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Abstract

Free space estimation is an important problem for au-

tonomous robot navigation. Traditional camera-based ap-

proaches train a segmentation model using an annotated

dataset. The training data needs to capture the wide va-

riety of environments and weather conditions encountered

at runtime, making the annotation cost prohibitively high.

In this work, we propose a novel approach for obtaining

free space estimates from images taken with a single road-

facing camera. We rely on a technique that generates weak

free space labels without any supervision, which are then

used as ground truth to train a segmentation model for free

space estimation. Our work differs from prior attempts by

explicitly taking label noise into account through the use

of Co-Teaching. Since Co-Teaching has traditionally been

investigated in classification tasks, we adapt it for segmen-

tation and examine how its parameters affect performances

in our experiments. In addition, we propose Stochastic Co-

Teaching, which is a novel method to select clean samples

that leads to enhanced results. We achieve an IoU of 82.6%,

a Precision of 90.9%, and a Recall of 90.3%. Our best

model reaches 87% of the IoU, 93% of the Precision, and

93% of the Recall of the equivalent fully-supervised base-

line while using no human annotations. To the best of our

knowledge, this work is the first to use Co-Teaching to train

a free space segmentation model under explicit label noise.

Our implementation and models are freely available online.

1. Introduction

Autonomous navigation is one of the key problems in

modern robotics. Before being able to safely plan and exe-

cute its motion, an autonomous vehicle should perceive its

environment and identify drivable free space in an accurate

*At the time of writing

manner. In this context, free space can be defined as road

surfaces that are not occupied by other objects such as ve-

hicles, traffic signs, road dividers or pedestrians [22]. Since

collision avoidance requires a fine-grained understanding of

the scene, we aim to classify every pixel as belonging to ei-

ther free space or occupied space.

In this work, we focus our attention on systems using

only a single road-facing camera. Although free space seg-

mentation can be approached using classical semantic seg-

mentation techniques, they usually require large quantities

of annotated images. While bounding-boxes for object de-

tection can be relatively cheap to obtain, studies have shown

that pixel-level annotations are significantly more time con-

suming [34]. In addition to the 1.5 hour labor cost asso-

ciated with labeling a single frame [9], a wide variety of

environmental and weather conditions need to be captured.

This creates a need for very large datasets, and renders

fully-supervised semantic segmentation solutions impracti-

cal. We tackle this problem in a different way: relying on

a method that generates weak, noisy, free space annotations

without any supervision [49], we train a neural network to

generalize past the label noise using Co-Teaching [16].

Our contributions can be summarized as follows: 1) we

adapt Co-Teaching for segmentation tasks and illustrate its

effectiveness on the particular case of free space estima-

tion, 2) we study the impact of the Co-Teaching schedule on

performances, 3) we propose a refinement called Stochastic

Co-Teaching and 4) we compare Stochastic Co-Teaching to

standard training and traditional Co-Teaching and observe

improvements in both IoU and Precision. We also make our

code and models available online.

The remainder of this paper is organized as follows: In

Section 2, we review the recent literature for both free space

estimation and weakly-supervised segmentation. In Sec-

tion 3, we introduce our weakly-supervised Co-Teaching

approach to free space estimation and describe the base-

line methods used for benchmarking. In Section 4, we de-

scribe our use of the Cityscapes dataset [9] and detail the
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experimental setup of this study. In Section 5, we carry

out experiments, detail the qualitative and quantitative re-

sults achieved, analyse the limitations of our approach, and

share further research directions. Finally, we conclude with

a summary of our contributions.

2. Related Work

Over the last decades, free space estimation has been ap-

proached with methods that leverage a wide variety of sen-

sors, e.g. GNSS [30], LiDAR [53] or cameras [42]. In this

work, we place a particular focus on recent camera-based

learning methods that use Convolutional Neural Networks.

