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Abstract

Video re-localization plays an important role in locat-
ing the moments of interest in a long videos, and is criti-
cal for a variety of applications such as surveillance video
monitoring and retrieving similar archived videos for fur-
ther comparison and analysis. Current re-localization ap-
proaches compute a feature vector using a video query for
each video frame, and explore various feature matching
techniques. These features do not capture information from
varying temporal windows, and the dimension reduction to
a vector leads to loss of spatio-temporal context. For ef-
ficient feature comparison and matching among thousands
of videos, we design a Siamese Spatio-Temporal network
comprising Convolution Neural Network and Long Short-
term Memory blocks (CNN-LSTM) for feature extraction,
followed by a correlation layer for spatio-temporal feature
matching. We extract video features at varying temporal
scales, and localize one or more segments in the reference
video that semantically match the query clip. Our approach
is evaluated on two benchmark datasets: AVAv2.1- Search
and ActivityNet-Search. We show an improvement of over
12% in the mean average precision compared to existing
approaches. We perform ablation experiments and show
that the modular architecture and the holistic feature ex-
traction expands the scope of this work to multiple video
search applications.

1. Introduction

With the rapid advancement in imaging and computing
technologies, there is unprecedented growth in the amount
of data that we generate every day. To cope with this ex-

plosion, proper organization is essential for on-demand re-
trieval of multi-media information. Visual data is unstruc-
tured and bulkier than text. As the database grows, the diffi-
culty of efficient storage and retrieval of relevant search re-
sults increases. Traditional search engines index visual data
based on the manual annotation of the surrounding metadata
such as titles and meta-tags. There are research prototypes
using deep learning techniques for automatically extracting
details like actions, objects, and captions from videos. The
similarity in this metadata can be further used to scrape rel-
evant videos during a search. A downside to this approach
is that textual descriptors are often inadequate to describe
videos, simply because the same video can be described in
different ways. Moreover, retrieval based on such meta-data
as query yields too many results, making the search ineffi-
cient. With frequent adding and updating of multimedia in
massive databases, it is also highly impractical to perform
manual entry of all the attributes. Further, manual tagging
of industrial videos is in its infancy. Content-based retrieval
by using a video example as a query addresses many of
these issues. It provides more flexibility and has the ability
to query attributes such as texture or shape that are difficult
to represent using keywords.

Video retrieval using a video query span multiple do-
mains such as telemedicine, education, advertising and
surveillance. Retrieval of semantically similar medical
videos from archives can aid doctors in making an informed
diagnosis. This can enable easier data sharing and enhance
biomedical research. Retrieval of near-duplicate videos of
trademarks is critical for copyright protection. In surveil-
lance videos, locating key activity regions based on specific
objects or events is crucial for quickly monitoring and nar-
rowing down the search area.

Video retrieval using a video query has been attempted
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before. The common approach is to compare the feature
vector of a query video with that of each of the videos in
the reference database [15, 27]. This approach computes
similarity at the video level and does not localize the exact
temporal region of the match in the video. Another major
drawback is the reduction of entire video features to vectors,
leading to a loss in information and also resulting in a large
number of videos being retrieved. Video re-localization,
which is also a type of retrieval, has recently seen a lot
of traction. This task involves locating a smaller segment
in a given reference video that matches the provided video
query. This takes retrieval one step further and is very useful
in quickly maneuvering through long videos and spotting
the regions of interest.

Existing approaches for content-based video re-
localization can be categorized into two main types: 1)
similarity-based approach, wherein the features of the
query and reference are compared at different temporal
scales [29, 8]; 2) attention-based approach wherein the
query features are fused with the frame-wise reference
video features to get query-weighted attention features,
and this is used to output the probability of a frame being
a starting or ending frame [7, 11, 4]. A major drawback
in both approaches is that the multi-scale spatio-temporal
variations in the video are not exploited completely. While
the first approach divides the videos into pre-determined
segments, the second superimposes the entire query video
into each frame to focus only on the relevant parts. A
frame-wise feature similarity approach is suitable with
natural language queries, but may not be ideal for video
queries that are far more complex. This requires the design
of a video matching network that can compare the objects
in the reference video with those in the query video, and
match features at multiple temporal scales.

