. The 1D temporal convolution operation
is derived as:

Y (i, t0, p0) =

C∑
c=0

∑
tn∈Gi

1D

W i
1D(tn)X(c, t0 + tn, p0) (2)

Similar to the previous definition, Wi
1D represents the

weight matrix of the ith 1D convolution kernel, and Gi
1D

represents its grid matrix for sampling. The size of ker-
nels limits the temporal receptive field of each convolution
operation. To model long-term temporal features, such lo-
cal convolution kernels are stacked sequentially. However,
such manner may suffer from the temporal information dis-
tortion and cannot satisfy the requirements of optimal tem-
poral receptive filed of different videos. To solve this, we
intend to release the limit of tn and extend it to the length
of the entire video clip. Under the intuition of such idea,
we propose temporal relocation operation. It builds ”short-
cuts” for long-term temporal information through relocating
the features on the temporal dimension. R represents the
grid matrix of temporal relocation operation, whose size is
C × T × H × W . Each grid of the matrix represents the
temporal relocation value of the corresponding pixel in fea-
ture map X. The grids of R range from −T to T . When
integrating R into the derivation of previous 1D temporal
CNNs, the procedure turns to:

Y (i, t0, p0) =

C∑
c=0

∑
tn∈Gi

1D

W i
1D(tn)X(c, t0 + tg + tn, p0)

(3)

tg = R(c, t0, p0 + pn) (4)

As is shown in Figure 1, the temporal receptive field of the
temporal relocation now extends to the equivalent length
of the entire video. Meanwhile, each pixel can be aligned
with the optimal temporal relocation value, which makes
the model more robust compared with a unified temporal
shit value. When adding R into the derivation of previous
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Figure 2. Illustration of different types of contextual information.
tTRM only uses the temporal contextual information for reloca-
tion. sTRM resorts to the spatial-temporal contextual information
and cTRM resorts to the channel-temporal contextual information.

2D CNNs, the procedure turns to:

Y (i, t0, p0) =

C∑
c=0

∑
pn∈Gi

2D

W i
2D(pn)X(c, t0 + tg, p0 + pn)

(5)
Compared with previous derivation, the feature of p0+pn
now comes from the pixel with the same spatial loca-
tion in the same channel, but |tg| frames forward or back-
ward. With the implementation of such relocation op-
eration, the 2D convolution can model spatial-temporal
information simultaneously with the global temporal re-
ceptive field. Meanwhile, temporal information between
long-range frames does not need to be transmitted through
stacked local convolution kernels for modeling.

3.2. Temporal Relocation Module

Unlike classification task with a clear target and crite-
rion, it is difficult to evaluate the performance of relocation,
(i.e. how well each pixel should be relocated). Thus, alter-
natively, we evaluate the performance of action recognition
for our method. The grid matrix R is optimized according
to the loss back-propagated from the cross-entropy func-
tion of classification and requires the whole procedure of
temporal relocation derivable. Moreover, the optimal tem-
poral receptive is varied for different actions and videos.
Thus, we hope the model can make temporal relocation not
only spatial-wisely but adaptively according to input videos
as well. TRM uses local contextual information to predict
the optimal temporal receptive field. We made an explo-
ration of the dimension of contextual information. As is

shown in Figure 2, we explored the usage of temporal con-
textual feature (tTRM), spatial-temporal contextual feature
(sTRM) and channel-temporal contextual feature (cTRM).
To preserve the integrity of spatial information, we only
make temporal relocation operations on part of the chan-
nels. Suppose we select the first C

′
channels out of C chan-

nels.

R
′

t(i, t0, p0) =
∑

tn∈Gi
t

C′∑
c=0

W i
t (tn)X(c, t0 + tn, p0) (6)

Rt = tanh(R
′

t)× T (7)

Rt represents the grid matrix of tTRM, Gi
t is the grid matrix

of the ith 1D temporal convolution kernel and Wi
t represents

its weight matrix. A tanh function is implemented after
the filters and the output is multiplied by T, the temporal
length of input clip, to transfer the range of relocation values
between -T and T. Similarly, we can derive the procedure of
sTRM and cTRM.