Our method builds on recent advances in network architec-

tures for segmentation, weakly supervised techniques for

semantic segmentation or specific to free space estimation,

and on training under label noise. We present this back-

ground material in the following four sections.

Supervised Learning for Segmentation As a segmen-

tation task, supervised free space estimation has directly

benefited from progress in semantic segmentation. Fully-

Convolutional architectures such as FCNs [35], SegNets [2]

and U-Nets [47] have attracted a lot of attention in re-

cent years. Many refinements to U-Net have been pro-

posed [23, 59, 41], but this work will rely on a simple U-

Net architecture. Our choice is motivated by a recent find-

ing that many recent architecture improvements are outper-

formed by a well-tuned standard U-Net [21]. The efficiency

of deep networks for free space segmentation has already

been demonstrated in the fully-supervised context [42].

Weakly-Supervised Semantic Segmentation One major

drawback of these techniques is their reliance on extensive

human-annotated datasets. Such pixel-level annotations are

extremely expensive, the total annotation time reaching 1.5

hour per frame in some cases [9]. In cases where fine-

grained annotations are available for at least a subset of

the data, semi-supervised approaches such as Co-Training

can be applied [44]. As noted in the previous section,

such pixel-wise annotations are expensive to obtain. In

their absence, substantial efforts have been focused on do-

main adaptation from synthetic data [20], or on leveraging

weaker ground truth for semantic segmentation. The main

research directions re-purpose coarser labels such as bound-

ing boxes [11, 26, 27, 54], image-level labels [45, 13, 50],

class activation maps [6], single points [3], or scribbles [33].

Unsupervised and Weakly-Supervised Monocular Free

Space Segmentation Monocular free space estimation

has been approached in many different ways that differ in

the representation they use. A popular representation is the

stixel world, which approximates the ground plane and rep-

resents obstacles as vertical sticks [1, 10]. Another possi-

bility is to represent free space as a single horizontal curve

lying on the ground plane [56]. These approaches are how-

ever not directly comparable to our work, since they do not

annotate free space behind obstacles, and rely on ground

truth annotations for training. Monocular SLAM tackles

a related problem, but relies on video sequences and re-

sults in point clouds that do not explicitly represent free

space [14, 40, 12]. Recent work has also used video se-

quences to jointly learn free space and obstacle footprints

using structure-from-motion [52]. Our work explores an-

other avenue: we learn dense free space from single images

using approximate masks that can be generated without re-

quiring any supervision. One way of generating such weak

labels is to obtain depth information from stereo pairs and to

extract a ground plane estimate, often using the v-Disparity

algorithm [29, 17, 39]. Another possibility is to exploit

strong road texture and location priors, by dividing the in-

put into superpixels and clustering them based on saliency

maps [51] or semantic features [42]. We note that relying on

approximate masks differs from approaches based on coarse

labels, since the generated masks contain both false posi-

tives and false negatives. Indeed, bounding-boxes contain

no false negative, and scribble or point supervisions do not

include any false positive.

Learning to Segment under Label Noise Recent re-

search has shown that it is possible to train over-

parametrized models to generalize past some of the label

noise using Stochastic Gradient Descent (SGD) schemes

combined with early stopping [31]. However, approaches

that explicitly deal with noisy labels can further improve

performances, and have become an important research fo-

cus over the past few years. Solutions to this problem

include label cleaning [8], noise-aware network architec-

tures [48], or noise reduction through robust loss func-

tions [37, 36, 46]. Another line of research proposes

to adapt the training procedure itself. Curriculum learn-

ing [4] is based on training a model on samples of increas-

ing difficulty, which can correspond to different noise lev-

els [24, 15]. Knowledge distillation [19] is another proce-

dure that can cope with noise by training the teacher model

on a relatively clean subset of the data, and using it to guide

the training of the student model on the whole dataset [32].