Video re-localization can be used for other tasks like
action counting and action sequence matching. These can
be further extended to higher-level applications such as
locating all interview clips from a news video or identifying
an anomaly in an action sequence. The majority of the
current approaches [7][13] work with video-level feature
vectors and do not match features in the spatio-temporal
space. This leads to a loss of spatio-temporal context and
is highly unsuitable for fine-grained video search tasks.
To address these deficiencies, we propose an approach
that captures features at multiple time scales. This gives
capability to match different types of actions and events.
Such a framework will also be flexible and can be readily
extended to multiple video search applications. The key
contributions of the proposed approach in addition to
generalization and robustness it achieves are as follows:

e In order to capture holistic information from the input
videos, we extract features at multiple temporal scales
such as spatial, micro spatio-temporal, and macro spatio-

temporal levels.

* We introduce a novel patch-wise video correlation layer
for spatio-temporal matching between the query and
reference video features.

* We show that our network can be adapted to different
temporal scales, thereby showing scope in multiple video
search applications such as action counting, partial action
matching and action sequence matching.

The rest of the article is structured as follows: section
2 presents the related work; section 3 covers the problem
formulation, the architecture and explains in detail the main
steps in the architecture; section 4 gives an overview of the
datasets, followed by the experimental settings and results;
section 5 presents the conclusion.

2. Related work

Content-based video search has been attempted in vari-
ous ways using different modalities of queries. Examples
include the use of natural language queries [26, 5, 18] and
cross-modal embedding techniques [17, 22] for video re-
trieval, use of image as query [16, 1, 30] and use of video
example as query [31, 14]. Video query-based video search
can be posed as a retrieval task where all the videos relevant
to the query are retrieved from a reference trimmed video
database. It can be further specialized into a re-localization
problem wherein one or more video segments matching the
query are localized from a reference video. Approaches in
literature either perform matching of global video features
for the task of video retrieval or take up matching of spatial
or spatio-temporal features for the task of re-localization.
Our work deals with the problem of video re-localization
with video examples as a query.

A number of datasets have been released in the video
retrieval literature, and each one is designed for one or
more of the following sub-classes: near-duplicate video
retrieval [28], fine-grained video retrieval [12] and event
video retrieval [21]. A general approach in the literature
is to tackle only one of these retrieval problems [2, 28, 21].
This is highly inefficient and does not generalize well to re-
trieval based on multiple video attributes. Specific to video
re-localization, the ActivityNet dataset [10] has been re-
organized in [7]. Many of the prior works have used this
for temporal action re-localization [11, 4, 7]. The com-
mon formulation is to predict the temporal boundaries of
the reference segment(s) that match the action in the query
video. This follows four steps: 1) feature extraction using
pre-trained models such as C3D [24] or I3D [3] from each
video, followed by feature aggregation; 2) attention based
feature weighting in order to match the relevant part of the
query with the reference; 3) feature matching; 4) mapping
to the temporal boundaries of the segments that best match
the query.
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A lot of interest has gone into designing effective fea-