R
′

s(i, t0, p0) =
∑

(tn,pn)∈Gi
s

C′∑
c=0

W i
s(tn, pn)X(c, t0+tn, p0+pn)

(8)

Rs = tanh(R
′

s)× T (9)

R
′

c(c0, t0, i) =
∑

(cn,tn)∈Gi
c

HW∑
s=0

W i
c(cn, tn)X(c0+cn, t0+tn, s)

(10)

Rc = tanh(R
′

c)× T (11)

Rs represents the grid matrix of sTRM, and Rc represents
the grid matrix of cTRM. For both tTRM and sTRM, the
kernels are reused by multiple pixels to extract temporal re-
location values. However, in cTRM, each kernel only ex-
tracts the temporal relocation value for a specific spatial
pixel. Although the temporal relocation values are all ex-
tracted spatial-wisely, the sharing of kernels may weaken
the capability of learning spatial-specific features. Accord-
ing to our experiments, we found cTRM has the best per-
formance, which is consistent with our assumption. The
detailed results is presented in the ablation study part. To
make the generated values derivable according to the loss
back-propagated from relocated features, we can not use
in-placement operations. The direct thought maybe through
matrix multiplication. The problem is that we can easily
translate the entire line or the entire column through ma-
trix multiplication. However, it becomes challenging when
need to translate the pixels independently. Suppose Zc,t,h,w

the matrix to make all pixels besides X(c, t, h, w) become
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Figure 3. For each bottleneck block, a TRM module is inserted
within the residual structure before the first convolution layer.

zero. Tc,t,h,w the matrix to translate pixel X(c, t, h, w) to
X(c, t + R(c, t, h, w), h, w). The whole procedure can be
represented as a series of matrix multiplication:

Y =
∑

c,t,h,w

Zc,t,h,wXTc,t,h,w (12)

c, t, h and w iterate on each degree. Apparently the calcula-
tion is too large for back-propagation. Given the inspiration
from [4], we use a linear sampling function I to get the re-
located value.

Y (c0, t0 + tg, p0) =
∑
t

I(t, t0 + tg)X(c0, t, p0) (13)

I(t, t0 + tg) = max(0, 1− |t− t0 − tg|) (14)

Where t iterates from -T to T. Thus, for each t0, only two t
will be non-zero. It makes the back-propagation much more
efficient. In this way, the gradients are back-propagated
continuously to temporal relocation values according to the
final classification loss.
Discussions We can re-illustrate the operation of temporal
shift (TSM) [22] from the perspective of temporal reloca-
tion. Temporal shift can be regarded as a special case of
temporal relocation with manually designed relocation ma-
trix R. TSM shifts all pixels of the first 1/8 channels 1 frame
forward and all pixels of the next 1/8 channels 1 frame
backward. It equals to setting the first 1/8 channels of R
as (1) , the next 1/8 channels as (-1) and the rest elements
as (0). The temporal relocation values are spatial-agnostic
and can not be updated for different cases.

3.3. Implementation of Temporal Relocation Mod-
ule in Backbone Networks

Since TRM preserves the shape of input features, it
makes it easily inserted into current backbone networks. We

illustrate the implementation in 2D ResNet50 as an exam-
ple. The size of input feature maps determines the num-
ber of convolution kernels. So we only insert TRM in
layer3 and layer4 of ResNet50. As is shown in Figure 3,
for each bottleneck block, we insert one TRM module be-
fore the first convolution layer within the residual structure.
ResNet50 is designed for image classification. Its input size
is B × C × H × W . For coding efficiency, we reshape
the input video clip matrix to BT × C ×H ×W . In each
TRM module, it is reshaped back to B ×C × T ×H ×W .
The relocated features are concatenated with rest preserved
channels and reshaped back to BT × C × H × W then
forward to later 2D convolution layer.

4. Experiments
4.1. Datasets

Kinetics Kinetics[19] is a large video recognition bench-
mark. Presently the latest version contains approximately
650,000 video clips that cover 700 human action classes.
For each action class, there are at least 600 video clips.
To have an apple-to-apple comparison with the baseline
method and other state-of-the-art models, we only use the
version that covers 400 human action classes. The videos
of kinetics are stored on Youtube. Some of the URL links
have become invalid. Totally we successfully downloaded
222492 videos for training, 17545 for validation, and 34371
for testing.