Decoupling [38] and Co-Teaching [16] are two other ap-

proaches where two models are trained simultaneously. De-

coupling trains both models only on data where their out-

puts disagree, while Co-Teaching trains each model on the

fraction of the data that the other considers to be clean. For a

more comprehensive overview of techniques that cope with

noisy labels in image analysis, we refer the reader to the

survey in [25].
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Our work builds on supervised segmentation research

through its use of the U-Net architecture. We address label

noise using a Co-Teaching training scheme that we adapt

for segmentation tasks. We choose Co-Teaching because it

has been shown to perform well under moderate amounts

of noise [7]. We present our method in detail in the next

section.

3. Methodology

In this section we describe the main steps of our weakly-

supervised approach for a free space estimation task using

Co-Teaching. We present Co-Teaching and its adaptation

for a segmentation task, and we introduce its Stochastic

variant. Since we focus on improving the training aspect,

we use the weak labels proposed in [49] as targets dur-

ing training. We benchmark the performances of (Stochas-

tic) Co-Teaching against a fully-supervised model, as well

as against unsupervised and weakly-supervised baselines in

Section 5.

Co-Teaching for Segmentation The intuition for Co-

Teaching is based on memorization properties of deep neu-

ral networks trained with a variant of SGD [16]. Although

these networks are capable of overfitting random noise in

their training set [58], they also learn patterns from clean

data first [31]. To exploit this property, Co-Teaching pro-

poses to train two separate student networks f and g, and

to have each one select clean instances for the other to train

on. Since models tend to learn from clean data first, stan-

dard Co-Teaching selects clean labels as the ones with the

lowest loss. The main additional meta-parameter of Co-

Teaching is a schedule R(t) that defines the fraction of the

data that is considered clean and should be used for training

at any given iteration t. In early iterations, models have not

learned enough to identify noise in the training data, and

we should generally set R(t) ≈ 1. As training goes on,

R(t) should tend towards the expected noise rate τ , such

that all the noise and only the noise gets discarded. In a

weakly-supervised setting, τ is unknown and one must ei-

ther estimate it or try different schedules. Although it has

traditionally been used in classification tasks, Co-Teaching

has also recently seen some success when training an object

detector from noisy bounding boxes [5]. To the best of our

knowledge, this work is the first to adapt it to a segmentation

task. Our adaptation is straightforward: we consider each

weakly-labeled pixel as an independent label, and therefore

train each network on a sample of all pixels in a batch. The

entire procedure is detailed in Algorithm 1.

Stochastic Co-Teaching We further propose a refinement

named Stochastic Co-Teaching. Rather than systemati-

cally selecting the subset of labels that incur the least loss,

Stochastic Co-Teaching samples them with weights that are

inversely proportional to their loss. With this change, when

labels in a batch incur similar losses, they are all similarly

likely to be selected for training, regardless of the schedule

R(t). We are trusting that low-loss labels are more likely

to be clean, but we accept that some higher-loss samples

can also be selected with lower probability. Rather than be-

ing noisy, some of these high-loss labels may correspond

to harder examples that should not be systematically dis-

carded. Figure 1 illustrates the whole process: (a) An iden-

tical batch of B images with resolution H ×W is fed to in-

dependent networks f and g, (b) pixel-wise losses L(f) and

L(g) are computed using the noisy labels for each image,

(c) clean indices I(f) and I(g) are independently selected

for each student network by sampling a fraction R(t) of

indices without replacement and with probability inversely

proportional to their loss, (d) networks exchange their clean

indices and use them to sub-sample their own losses and

obtain L̄(f) and L̄(g), (e) each network only learns from

pixels that the other student deems clean. Note that noth-

ing prevents the use of networks f and g with completely

different topologies. In this work, students share the same

architecture, but their weights are randomly initialized in-

dependently from each other.

4. Experimental Setup

Dataset The Cityscapes dataset provides pixel-wise hu-

man labels for 30 visual classes in 5000 frames [9]. Since

the test set has no public annotation, we treat the 500 frames

of its validation set as our test set and randomly split the

Cityscapes training set into 2380 training and 595 validation

frames. In the context of autonomous robot navigation, we

consider free space to correspond to the road object class.