ture matching techniques. A cross-gated bilinear match-
ing approach (CGBM) is developed in Feng [7] to en-
code the query-reference interactions at every timestep. A
method called graph feature pyramid network (FPN) with
dense predictions (GDP) is proposed by Chen et al. [4]
where multi-scale co-attention is computed for the query-
reference features, and this is followed by graph convolu-
tions to encode the scene relationships. Weakly supervised
approaches have also been proposed to make use of only
video level information for query-reference pairs. Such
methods make use of attention mechanism, and do not re-
quire the exact temporal location of the matching clip in the
reference video. A weakly supervised multi-scale attention
(MSA) approach is developed in [11], wherein, attention
between multi-scale temporal features are used to estimate
the similarity between the query video and the reference
video. An attention-based approach is proposed by [23] to
find the matching clip in reference using frame-level fea-
ture embeddings. The major drawbacks in the existing re-
localization techniques are:
i) The extracted features are reduced to a vector using di-
mension reduction and feature aggregation. This results in
the loss of key information that is critical in generalizing
video search and retrieve operations. Although LSTMs are
used in many cases [7] to incorporate long-range contex-
tual information in the extracted features, that is not enough
to counter the gap of spatial-temporal context as will be
shown in the results. ii) Mapping the network to predict
the start and endpoints of the matching reference segment
is not robust to the general variability in actions being per-
formed across different videos. This setting is also limiting
in terms of the direct extension to derived applications like
action counting, partial action matching, or action sequence
matching. iii) Super-imposing the entire query video over
the reference video frames using attention mechanism re-
sults in only parts of the query video getting focus. This step
is deliberately performed to remove background clutter or
irrelevant regions, but this results in sub-optimal matching
especially for fine-grained action searches. Some of these
issues are tackled in [13], where the ActivityNet-Search is
evaluated for video retrieval. The output is mapped to the
video-to-video-similarity, and this is computed using the
frame-to-frame similarities.

More recently, the relatively difficult AVA dataset has
been re-structured in [6] for spatio-temporal re-localization.
Here, along with the query video, the corresponding action
object location is also used to localize the matching video
segment at the spatio-temporal level. The approach fol-
lowed is similar to temporal re-localization with I3D-LSTM
based feature extraction followed by attention-based query
weighting. To localize at the spatio-temporal level, these
blocks are incorporated in an R-CNN framework. Region

proposals for the reference videos are generated and the fea-
ture matching and final similarity classification is done at
the object level. A region proposal-based approach is also
explored by [25] to remove interference from irrelevant re-
gions in the video. Proposals are extracted from the ref-
erence video, and the query-reference feature matching is
done using two blocks: attention-based fusion and semantic
relevance measurement.

A key limitation in all these approaches targeting video
re-localization is that the extracted features do not cover
information captured across spatial and spatio-temporal
scales. LSTMs have been used to capture long-term
interactions, and multiple layer outputs have been tapped
for multi-scale features, but matching at multiple temporal
scales has not been explored. From the perspective of
designing networks for video matching and retrieval,
the difficulty is in effectively expressing a high-level
semantic concept, such as a set of consecutive actions, with
low-level visual features. Addressing the listed drawbacks
and building on the advantages seen in previous works,
we take the following steps: 1) extraction of multiple
levels of spatio-temporal features from video, thereby
enabling retrieval based on multiple attributes, 2) use of
spatio-temporal correlation for effective matching of the
video features, and 3) evaluation for the tasks of temporal
re-localization and spatio-temporal re-localization

3. Problem formulation

We formulate the problem as re-localization of a set of
actions performed by one or more objects of interest in the
query video. Given a reference video R = {ry,ra,.....tjn },
query video Q = {q1,Q2.....,an} and query object co-
ordinates BBX = {bb¥, bb¥, ..., bbX}, our action re-
localization system aims to identify one or more video seg-
ments in R that best describe the action performed by a
query object of interest in the query video Q. Here, q;
and r; are " frames in the query and reference videos,
respectively, bb%‘ indicates the bounding box coordinates
corresponding to the k" object of interest in the it query
video frame. Here, we assume that the reference video
is untrimmed, and the query video is trimmed (m >>
n). This design can be extrapolated to other more com-
plex matching requirements such as multi-object action re-
localization or action sequence re-localization. The three
inputs - query clip, reference clip and query objects - are
given to our architecture which consists of four steps: 1)
feature extraction, 2) region proposal generation and ROI
pooling 3) featuring matching using spatio-temporal corre-
lation and 4) bounding box refinement and similarity clas-
sification. The block diagram of the proposed architecture
is shown in Figure 1.
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Figure 1. Network architecture for video re-localization using spatio-temporal correlation. 1) feature extraction, 2) region proposal genera-
tion and ROI pooling 3) featuring matching using spatio-temporal correlation and 4) bounding box refinement and similarity classification