Something Something V2 The 20BN-SOMETHING-
SOMETHING dataset[13] is a large open-source human ac-
tion data set. It contains 220,847 videos, 27,157 for testing,
24,777 for validation, and 168,913 for training. The data
set covers 174 human-related actions. The annotations for
training and validation set are released. The annotations
of the test set are preserved hidden for official leaderboard
ranking.

HMDB51 HMDB51[20] is a human motion benchmark.
It contains 6,849 videos divided into 51 action categories,
each contains a minimum of 101 clips. Followed the official
split, we get 5,236 training clips and 1,530 testing clips.

4.2. Experimental Setup

Pretraining For the implementation of TRM in 2D
CNNs, we choose the 2D ResNet50 as our backbone feature
extraction network. Unless otherwise specified, the model
is initialized with weights pretrained on ImageNet for all
results reported on Kinetics. For the other benchmarks, the
model is initialized with weights pretrained on Kinetics.

Data Pre-processing We followed the pre-processing
procedure of [32]. The shorter side of raw images is resized
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Figure 4. Visualization of the learned channel averaged temporal relocation matrix R given a video clip of drinking shots. Red regions
represent the pixels assigned large temporal relocation values, and blue regions represent those aligned limited temporal relocation values.
(For better visualization, we use the absolute value of learned temporal relocation grids)

to 256. The images are then cropped with scale-jittering and
resized to 224× 224. For experiments on Kinetics, we fol-
lowed the dense-sampling procedure of [22] to generate 30
samples per video for inference. Meanwhile, to explore the
capability of TRM on modeling long-term temporal infor-
mation, we also followed the random-sampling procedure
of [32] to sample 1 clip and 2 clips directly from the whole
video then cropped it 10 times with the crop augmentation
strategy in [32] to generate 10 and 20 samples per video for
inference. For experiments on other benchmarks, the video
is evenly separated into 8 segments. From each segment,
we randomly selected 1 frame to generate the sampled clip
for training and inference.

Training Details For Kinetics, the models are firstly
trained 50 epochs on Kinetics without TRM, starting with
a learning rate of 0.01. The learning rate drops to its 0.1
at 30, 40 epochs. Then we integrated TRM modules and
re-train the model. The model is optimized with a start-
ing learning rate of 0.001 for 30 epochs. The learning rate
drops to its 0.1 at 13, 22, and 27 epochs. On something
something V2, the model is optimized for 25 epochs, the
learning rate starts as 0.001 and drops to its 0.1 at 10, 15, 20
epochs. On HMDB51, the model is trained 17 epochs with
the learning rate starts as 0.001 and drops to its 0.1 at 7, 12,
15 epochs. For all the experiments, we optimize our model
through SGD with momentum 0.9. Weight decay is set as
1e-4 for Kinetics and 5e-4 for the other two benchmarks.

4.3. Comparisons with the State-of-The-Arts

Kinetics As is shown in Table 1, the first compartment
contains works based on 3D CNNs or mixture of 2D and
3D CNNs. The next compartment includes works based on
2D CNNs or (2+1)D CNNs. TRM is inferior to ir-CSN and
ip-CSN. However, these two methods implement a much
heavier backbone and use longer clips for inference. TRM
achieves comparable results with SlowFast and X3D but
uses shorter clips and 2/3 samples per video for inference.

Compared with baseline methods, TRM surpasses TSM
with 0.9% rank-1 accuracy with only 1/3 samples per video
for inference and 1.3% rank-1 accuracy with 2/3 samples
per video. Although TSM is more efficient (33G FLOPs vs
44G FLOPs), TRM has better long temporal modeling ca-
pability and requires fewer FLOPs per video (440G,880G
vs 990G). In section 4.4, we did extra experiments to ex-
plore the improvements of modeling long-term temporal in-
formation brought by TRM.

Something Something V2 All the results in Table 2 be-
sides TPN with ResNet-101 and PANLite only take 1 clip
per video without crop augmentation nor clip augmenta-
tion for inference. According to the provided results, TRM
is inferior to TPN+TSM, which implements much heavier
3D structures. TRM achieves comparable results against
PANLite on the validation set. However, PANLite uses five
times samples for inference. When compared with TSM, a
special case of TRM, TRM outperforms it with 1.4% im-
provements on the validation set.