Cityscapes also contains 1.6% of frames where no pixel is

labeled as road. For these frames only, we use the ground

class to denote free space. Visual inspection confirmed that

ground corresponds to free space in these frames. Finally,

the semantic labels include 6 void classes such as unla-

beled, out of the region of interest or ego-vehicle. Following

Cityscapes semantic segmentation benchmarks, pixels that

correspond to such classes are ignored at evaluation time

using a mask m ∈ {0, 1}
H×W

.

Evaluation Metrics Our evaluation relies on three eval-

uation metrics: the Intersection-over-Union (IoU), Preci-

sion and Recall of the free space class. IoU reflects the

overall quality of the prediction, but does not immediately

capture the fraction of pixels that are labeled as part of the

road when they are actually occupied. Since these false free

space positives are extremely harmful to a robot navigation

scenario, we also emphasize the importance of measuring

the Precision of our predictions, i.e. the fraction of our free

space prediction that is indeed free space. Although it is

also interesting to monitor Recall, we note that missing free
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Algorithm 1: (Stochastic) Co-Teaching for Segmentation

Inputs: Models f and g, training data generator G, loss L, max iterations T and schedule R(t)
1 forall t ∈ {1, . . . , T} do

2 Obtain next batch (x, yweak) ∈
(

R
B×H×W×3 × R

B×H×W
)

from training data G

3 Compute per pixel losses L(f) = L(f(x), yweak) and L(g) = L(g(x), yweak)
4 Compute n = R(t)×B ×H ×W , the number pixel samples to keep

5 if stochastic co-teaching then

6 Let S(w, k) randomly sample k unique indices of w, using values of w as weights

7 Sample n clean indices I(f) = S(1/L(f), n) and I(g) = S(1/L(g), n)

8 else

9 Let TopK(z, k) select the indices of the k largest elements of z

10 Compute n clean indices I(f) = TopK(1/L(f), n) and I(g) = TopK(1/L(g), n)

11 Compute clean losses L̄(f) =
{

L
(f)
i : i ∈ I(g)

}

and L̄(g) =
{

L
(g)
i : i ∈ I(f)

}

12 Update f using ∇L̄(f) and g using ∇L̄(g)

𝑥 ∈ ℝ𝐵×𝐻×𝑊×3𝑦 ∈ ℝ𝐵×𝐻×𝑊
𝐿(𝑓) ∈ ℝ𝐵×𝐻×𝑊

𝐿(𝑔) ∈ ℝ𝐵×𝐻×𝑊

Input Batch
(iteration 𝑡)

Network g

Losses

Network f 𝐼(𝑓)

𝐼(𝑔)

“Clean” Indices “Clean” Losses

ത𝐿𝑓 = 𝐿 𝑓 𝐼 (𝑔)

ത𝐿𝑔 = 𝐿 𝑔 𝐼 (𝑓)
Weighted sampling 
without repetition

weights = 1/𝐿(𝑔)

Weighted sampling 
without repetition

weights = 1/𝐿(𝑓)
Optimize 𝑓
with ∇ത𝐿(𝑓)

Optimize 𝑔
with ∇ത𝐿(𝑔)

(a) (b) (c) (d)

(e)

Figure 1: Stochastic Co-Teaching. Student networks compute their own pixel-wise loss, and randomly select a subset of

clean pixels to train on, based on loss values of the other student.

space has less impact than false positives in an autonomous

driving scenario. Given a single free space prediction ŷ,

ground truth y, and evaluation mask m, the metrics for a

single frame of shape H×W are computed with Equation 1

to 3, where ŷ, y, m ∈ {0, 1}
H×W

.