3.1. Feature extraction

One of the key requirements for developing a generalized
system to localize a wide variety of actions is to extract fea-
tures at multiple levels efficiently. Motivated by the human
visual system, a hierarchical architecture is introduced in
our earlier work [19] for the task of spatio-temporal action
detection and localization. Here, features are extracted in a
pyramidal fashion, starting with a short timespan and build-
ing over it to cover longer time spans. Features are tapped
at different time scales to capture and retain the layers of
information contained in the video. We use this as our base
feature extraction block and use a Siamese architecture to
extract query features and reference features at three scales:
spatial, micro spatio-temporal and macro-spatiotemporal.

Assuming the query video clip is trimmed and of length
K seconds (K >> 1), and reference video is untrimmed
(M >> K), the entire reference video is divided into
overlapping K second clips. These clips are further di-
vided into one-second subclips before feature extraction.
Let Vi € RVN*H*WX3 denote the i'" second subclip in
the query clip and V; € RVXHXWX3 denote the it sec-
ond subclip of the k" clip in the reference video. Three sets
of features are extracted from every query-reference subclip
pair, and weights are shared across the Siamese sub-branch.

A clip spans K seconds, a sub-clip spans one second
and a micro sub-clip spans one-third of a second; spatial
features are extracted from a keyframe in every sub-clip,
macro spatio-temporal features are extracted from each sub-
clip and micro spatio-temporal features are extracted from
each micro sub-clip. We show the process for a generic sub-
clip V. The same process is followed for both query sub-
clips and reference sub-clips. Figure 2(C) shows the flow
for the extraction of three sets of features from a sub-clip at
24 FPS.

19

To capture the spatial features, we select the center frame
Iin Vj as the keyframe and extract features using a ResNet-
50 pretrained model [9]

S; = ResNet50 (I) (1)

) ) L H W
where the dimension of S is R Ts X Te X 1024,

Vs is split into 3 micro sub-clips and fed to the I3D pre-
trained model [3] to extract micro spatio-temporal features.
For a frame rate of twenty-four frames, IV 24 and
each micro sub-clip will have eight frames. Let VP €
R5*HxWx3(p — 1.9 3) be the three micro sub-clips
given as input to a pre-trained I3D model. This is given
by the following equation:

Tm, = I3D(VP)

w
16 X512

2

where T, € R?* 76 captures the micro spatio-
temporal properties of the given input video micro sub-clip.
We squeeze the output along the temporal dimension to re-
duce the features from four dimensions to three. This is
done using a max operation along the first dimension to get
the final micro spatio-temporal features for Vg

3

Tm, = maz(Tp)

where Tm € R 16X 16 X512,
We concatenate the features of the three micro sub-clips,
and squeeze it again along the temporal dimension as given

below:

“)
)
where Xy, € R16%16%512 forms the aggregated micro

sub-clip features of V4. We finally extract macro spatio-
temporal features by making use of LSTM and attention

Tm = concat(Tmy)

Xy, = maz(Tm)
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Figure 2. (A) Flow showing the different temporal scales for feature extraction at 24 FPS, (B) Adapting the feature extraction block for a 5
FPS video input, (C) Block diagram showing the extraction of three sets of features from an input video sub-clip

mechanism [19]. This follows a two layer LSTM archi-
tecture, one to capture and combine the information within
each second and the other to capture long-term spatio-
temporal variations across several seconds in time. The first
LSTM layer takes each micro sub-clip feature Tm,, at ev-
ery timestep. This is expressed by the following equation:

