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Abstract

Deep learning techniques have been applied successfully
to detecting objects from video images, and the use of three-
dimensional (3D) point clouds obtained from light detec-
tion and ranging (LIDAR) with VoxelNet [11] and other
techniques have previously been proposed for use in highly
accurate object detection methods that are robust against
lighting changes. However, while object detection from
video images with deep learning has been observed to be
continuous and stable, there are times when a few contin-
uous frames suddenly go undetected, thereby resulting in
a phenomenon known as a momentary missed detection.
Extending the methodology discussed in a previous paper
that examined the cause of these momentary missed detec-
tion in object detection in 3D point clouds with VoxelNet,
this study proposes a robust network for detecting moving
objects while considering the cause of similar momentary
missed detection in PointPillars, which is an encoder devel-
oped based on VoxelNet.

1. Introduction
In recent years, automakers have been active in devel-

opment of autonomous driving systems and advanced driv-
ing assistance systems (ADAS), both of which essentially
require high-accuracy recognition of the surrounding en-
vironment. Within this context, various object detection
techniques are being studied. Some of the onboard de-
vices used to recognize vehicle surroundings include cam-
eras, millimeter-wave radar systems, and light detection and
ranging (LiDAR) sensors.

Camera-based sensors are capable of acquiring detailed
data on the vehicle surroundings but are susceptible to is-
sues such as low light at night or backlighting glare. In con-
trast, LiDAR sensors are robust against lighting changes,
thus allowing for accurate recognition of the vehicle sur-
roundings even at night. Such sensors emit laser beams and
measure the elapsed time and intensity of the reflected beam
that return to the sensor in order to acquire the shape of sur-

rounding objects as three-dimensional (3D) point cloud.
In recent years, LiDAR sensors have garnered signifi-

cant attention due to their excellent ranging performance
and ability to accurately measure the distance to a target
object, and a number of prior studies have proposed various
object detection technologies using LiDAR sensors for pur-
poses such as for vehicle recognition [5, 9, 11], pedestrian
recognition [4], and curb recognition [3].

Some typical image-based techniques for object detec-
tion that are capable of detecting objects with high ac-
curacy include Faster Region-based Convolutional Neu-
ral Networks (Faster-R-CNN) [8], You only Look Once
(YOLO) [2], and Single-Shot MultiBox Detector (SSD) [6].
However, while image-based object detection methods can
detect most objects accurately, a few frames will occasion-
ally go undetected over time when continuously processing
video frames.

While only momentary, such missed detection can delay
braking operations and ultimately lead to serious accidents
when operating these sensors in conditions such as when
driving at high speed on highways or when encountering
oncoming vehicles on local roads.

This phenomenon, called momentary missed detection,
occurs occasionally when objects are detectable, and the
sensor is detecting the objects most of the time. Thus, it is
not a limitation of detector performance, which means that
clarifying and resolving its causes should allow us to im-
prove overall detector accuracy, thereby producing a safer
system.

With that point in mind, this paper proposes a network
that takes into account the relative position between a Li-
DAR sensor and a target object, which is a previously pub-
lished factor found to cause momentary missed detection in
3D point clouds [7].

2. Robustness of moving object detection
Ideally, autonomous driving systems and ADASs should

be able to continuously and correctly detect objects whether
or not the sensing vehicle or the vehicles being sensed are
in motion. Therefore, moving object detection robustness
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Figure 1. Illustration of SSD feature map (From Ref. [6])

Figure 2. Examples of the transformed images by scaling, horizon-
tal shift, and aspect ratio (from left to right).

refers to whether the target object is detected continuously
and correctly in continuous time series data. However, the
focus of this paper is on the abovementioned undetected
frames that occur in in continuous time series data, even
when the object is detected in most frames.

2.1. Prior Studies on Momentary Missed Detection
in Video by Frame

This section explains Ref. [10], which examines momen-
tary missed detection in video frames using SSD [6], which
is an effective technique for image-based object detection.