IoU =

∑
i ŷiyimi∑

i(ŷi + yi − ŷiyi)mi

(1)

Precision =

∑
i ŷiyimi∑
i ŷimi

(2)

Recall =

∑
i ŷiyimi∑
i yimi

(3)

Network architectures Following recent research that

shows that a well-tuned vanilla U-Net can outperform many

variants on segmentation tasks [21], we opt for a U-Net

structure based on a ResNet18 backbone (14.3M parame-

ters) [47, 18, 55]. To compare with prior art, we also im-

plement and train the SegNet model described in [49]. For

computational reasons, we use a 512 × 1024 input resolu-

tion in all experiments. Outputs are however re-scaled using

nearest neighbor interpolation in order to compute metrics

in the original 1024× 2048 resolution.

Training procedure Since the authors of [49] do not

share trained weights for their SegNet architecture, all mod-

els are trained from randomly initialized weights to allow
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for fair comparison. We use the PyTorch framework [43]

and train models with the Adam optimizer [28], a batch size

of 6 and a learning rate of 0.001. The models are trained on

a single NVIDIA K80 until the training loss plateaus, which

occurs after 25 epochs for U-Nets and 50 epochs for Seg-

Nets. We keep all intermediate models and perform model

selection post-training.

Model selection In the context of weakly-supervised

learning, we must be careful when performing model se-

lection. This is especially important since Cityscapes pro-

vides ground truth annotations for all training and valida-

tion frames used in this study. We stress that these frames

are never used for training, picking hyper-parameters, or to

perform early stopping. We therefore evaluate ground truth

IoU, Precision and Recall only once on the test set, after all

these steps have been performed. Models trained with stan-

dard training loops are selected to minimize the validation

loss. This approach has to be slightly adapted when us-

ing Co-Teaching, since the scale of the loss varies with the

value of R(t), the fraction of data to be considered clean

over time. As explained in Section 3, R(t) usually starts at

1, before decreasing to a minimum, and again increasing to

plateau at R(t) = τ . When R(t) is smaller, a larger frac-

tion of high-loss samples is discarded and the loss value is

deflated. To account for this, we only select models in the

final plateau of our schedules, where R(t) = τ . For more

information about the schedules R(t) we consider, see Ap-

pendix A.

5. Results

This section outlines the set of experiments carried out

to benchmark our proposed method, using IoU, Precision

and Recall. Five main types of approaches were tested: 1)

Fully-supervised upper-bounds, 2) unsupervised baselines,

3) standard training, 4) (Stochastic) Co-Teaching, and 5)

Ensembling (Stochastic) Co-Teaching students. The quan-

titative results are summarized in the five categories of Ta-

ble 1. In this section, we present results for each category,

before analyzing the limitations of our approach and pre-

senting qualitative results.

Fully-Supervised Upper-bound Since Cityscapes pro-

vides human annotations for all of the data, it is natural

to compare our unsupervised approach with its supervised

counterpart. To this end, we train a Fully-Supervised U-Net

using the ground truth labels and observe that it is able to

reach high IoU (0.9412) and Precision (0.9726). Since this

is the only method that uses the ground truth labels for train-

ing or validation, we expect it to provide an upper-bound for

unsupervised results. To account for the effect of potential

noise in the ground truth, we also train the same network

using (Stochastic) Co-Teaching. Since ground truth data is

assumed to contain only a small amount of noise, we use

a specific R(t) schedule that trains on the whole training

data for one epoch, before progressively discarding up to

4% of the training data and slowly incorporating 3% back

in to finish training with R(t) = 0.99. Examples of sim-

ilar schedules are illustrated in Appendix A. We observe

that both Co-Teaching and Stochastic Co-Teaching result in

degraded performance in the fully-supervised case. This in-

dicates that we are discarding valuable data and that ground

truth label noise, although always present in pixel-wise an-

notations, is likely negligible for our purposes.

Unsupervised Baselines In order to compare our ap-

proach to other algorithms, we use two simple methods

that do not need training and should act as lower bounds.