[cp, hyp](VE) = LSTM; (Tmy, [cp—1,hy1])  (6)

where ¢y, hy, € R%X%XM, (p = 1,2, 3) are the cell state
and the hidden state of the LSTM module for the micro
sub-clip VP. A key novelty in [19] is the use of an atten-
tion module to pool the latent hidden representations corre-
sponding to each sub-clip. Let ph and pc denote the pooled
hidden state and pooled cell state respectively, then

ph(Vs) = pool((hy, hy, h3), Xv,) @)
pC(VS) ZPOOZ((C17CQ7C3)3XVS) (8)

This first convLSTM layer captures the spatio-temporal in-
formation within the context of a sub-clip. The attention
mechanism uses the aggregated micro spatio-temporal fea-
ture X7, given in equation (5) as context to pool the con-
vLSTM states to get an output that spans one second. The
pooled states are given to a second convLSTM layer to cap-
ture long-term spatio-temporal variations. The output of the
second LSTM layer is given by the following expression:

hh, = LSTM, ([ph,, pc,], hh,_;) )

where hh; € R5*20%64 jg the Jatent hidden representation
of LSTM at second layer.

The features from LSTM,, ResNet50 and I3D are
concatenated to form the complete feature representation
for each reference sub-clip and query sub-clip. Let F{! €

R15%20x1600 gnq Fr. € R15%20%1600 pe the outputs of fea-
ture extraction block then

', =[S" hh] Tm'],, (10)
F2 = [SY hh! Tm?], (11)

The flow for the extraction of these three sets of features is
shown in Figure 2(C). The query features F{! of each query
sub-clip and the reference features Fi; of each reference
sub-clip span multiple temporal scales, and are used further
for proposal generation and matching clip localization.

3.2. Region proposal extraction

The region proposal network (RPN) [20] is applied only
to the reference sub-clip features to generate proposals at
every second. For the query clip, the object locations are
already provided as input. Furthermore, the proposals are
generated only for the keyframe at every second using the
ResNet50 features as shown in equation (1). By using the
spatial features [S,|r;, RPN generates P proposals. Let
S RP*4 be the region proposals corresponding to the
objects present in the reference video sub-clip Ry;, then

ki = RPN ([Srlki) (12)

The proposals in P}, will be of different dimensions.
Therefore, the features corresponding to the proposals re-
gions will also vary in size. In order to compare the fea-
tures of a proposal region in the reference sub-clip with the
query object features, we need them to be of the same size.
Following [20], we use Region of Interest (ROI) pooling op-
eration to bring all the proposal features to same size. Here,
we use the entire feature set F[; shown in Eq. (10). Let
[Froily; € REX14x14x1600 denote the ROI aligned features
after ROI pooling operation then,

[Froi]zz' = ROIpool (P}, Fy,) 13)
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Similarly, by using the query object bounding box bb¥ of
object O, and query video clip features F] we extract the
object features as follows

[Fobjl! = ROIpool (bb!, F) (14)

where [Fop;]? € RPx14x14x1600 The dimensions of

[Fobj]! depends on the number of objects D whose actions
need to be re-localized in the reference video.

3.3. Feature matching using spatio-temporal corre-
lation

Considering P proposals in the reference sub-clip and

D objects of interest in the query sub-clip, we calculate

the feature correlation between every proposal-query object

pair. We compute a patch-wise correlation, which is given

by the following equation for every spatial pixel location [y

in the query feature [F&,:]7 and I in the reference feature
[FP .

roi]ki'