2.1.1 Single Shot Multibox Detector

As shown in Fig.1, SSD is an object detection technique
that generates a feature map of the input image and plots a
map grid to estimate the area populated by the candidate ob-
ject(s). More specifically, the input images are convoluted
and downsampled to generate multiple feature maps with
different numbers of grid segments. For the grid of each
generated feature map, default boxes are set for several as-
pect ratios in order to estimate the candidate segments of the
target object from the loss factor and Jaccard index. Creat-
ing multiple feature maps with different numbers of grid
segments makes it possible to detect large objects from fea-
ture maps with coarser grids, as shown in Fig.1, or to detect
smaller objects from feature maps with finer grids.

Since SSD uses a finite number of anchor boxes, as

Figure 3. Detection scores for scaling changes (From Ref. [10]).

Figure 4. Detection scores for position changes (From Ref. [10]).

shown in Fig.1, the adjacent default boxes will change de-
pending on the size, position, and aspect ratio of the de-
tected object. With that point in mind, Ref. [10] examines
the hypothesis that frames will occasionally go undetected
when transitioning between two anchors of differing sizes,
positions, or aspect ratios for the default boxes.

2.1.2 Technique of Momentary Missed Detection As-
sessment

In Ref. [10], momentary missed detection is defined as se-
ries of frames in which an object that has been detected cor-
rectly over time in most frames is undetected for a short
period. Such missing frames are evaluated as fitting the fol-
lowing conditions:

pct−1 ≥ γmin and pct+1 ≥ γmin (1)
pct
pct−1

≥ γratio (2)

Where pct is the score of the object of class c that is given
by our detector for frame t, γratio is the permissible de-
viation in detection probability compared to the previous
frame, and γmin is the probability threshold in determining
whether the object can be detected.

2.1.3 Scaling Change Assessment

In Ref. [10], the momentary missed detection is determined
by setting γmin = 0.5 and γratio = 0.9 in the equation
defined in Section 2.1.2.

As mentioned in Section 2.1.1, Ref. [10] examines the
hypothesis that small number of frames go undetected at
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the boundaries between two anchors of differing scale, po-
sition, or aspect ratio. Accordingly, in order to examine
anchor transitions in the scale direction, input images from
the missing frame are scaled and detection is performed on
each image to check for a transition between the anchors
used.

The result of this assessment is shown in Fig.3, where the
vertical axis represents the detection scores for each anchor,
and the horizontal axis represents the degree of image scal-
ing. The crosses and stars show the transition of the scores
of two neighboring anchors when the image is scaled down
or up. The cross shows the anchors in the 19*19 feature
map, and the star shows the anchors in the 10*10 feature
map.

This figure shows that when the original image is re-
duced, the anchor detection score increases for the grid ’
s smaller feature maps. In contrast, when the original im-
age is enlarged, the anchor detection score increases for
the grid ’s next largest feature map. At all boundaries for
switching anchors, the anchor outputs are below the thresh-
old, which indicates that momentary missed detection has
occurred due to a scaling change in the corresponding an-
chors.

2.1.4 Position Change Assessment

As in Section 2.1.3, in order to examine anchor transitions
for position change in one or more directions, the input im-
ages are moved, and detection is performed on each image
to check for a transition between the anchors used. The re-
sult of this assessment is shown in Fig.4, where it can be
seen that, as with scaling changes in the input image, the
detection score falls below the threshold required to switch
anchors. This indicates that a position change in the cor-
responding anchors could trigger momentary missed detec-
tion. Changes in image aspect ratios were similarly exam-
ined, even though Ref. [10] states that aspect ratio change
do not trigger momentary missed detection.

Based on these validations, Ref. [10] lists target ob-
ject position changes on the grid and target object size
changes relative to the image as factors triggering momen-
tary missed detection in SSD.