HMDB51 We compare our model with multiple state-of-
the-arts on HMDB51. The results mentioned in Table 3
are coming from TSN[32], I3D[2], R(2+1)D[30], TSM[22],
HATNet[9], RubiksNet[10] and STC[8]. According to the
results, TRM outperforms the 2D baseline TSM with 2%.
TRM even surpasses I3D with heavy 3D ResNet-101.

4.4. Ablation Studies

Long-term Temporal Information Modeling To evalu-
ate the improvements in modeling long-term temporal in-
formation, we compare TRM with two counterparts by en-
larging the temporal interval of the input video clip. We
study performance of different methods under two sampling
strategies. The dense sampling strategy separates the entire
video into 10 splits. For each split, certain frames are ran-
domly selected to form an input clip. For a single video
sample, the model will have 10 clips for inference and the
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Model Backbone Frames × Crops × Clips Acc-1 Acc-5
I3D[2] Inception V1 64×N/A×N/A 72.1 90.3
ECO-RGB[5] BNIncep+3D ResNet-18 92×1×1 70.0 N/A
NL I3D[2] 3D ResNet-101 32×6×10 77.7 93.3
SlowFast[12] 3D ResNet-50 (16+4)×3×10 75.6 92.1
X3D[11] 3D ResNet-50 16×3×10 76.0 92.3
TPN[36] 3D ResNet-50 32*2×3×10 77.7 N/A
TDN[31] ResNet-101 16×3×10 78.5 93.9
ir-CSN[29] ResNet-101 32×3×10 76.2 92.2
ip-CSN[29] ResNet-101 32×3×10 76.7 92.3
S3D-G[34] Inception 64×N/A×N/A 74.7 93.4
TPN[36] ResNet-50 8×10×1 73.5 N/A
TSN[32] Inception V3 25×10×1 72.5 90.2
R(2+1)D[30] ResNet-34 32 × 1 × 10 72.0 90.0
TEA[21] ResNet-50 8 × 3 × 10 75.0 91.8
TSM[22] ResNet-50 8×3×10 74.1 91.2
STM[17] ResNet-50 16×3×10 73.7 91.6

TRM ResNet-50
8×10×1 75.0 91.9
8×10×2 75.4 92.3
8×3×10 75.7 92.4

Table 1. Comparing with the state-of-the-arts on the validation set of Kinetics 400. Accuracy is measured on the validation set to make fair
comparison with previously released works. N/A represents the number not provided in original publication.

Model Backbone Frames Top1@Val
C3D[28] VGG16 60 47.7
TRG[45] ResNet-50 8 53.8
PANLite[43] ResNet-50+TSM 8+8×4 60.8
TSN[32] ResNet-50 8 30.0
TPN+TSM[36] ResNet-50 8 62.0
TRN[46] Inception 8 50.8
TSM[22] ResNet-50 8 59.1
RubiksNet[10] ResNet-50 8 59.0
TRM ResNet-50 8 61.1

Table 2. Comparing with the state-of-the-arts on Something Some-
thing V2.

Model Backbone Pretraining Acc-1
TSN ResNet-50 ImageNet 53.7
I3D ResNet-101 Kinetics+ImageNet 74.8
R(2+1)D ResNet-34 Kinetics 74.5
TSM ResNet-50 Kinetics 73.7
HATNet ResNet-50 HVU 73.4
STC ResNet-50 Kinetics 74.9
RubiksNet ResNet-50 Kinetics 74.6
TRM ResNet-50 Kinetics 75.7

Table 3. Comparing with the state-of-the-arts on HMDB51.

final predictions are averaged over all clips. The temporal
receptive field of each clip is only 1/10 of the entire video.

Model Sampling Acc-1 Acc-5

TSM[22] Dense 74.1 91.2
Sparse 71.2 88.3

TEA[21] Dense 75.0 91.8
Sparse 72.5 90.4

TRM Dense 75.7 92.4
Sparse 74.2 91.8

Table 4. Drop brought by sampling strategies on Kinetics 400.