Capila) =3 > (Fdp19 0y + 1), FE_ 0T (e + 1) (5

€ le[—s,s]X[—s,s]

where C'? € R14x14x14% ¢ the correlation function,
(2s + 1) x (2s + 1) is the spatial window at pixels
and [, around which correlation is computed, and ¢ spans
the channel dimension. The correlation at a location [
can be computed with all locations [y, but this requires
a lot of computations. Hence, we restrict our region to
a W x W neighbourhood around every pixel location.
This gives us C,] € R14x14xW* " Computing the cor-
relation for every reference-query feature pair and stack-
ing it along the first dimension results in correlation maps
Cre ¢ RPDX14x14xW? The correlation maps capture the
similarity between the actions in the query sub-clip and ref-
erence sub-clip. They are used in further refinement of the
reference object bounding boxes and in the final classifica-
tion to identify if the reference sub-clip matches the action
in the query clip.

3.4. Bounding box refinement and classification

The correlation maps C"? computed in the previous step
are passed through block 3 of the ResNet model to extract
a latent representation C"4 € RPD*x14x14x512 Thig g fur-
ther subjected to global average pooling as follows:

C"  — GlobalPooling (c) (16)

pool —

where C? , € RPP*512 Following [20], we use two fully
connected networks (FCN) to map each of the proposals
to ground truth bounding boxes as well as perform binary
classification into either matching or not matching with the
query object. Let W}, and W be the weight matrices of
FCN corresponding to bounding box and classification la-

bel respectively. The bounding box information and classi-

fication label can be computed by using the following ex-
pressions:

bb = W,Cl%, + by (17
c =0 (W.Cpl, +be) (18)

where o is the sigmoid operation, bb € RFP*4 and ¢ €
RPP*1 indicates the bounding boxes and the classification
scores respectively. by, and b, are the bias vectors.

Let c* be the ground truth labels such that ¢ is 1 if the
anchor is positive, else 0. As formulated in [20], bb™ con-
tains the ground truth bounding box coordinates for the pos-
itive anchors.

We use the regression loss L., for bounding box refine-
ment as defined in [20]:

Lyeg = »_ cjsmoothy, (bb}, bb;) (19)

The classification label is learnt by minimizing the follow-
ing binary cross entropy loss:
Las = — Z[C: log (¢;) + (1 —c¢f)log (1 —¢;)] (20)

i

In this work, we train with one object of interest in the query
video. So, D = 1 and the network outputs a set of bounding
boxes with matching or no matching label. The sub-clips
that have at least one matching object bounding box is as-
signed as a matching subclip for the provided query subclip.
This can be extended to the multi-object matching scenario.

4. Experiments and results

We use two datasets - AVAv2.1 and ActivityNet - for
evaluation of our approach.

AVAv2.1-Search: The original AVAv2.1 consists of 430
15-minute videos for the task of action detection and lo-
calization. It consists of ground truth bounding box an-
notations of persons and corresponding action labels in
three categories: person pose, person-object interaction and
person-person interaction. The fine-grained action annota-
tion combined with dense action labeling makes this a very
challenging dataset. To adapt it for video re-localization,
this has been re-organized by [6] (AVAv2.1-Search) to form
query-reference pairs. The train, validation and test splits
have unique combined-action labels to be re-localized. The
authors have used a spatio-temporal RCNN-based architec-
ture with a warped LSTM and attention mechanism. To
the best of our knowledge, this is the only prior approach
that uses AVAv2.1 for video re-localization evaluation, and
we compare our approach with this work (referred to as
warpLSTM).
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ActivityNet-Search: ActivityNet is an activity recogni-
tion dataset with more than 20,000 videos from 200 activity
classes. This is re-arranged in [7] (ActivityNet-Search) such
that the training set consists of videos from 160 classes, val-
idation set and test set consists of 20 each. We use this split
for the evaluation of the temporal re-localization task. Mul-
tiple approaches have used ActivityNet-Search for temporal
re-localization. We compare our method with the follow-
ing prior works - Context gating based bilinear matching
(CGBM) [7], multi-scale attention (MSA) [11], attention
feature matching (AFM) [23], graph feature pyramid net-
work with dense predictions (GDP) [4] and semantic rele-
vance learning network (SRL) [25].