2.2. Prior Studies on Momentary Missed Detection
in 3D Point Clouds

In this section, in light of the results shown in Ref. [10],
explains the results of the author’s examined of momentary
non detection in object detection from 3D point clouds.

As the technique used for detecting objects identified
from 3D point clouds, Ref. [7] examines VoxelNet [11],
which was selected for its similarities with SSD, as ad-
dressed in Ref. [10]. Just as SSD plots a grid on the feature

map and extracts the features, VoxelNet extracts feature af-
ter splitting the input point cloud into voxels.

Additionally, as in SSD, the authors considered the pos-
sibility that missed detection may also occur in VoxelNet
when the target object approaches a voxel boundary. Fi-
nally, other techniques that split the 3D input point cloud
into voxels or pillars, such as SECOND [9] and PointPillars
[5] have been proposed in recent years. Thus, it was con-
sidered likely that clarifying the factors related to missed
detection in VoxelNet may be useful in developing future
techniques.

2.2.1 Technique for Momentary Missed Detection As-
sessment

In Ref. [7], in an effort to exclude missed detection result-
ing from VoxelNet performance limits, momentary missed
detection were assessed as follows for all frames in which
an object was detected correctly in three frames before and
after the assessed frames:

pt < fτ (3)

1− pt
pt−1

≥ dfτ (4)

As in 2.1.2, fτ is the threshold for determining whether
the object can be detected, and dfτ is the permissible devia-
tion in the detection score compared to the previous frame.
Frames meeting the above criteria were deemed to be miss-
ing.

2.2.2 Discussion of Position and Scaling Changes

In Ref. [10], the two factors triggering momentary missed
detection was defined as being transitions between the an-
chors used from either position changes due to detected ob-
ject movement or scaling changes. However, due to 3D
point cloud features, the size of the object in the point cloud
is independent of the object’s position relative to the LiDAR
sensor. Thus, in Ref. [7], the detected object’s position rel-
ative to the voxel was examined.

2.2.3 Verification Testing for Momentary Missed De-
tection

Using VoxelNet, continuous time series data from the Karl-
sruhe Institute of Technology and Toyota Technological In-
stitute (KITTI) dataset [1] was tested for missing frames.
Although they were few in number, 21 missing frames were
confirmed in testing. Figure 5 shows the mean detection
scores of the three frames before and after the missing
frames. In this figure, it can be seen that even though the
object is detected correctly in the preceding and following
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Figure 5. Mean detection scores of the three frames before and
after missing frames.

Figure 6. Example of improved score with translation along the
x-axis.

frames, one frame, in particular, has a significantly lower
detection score.

2.2.4 Position Change Assessment

The reference points of the missing frame was translated
along the plane in the x- and z- axis, and in height along the
y-axis. Since vehicles being detected will generally move
along the surface plane, the object was first moved in three
patterns: planar translations along the x-axis, planar trans-
lations along the z-axis, and planar translations diagonally
along the x- and z- axis simultaneously.

The changes in the detection score for the translated ob-
jects was examined. Give the voxel size in the planar di-
rection of 20 cm, the reference points for segmentation was
translated from the default position in 1 cm increments from
-20 to +20 cm along each direction.

As shown in Figs. 6 and 7, planar translation of the ref-
erence points for segmentation improved detection scores
in 13 of the 21 scenes.Next, for the eight scenes that did
not show improved detection scores, the reference points for
segmentation vertically (in the y-axis direction) to check for
detection score changes.

Given the voxel height of 40 cm in the y-axis direction,
the reference points for segmentation in 2 cm increments
from -40 to +40 cm along the y-axis.As a result, the de-
tection score improved in seven out of the eight remaining

Figure 7. Example of improved detection score with translation
along the z-axis.

Figure 8. Example of improved detection score with translation
along the y-axis.

scenes, as shown in Fig. 8. Based on these results, we
confirmed that the cause of momentary missed detection in
VoxelNet was associated to the position of the target object
in relation to the voxel.