The Bottom Half model is a trivial baseline that clas-

sifies the entire lower half of the image as free space.

Bottom-Half is able to reach a decent IoU of 0.7550 and

a high Recall, which is not surprising since free space

indeed covers a large portion of the lower half of most

frames. The Precision of this model is however only of

0.7798, which is poor compared to the 0.8778 achieved

by our second unsupervised baseline, the raw Weak Labels

from [49]. This second baseline also yields a large IoU im-

provement, reaching 0.7900. Competing unsupervised ap-

proaches often tackle the more general problem of seman-

tic segmentation, for which other datasets are preferred to

Cityscapes [11, 54, 45, 13, 6]. Furthermore, papers that use

the Cityscapes benchmark seldom report road-class IoU.

Recent weakly-supervised free space estimation works also

use varied datasets [39, 17, 56]. Two exceptions are pre-

sented in [51] and [20], which respectively obtain an IoU of

0.8 and 0.704, but do not report Precision and Recall.

Standard Training We train both our own U-Net and

the SegNet model described in [49], using the weak labels

as targets in a standard training loop. We stress the fact

that these models do not use any human-annotated ground

truth at any point during training or validation. As previ-

ously observed in [31], standard training is robust to noise

to some degree, and our models are able to generalize be-

yond the noise in their training targets. Compared to raw

weak labels, U-Net is able to improve in IoU (+2.52%),

Precision (+1.58%), and Recall (+2.34%). Since SegNet

yields slightly worse IoU results than U-Net (+2.3%) and

is slower at training and inference time, we focus our Co-

Teaching experiments on U-Nets.

(Stochastic) Co-Teaching Training We first report re-

sults from the best student models, which are selected as

having the lowest validation loss among the two students

of each Co-Teaching experiment. Note that all models
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Training/Validation

Labels
Test IoU Test Precision Test Recall

Supervised U-Net (standard training) ground truth 0.9412 0.9726 0.9727

Supervised U-Net (Co-Teaching ensemble) ground truth 0.9311 0.9621 0.9646

Supervised U-Net (Stochastic Co-Teaching ensemble) ground truth 0.9360 0.9664 0.9655

Bottom Half no training 0.7550 0.7798 0.9616

Weak Labels [49] no training 0.7900 0.8778 0.8924

Unsupervised Domain Adaptation [20] synthetic data 0.7040 not reported not reported

Distant Supervision [51] image labels 0.8000 not reported not reported

Standard SegNet weak labels 0.8130 0.8936 0.9015

Standard U-Net weak labels 0.8152 0.8854 0.9138

Co-Teaching U-Net (best student) weak labels 0.8214 0.8995 0.9074

Stochastic Co-Teaching U-Net (best student) weak labels 0.8237 0.9076 0.9017

Co-Teaching U-Net (ensemble) weak labels 0.8219 0.9028 0.9047

Stochastic Co-Teaching U-Net (ensemble) weak labels 0.8261 0.9093 0.9027

Table 1: Quantitative results on the Cityscapes validation set, which we treat as our test set.

trained with Co-Teaching in the 4th and 5th sections of Ta-

ble 1 use a tuned R(t), whose effect on the performance is

explored in Appendix A. Co-Teaching is able to improve

over standard training in both IoU (+0.62%) and Precision

(+0.76%), while our stochastic variant results in an addi-

tional improvement of 0.23% in IoU and 0.81% in Preci-

sion.