4.1. Experimental Settings

The input to our video re-localization network is a query
video and a reference video. In the training setup, we fix
the query video length and reference video length to 5 sec-
onds each. The actual query video length can be ¢, seconds
such that 2 < ¢, < 5. For t, < 5, we pad the video with
zero frames. For each training query video, we randomly
crop a reference video of length 5 seconds. While testing,
the query-reference pairs are fixed as per the testing split of
the dataset and they can be of any length. For query and
reference clips longer than the network input size, we take
a window with an overlap of 4 seconds to cover the entire
duration. The location of the first identified matching sub-
clip is taken as the start time, and that of the last identified
matching subclip as end time. To fix the patch-size W used
in the correlation layer, we vary the size from 5 to 11 in
steps of two. We choose an optimum value of 7 x 7, beyond
which the performance does now show significant improve-
ment. This is used in all our evaluation experiments.

Spatio-temporal video re-localization: For spatio-
temporal video re-localization on AVAv2.1-Search, we
extract frames at 24 FPS and compute the multi-level
features as per 2(A). The final outputs are the actor
bounding boxes and the binary classification at 1 FPS. ROI
pooling is performed on the extracted features, and the
ROI aligned features are correlated for final regression and
classification. We use an Adam optimizer and a learning
rate of 10~%. We train the network on a 32GB Tesla GPU
for 15000 epochs.

Temporal video re-localization: For temporal re-
localization on ActivityNet-Search , the R-CNN framework
is removed, and the features are directly correlated. The
final output is a binary classification at 1 FPS. Previous
approaches make use of 13D features extracted at 5 FPS.
For fair comparison, we incorporate the same within
our architecture with the following changes: i) we take
3-second sub-clips with 2-second overlap; and ii) at every

second, the three sets of features are at frame-level, with
1-second span and with a 3-second span, respectively. This
is visualized in figure 2(B).

4.2. Evaluation

For spatio-temporal video re-localization, we compute
the mean average precision (mAP) metric for top-1 predic-
tions at an IoU threshold of 0.5. Following Feng [7] for
temporal re-localization, we compute the mAP of top-1 pre-
dictions at temporal IoU thresholds ranging from 0.5 to 0.9
at steps of 0.1.

4.2.1 Results on AVAv2.1-Search Dataset

The quantitative evaluation and comparison can be seen in
Table 1.We achieve mAP of 42.15, a 13% increase over the
current state-of-art approach warpLSTM. Two contribut-
ing factors to this are 1) the use of frame-level features
for stable region proposals and 2) extraction of multi-scale
spatio-temporal features to re-localize complex set of ac-
tions. Some example query video frames and corresponding
re-localized frames are shown in Figure 3(B). The network
output is visualized for two action classes: stand and an-
swer the phone, and sit and hold an object. For accurate
re-localization, an understanding of the action from varying
temporal windows is required, and this can be observed in
these actions, each having a different temporal dependence.
We analyze the failure cases and observe poor performance
in classes such as walking/running and playing music. One
of the main challenges is large intra-class variations due to
viewpoint, environment or visual appearance. Another dif-
ficulty especially in closely related actions like walk and run
is in understanding the pace to differentiate between them.

Table 1. Quantitative evaluation on AVAv2.1-Search
l Approach [ mAP ‘

warpLSTM [6] 29.1
Our approach | 42.15

4.2.2 Results on ActivityNet

We evaluate our approach for temporal re-localization on
the ActivityNet-Search dataset. We compute the mAP val-
ues at multiple IoU thresholds and compare them with the
state-of-the-art, which is presented in Table 2. We also il-
lustrate the qualitative results in Figure 3(A). Our approach
results in a jump of 18% in terms of average mAP scores.
This can be attributed to the fact that we use a large temporal
neighborhood around each frame to compute relevant short-
term and long-term features. As opposed to other methods,
we do not perform feature pooling but compare the video
features at the spatio-temporal level. This retains significant
information and improves re-localization considerably.
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Correct re-localization