3. Proposed Technique
This section reports on our proposed technique for de-

tecting objects in a 3D point cloud, which extends the tech-
nique discussed in Ref. [7]. The proposed technique ac-
counts for what causes missed detection when the 3D point
cloud is segmented. More specifically, we examine Point-
Pillars, which is based on VoxelNet, the technique exam-
ined in Ref. [7].

3.1. About PointPillars

PointPillars was designed based on VoxelNet. However,
while features in VoxelNet are extracted per voxel (a cuboid
unit), features in PointPillars are extracted per pillar and
then reduced in weight using two-dimensional (2D) convo-
lution. Because it provides a good balance between predic-
tion accuracy and processing speed, PointPillars will likely
see future use as a technique for detecting objects in 3D
point clouds. With that point in mind, and given the cause
of momentary missed detection as described in Section 2,
we performed a similar examination of PointPillars to de-
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Figure 9. PointPillars network structure (from Ref. [5]).

Table 1. Test parameters.

Pillars Size
Max Number of
Points Per Pillar Number of feature dimensions of the Backbone

Feature1 Feature2 Feature3 Feature4-6 Feature7

Orig. 0.25m*0.25m 100 64 128 256 128 384
Ours1 0.25m*0.25m 100 256(64*4) 512 1024 512 1536
Ours2 0.25m*0.25m 100 256(64*4) 128 256 128 384

Figure 10. Proposed network.(Blue:Features extracted from de-
fault segmentation, Green:Features extracted from segmentation
with the reference points changed by 10cm in the x-axis, Yel-
low:Features extracted from segmentation with the reference
points changed by 10cm in the z-axis, Orange:Features extracted
from segmentation with the reference points changed by 10cm in
the x- and z-axis simultaneously)

termine if accuracy improvements might be obtained in a
likewise manner.

3.2. Proposed Technique for Momentary Missed
Detection

From Ref. [7], the reference points for segmentation
were changed in order to change detected object position
relative to the segment, thereby confirming that a detectable
object was present.

In addition, we confirmed that the number of false posi-

Table 2. Results(AP).

Car BEV 3D

Easy Mod Hard Easy Mod Hard

Orig. 89.70 81.41 80.35 81.14 68.04 66.52
Ours1 89.72 86.16 84.46 80.89 72.88 67.79
Ours2 89.83 84.11 80.12 83.04 70.75 66.98

Cyclist BEV 3D

Easy Mod Hard Easy Mod Hard

Orig. 68.09 59.95 52.99 66.10 52.55 50.10
Ours1 77.16 61.08 57.61 74.89 57.18 54.29
Ours2 69.14 56.66 53.97 68.28 55.11 51.64

Pedestrian BEV 3D

Easy Mod Hard Easy Mod Hard

Orig. 42.43 39.53 37.47 32.45 30.49 28.95
Ours1 46.04 45.40 43.80 36.25 35.96 34.34
Ours2 41.47 39.47 37.62 30.11 30.50 29.42

tives would increase if we were to simply operate networks
in parallel while taking point clouds by the reference po-
sition for segmentation is moved in the direction of each
axis by half the size of the segmented area as input and
then combining the detection results. For this reason, the
method proposed for this study changes the reference points
upstream in the network before incorporating the 3D point

615



Figure 11. Evaluation results (top: original technique; bottom: ours) (a: car / b: cyclist / c: pedestrian / d: correct detection of a false
positive)(blue box:detection result / pink box:ground truth)

cloud features. More specifically, the network structure of
the PointPillars Backbone (2D CNN) was changed as shown
in Figure 10.

4. Demonstration Test

4.1. Dataset

This examination use the KITTI object detection bench-
mark dataset [1], which consists of 3D point cloud data re-
trieved from in-vehicle LiDAR, camera images, and driving
data. It also includes labels for the objects detected. The
KITTI dataset was originally divided into 7481 training and
7518 test images. For the test, the KITTI training images
were divided into two groups of 3712 training images and
3769 test images. The KITTI dataset has three annotations:
cars, cyclists, and pedestrians. The data values are catego-
rized as easy, moderate, or hard according to the object size
and the level of overlap. All of these images were com-
pared.