Ensembling Models trained with (Stochastic) Co-

Teaching To assess their convergence, we run Co-

Teaching trained students over the training data and we

observe a high agreement over the free space predictions

(99.2% of pixels are predicted the same), and over which

pixels should be considered clean for training (99.4% agree-

ment). Due to its additional sampling step, we observe a

slightly lower convergence when Stochastic Co-Teaching is

used (97.6% agreement on predictions, 97.8% on clean in-

dices). Since the students exhibit similar validation losses

but are not completely equivalent, it is natural to ensemble

them by averaging their confidence outputs before thresh-

olding for a prediction. We obtain our best model using this

strategy with the Stochastic Co-Teaching students, yield-

ing an IoU of 82.61%, a 0.24% improvement over the best

student, and a 0.42% improvement over the Co-Teaching

equivalent. These results amount to 87% of the IoU, 93% of

the Precision, and 93% of the Recall of the fully-supervised

baseline while not using any human labels.

Limitations of (Stochastic) Co-Teaching The introduc-

tion of sampling during the training process in the stochastic

variant results in performance gains. However, these gains

are limited to a few percentage points. To understand why,

we take advantage of the availability of ground truth labels

in training data from Cityscapes. We train the same U-Net

model used in previous experiments for 2 warm-up epochs

using the entire weak labels and depict the distribution of

pixel-wise losses on Figure 2. This allows us to observe the

distribution of noise with respect to the loss at the begin-

ning of training, and analyze the impact of applying differ-

ent training strategies in subsequent epochs. Figure 2 illus-

trates an absence of noisy labels at low loss values, and a

much larger proportion of wrong labels at high loss values.

The Co-Teaching assumption that almost all noisy labels

incur high loss values is not completely respected in this

case. Indeed, non-negligible noise is also observed at me-

dian loss values. This empirical example validates the idea

of sampling rather than using a fixed loss cutoff to reject

likely noisy samples. Table 2 presents the noise statistics

for training a third epoch using different strategies. When

discarding 5% of pixels with the highest loss in each batch,

Co-Teaching is able to discard 3.3% of the noise, while only

removing 1.7% of the clean data. By sampling the training

losses 10000 times and reporting mean noise statistics along

with their standard deviation, we observe that Stochastic

Co-Teaching is able to discard slightly more noise. Using

the knowledge that our training weak labels contain 15.67%
of noise, we show that using R(t) = 0.85 rejects a larger

fraction of the noise, but also rejects more clean data. The

fact that both Co-Teaching methods invariably sacrifice a

small fraction of clean data explains why their Recall results

are slightly worse than for Standard training in Table 1. We

remind the reader that our previous experiments were con-

ducted without any use of the ground truth on the training

and validation data, which prevents the use of such noise

level estimates to set optimal co-teaching schedules in prac-

tice.

Qualitative Results Figure 3 shows test set predictions

of our Stochastic Co-Teaching U-Net, and compares them

against the Cityscapes ground truth and raw weak labels.

The first three columns of images illustrate the higher Pre-

cision of our learned model. It is able to classify regions
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Figure 2: Distribution of U-Net pixel-wise loss after 2 train-

ing epochs on weak labels.

Training Strategy
Discarded

Noise

Discarded

Clean

Standard 0% 0%

Co-Teaching (R(t) = 0.95) 3.3% 1.7%
Stochastic Co-Teaching (R(t) = 0.95) 3.6%± 0.04% 1.4%± 0.04%

Co-Teaching (R(t) = 0.85) 7.2% 7.8%
Stochastic Co-Teaching (R(t) = 0.85) 7.5%± 0.11% 7.5%± 0.11%

Table 2: Noise statistics for training epoch 3 using dif-

ferent training strategies.

W
ea

k
 L

ab
el

s
S

to
ch

as
tic

C
o-

Te
ac

hi
ng

Figure 3: Qualitative results from the test set. Green, red and orange respectively indicate correct, incorrect and missing

free space predictions. Note that we display the raw outputs of our model, without masking the ego-vehicle or void classes

discussed in Section 4.

such as cars or pedestrians as occupied, even though weak

labels mark them as free space. Improvements in Precision

happen at the cost of Recall, and our predictions tend to be

less homogeneous than weak labels. Finally, the last row il-

lustrates a failure case: the weak labels are almost flawless

but the model fails to segment free space correctly.