" Walk the ]

.. sit and hold object

(A)

(B)

Figure 3. Video re-localization outputs on (A) ActivityNet-Search for actions (top to bottom): hand car wash phone, and walk the dog, (B)
AVAv2.1-Search for actions (top to bottom): stand and answer phone, and sit and hold object

Table 2. Quantitative evaluation on ActivityNet-Search
tloU Avg.
05 1] 06 | 07 | 0.8 | 09 | mAP
baseline [7] || 24.3 | 174 | 12.0 | 59 | 2.2 12.4
AFM [23] 30.5 | 19.1 | 11.7 | 5.7 2.7 13.9
CGBM [7] || 43.5 | 35.1 | 27.3 | 16.2 | 6.5 25.7
GDP [4] 44.0 | 354 | 27.7 | 20.0 | 12.1 || 27.8
MSA [11] 46.5 | 37.8 | 29.7 | 18.0 | 8.7 28.2
SRL [25] 40.6 | 40.5 | 404 | 30.0 | 16.1 || 33.5
Ours 69.1 | 59.4 | 50.1 | 35.6 | 20.5 || 46.9

Method

4.3. Ablation study

We perform ablation experiments on both the datasets to
study the contribution of specific blocks in our architecture.
1) We evaluate the importance of the correlation layer by
replacing it with concatenation. Instead of patch-wise cor-
relation between the feature sets, we simply concatenate
them, keeping all other settings same. As seen in Table 3,
when compared with the best performing model (V,,,-.), the
mAP drops by 11.8% on the ActivityNet-Search dataset.
The correlation layer maximizes the feature matching, and
the patch-wise computation ensures robust re-localization
of the action in any part of the scene. The drop in mAP
is not as significant in AVA, because the set of features are
only from region proposals and not entire frames.

2) We evaluate two feature combinations: 1) spatial
(Veorr|s); 1) spatial and micro spatio-temporal (Veorr|ms)-
These are compared with the best model: correlation with
all features (Vo). Table 3 shows that the use of multi-
scale features leads to an appreciable improvement in the
re-localization performance. This is especially noteworthy
in the AVA-Search performance. The AVA dataset consists
of comparatively challenging actions that require temporal
understanding for correct identification and matching.

Table 3. Ablation study in ActivityNet: 1) Feature concatenation
(Veoneat), and 2) Contribution of: i) spatial features (Veorr|s), ii)
spatial and micro spatio-temporal features(Veorr|ms); Comparison
with best model: correlation with all features (Viorr). Highest
mAP shown in bold, and least mAP in blue

Variations |_MAP@1 —1IoU 0.5
ActivityNet | AVA

Veoncat 57.3 383
Veorr|s 59.21 31.1
Veorr|ms 65.8 36.82
VCOTT‘ 69-1 42-15

Two key inferences can be made from the ablation study:
the correlation layer plays an important role in temporal re-
localization due to the patch-wise matching; secondly, the
multi-scale feature extraction is essential for challenging ac-
tions that require temporal context and can be very useful
for fine-grained action search.

5. Conclusion

We present a spatio-temporal correlation approach to
re-localize an action in a reference video using a video
query. We perform feature extraction from the video
pair using a Siamese network, followed by feature match-
ing and re-localization. Key contributions include multi-
scale feature extraction with varying temporal windows
and spatio-temporal feature matching using a correlation
layer. We evaluate our network on two popular action
re-localization databases: AVA-Search and ActivityNet-
Search. We achieve an excellent improvement of over 12%
in mAP on both the datasets. We demonstrate the adaptabil-
ity of our network by employing different frame rates and
video lengths. Our approach shows great promise in video
re-localization, and the modular design enables straight-
forward extension to several video search applications.
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