4.2. Test Overview

For comparison purposes, the parameters for the original
technique were set as shown in Table 1. In Proposed Tech-
nique 1, multiple pseudo images were generated by chang-

ing the reference position for segments in the Pillar Feature
Net, as shown in Figure 10. From that point, the pseudo
images are concatenated and input to the Backbone. The
segment reference position was shifted a distance of 0.125
m, or half of one side of the 0.25 m × 0.25 m pillar size.
The reference position was shifted in three directions: along
the x-axis, along the z-axis, and simultaneously along the x-
and z-axes. The other parameters were set as shown in Ta-
ble 1.

As in Proposed Technique 1, Proposed Technique 2 also
concatenates multiple pseudo images with changed segment
reference positions and inputs them to the Backbone. From
there, the number of feature dimensions was changed as
shown in Table 1. The detection accuracy of the original
and two proposed techniques was then compared.

4.3. Test Results

The test results are given in Table 2, where it can be seen
that the average precision (AP) was confirmed to improve in
nearly all of the categories for car, cyclist, and pedestrian.
Accuracy was especially improved in Proposed Technique
1 for cyclists, pedestrians, and other small objects.

As seen in Fig. 11(a-c), it was also confirmed that the
proposed technique could detect objects that went unde-
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tected with the original technique, and that false positives,
such as the dumpster detected as a car in Fig. 11(d), were
correctly removed. From these results, it was considered to
be more effective to change the segment reference position
and add surrounding data as features instead of changing a
single segment.

However, processing speed was significantly reduced
from 66.11 fps with the original technique to 12.10 fps and
16.84 fps for Proposed Techniques 1 and 2, respectively.
Although Proposed Technique 2 was further examined to
determine if the processing speed reduction could be lim-
ited by scaling back the number of features in the Backbone
and Detection-Head, the effect was inadequate. That is be-
cause the point cloud in this process chain takes the most
time to pre-process, so increasing the input point cloud sets
seriously slows processing speed. Therefore, it is likely that
even scaling back the number of features from Backbone on
would not limit the processing speed reduction.

The KITTI dataset was acquired at 10 Hz and can be
processed in real-time. However, when considering future
LiDAR sensor developments, the current processing speed
is expected to be insufficient. Accordingly, it will likely
be necessary in the future to propose a network with fewer
input point cloud sets in order to limit processing speed re-
ductions.

5. Conclusions
In this paper, we proposed a robust object detection tech-

nique for moving objects from 3D point clouds, as obtained
from in-vehicle LiDAR, based on the cause of momentary
missed detection as identified in Ref. [7]. In our VoxelNet
examination, we found that momentary missed detection
were being caused when the acquired 3D point cloud was
split to extract the features and the object’s point cloud was
being included in multiple regions due to the target object’s
relative position to the LiDAR sensor, which prevented the
features from being extracted correctly.

Therefore, this paper proposed an object detection tech-
nique in PointPillars which was developed based on Voxel-
Net, in which we set multiple segment reference positions
for the input point cloud and extract features from each po-
sition. From the results obtained, we confirmed that our
proposed technique improved detection accuracy. We also
found that segmenting the 3D point cloud and then setting
multiple segment reference positions for extracting the fea-
tures may help facilitate accurate recognition of smaller ob-
jects.

However, since the proposed technique significantly de-
creases processing speed compared to the original tech-
nique, it will be necessary to implement a network with
fewer input point cloud sets in the future in order to limit
processing speed reductions.

In our future work, we will quantitatively test whether

the momentary missed detection found in Ref. [7] also oc-
cur in PointPillars, and whether or not the proposed tech-
nique can limit those momentary missed detection.
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