For the sparse sampling strategy, frames are directly sam-
pled from the video. The video is evenly separated into
N segments. 1 frame is randomly selected from each seg-
ment to form the input clip. For an input video, the model
only gets 1 clip for inference whose temporal receptive field
equals to the entire video clip. Results in Table 4 show that
our method consistently outperforms previous state-of-the-
art and baselines for both sampling strategies. Interestingly,
when transferring from dense sampling to sparse sampling,
previous methods show much more distinct performance
drop, e.g. for TSM, both the rank-1 and rank-5 accuracy
drop 2.9%, and for TEA, the rank-1 drops 2.5% and rank-
5 accuracy drops 1.4%. In contrast, TRM is more robust to
such temporal receptive length change, the rank-1 and rank-
5 accuracy only drop 1.5% and 0.6% respectively. The re-
sult further demonstrates the priority of TRM in modeling
long-term temporal information.
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Figure 5. Visualization of the top 8 actions that TRM outperforms
the spatial-agnostic one. It shows TRM can assign larger temporal
relocation values to action related temporal valuable regions.

Effects of Spatial-aware Relocation To study the func-
tion of learning temporal relocation values pixel-wisely, we
specially trained a spatial-agnostic TRM module for com-
parison on Kinetics. The spatial-agnostic TRM module
adds an adaptive pooling layer after generating the tempo-
ral relocation matrix R. The pooling layer averages the val-
ues on the spatial dimension. Thus, all pixels in a specific
channel share the same temporal relocation value. Accord-

Model Acc-1 Acc-5
TRM 75.4 92.3
spatial-agnostic TRM 74.6 91.5

Table 5. Improvements brought by spatial-aware temporal reloca-
tion.

ing to the results in Table 5, spatial-agnostic TRM drops
1.1% rank-1 accuracy on Kinetics. To better understand the
impact caused by spatial-aware designing, we calculate the
action-wise accuracy. The top 10 actions that TRM signifi-
cantly out-performs are writing, drinking shots, doing aero-
bics, folding napkins, checking tires, swing dancing, shav-
ing head, cooking egg, bending back, and juggling balls.
According to the visualized examples shown in Figure 5,
the temporal value varies greatly among different regions
for these actions. Writing, for example, the region of mov-
ing pen contains the most valuable temporal information for
recognition and requires large temporal receptive field to
understand the whole procedure. For the other temporal ir-
relevant regions, limited temporal receptive is enough and
the integrity of spatial information may be more important.
The visualization of learned temporal relocation matrix il-
lustrated in Figure 4 and Figure 5 demonstrate our module
can learn such temporal valuable regions and assign them
larger temporal offset values. Meanwhile, TRM is not the
equivalent of an optical flow module. As shown in the case

of folding napkins and shaving head, TRM aligns larger
temporal receptive field to action-related temporal valuable
regions, not just dynamic regions.

Model Acc-1 Acc-5
cTRM 75.4 92.3
sTRM 74.9 92.1
tTRM 74.6 91.8
TSM 74.1 91.2

Table 6. Difference brought by the selection of contextual infor-
mation. All results besides TSM are reported with 2 clips random-
sampling strategy (20 clips) in [32]

Selection of Contextual Information According to the
experiments, we found the selection of contextual infor-
mation has a noticeable influence. As is shown in Table
6, cTRM outperformed sTRM and tTRM with noticeable
margin. The experimental result is consistent with our as-
sumption. Compared with tTRM, sTRM uses extra spa-
tial contextual information which may overcome the out-
liers and align temporal relocation values more robust. For
both tTRM and sTRM, the convolution kernels are reused
by all spatial pixels. These kernels are updated according
to the gradients back-propagated from relocated features.
Although the learned temporal receptive values are spatial-
aware, the average of gradients may weaken the capability
of kernels to learn spatial-specific features.

5. Conclusion
We propose TRM, a temporal relocation model for ac-

tion recognition which can be implemented in multiple
tasks[40, 41, 23, 3]. It models temporal information through
relocating features on the temporal dimension pixel-wisely
and adaptively. TRM enables followed 2D CNNs to model
spatial-temporal information with a global receptive field.
The temporal relocation values of TRM satisfy the optimal
temporal receptive requirements for different regions and
can be adaptively updated according to input videos.
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