Future Research Directions Because weak labels gen-

eration relies on clustering, wrong labels tend to occur in

entire spatial regions. Rather than attempting the hard task

of discarding individual pixels, future work may investigate

clustering approaches to ignore entire superpixels at train-

ing time. Since the output of our model can be seen as

stronger labels, another promising research direction would

be to iteratively train models to refine them.

6. Conclusion

In this work, we introduce a novel approach for training

a neural network to predict free space from images taken

with a single road-facing camera. We train our models us-

ing weak labels that are generated without expensive hu-

man annotations, and adapt Co-Teaching to our segmenta-

tion task in order to cope with label noise. To the best of

our knowledge, our method is the first free space estimation

approach to explicitly take label noise into account during

training by using an adaptation of Co-Teaching. We also

propose Stochastic Co-Teaching, a refinement that allows us

to improve over results obtained with standard training and

classical Co-Teaching procedures. By ensembling students

trained with Stochastic Co-Teaching, we improve over stan-

dard training in both IoU (+1.1%) and Precision (+2.4%).

Our best model reaches 87% of the IoU and 93% of the Pre-

cision of the fully-supervised competitor that trains from

ground truth pixel-wise labels. Future work will investi-

gate improvements to weak label generation, superpixel-

level Co-Teaching, iterative training of successive models,

and applications for more general segmentation scenarios.

A. Co-Teaching Schedule Impact

The most important hyper-parameter of Co-Teaching is

the schedule R(t), which controls the fraction of the train-

ing data that should be considered clean at any epoch t.

Following recent research, our R(t) starts at one, decrease

to a minimum and then increase to plateau at a final value

R(T ) [57]. We choose piecewise linear schedules, and

vary the length of their warmup phase where R(t) = 1,
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their minimum and their final value. Figure 4 illustrates the

schedules we consider, and the two parts of Table 3 presents

the corresponding test set metrics for the Co-Teaching U-

Net model presented in Section 5. In the first part of Table 3,

we alter both the minimum and final values of R(t). The

70%-85% schedule discards so much data that many clean

labels are also ignored. This lowers the IoU to 0.3749, while

the decreased noise allows the Precision to rise to 0.9352.

As more data is kept in rows 2 to 4, IoU increases, while

Precision slightly decreases. Since our goal is to balance

IoU with Precision, we select 90%-95% for further investi-

gation. In the second part of Table 3, we keep the schedule

bounds fixed to 90%-95% and vary the length of the ini-

tial warm-up phase, where R(t) = 1 and all the data is

kept. We observe little impact on IoU, but Precision gradu-

ally rises with shorter warm-up phases. This indicates that

few iterations are enough for the student models to identify

and discard noise, and we select the 90%-95% with a sin-

gle warm-up epoch as our best R(t) schedule, for which we

report our results in Section 5.

0 5 10 15 20 25

Epoch t

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
(t
)

90% - 95%, 4 warm-up

90% - 95%, 2 warm-up

90% - 95%, 1 warm-up

70% - 95%

70% - 90%

70% - 85%

Figure 4: Tested R(t) schedules

R(t) Bounds Warm-up Test IoU Test Precision

70% 85% 4 0.3749 0.9352

70% 90% 4 0.8081 0.9021

70% 95% 4 0.8079 0.8961

90% 95% 4 0.8214 0.8940

90% 95% 2 0.8210 0.8970

90% 95% 1 0.8214 0.8995

Table 3: Co-Teaching U-Net results
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[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston. Curriculum learning. In Proceedings of the

26th Annual International Conference on Machine Learning,

ICML ’09, page 41–48, New York, NY, USA, 2009. Associ-

ation for Computing Machinery.

[5] Simon Chadwick and Paul Newman. Radar as a teacher:

Weakly supervised vehicle detection using radar labels. In

2020 IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 222–228, 2020.

[6] Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson

Piramuthu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Mixup-

cam: Weakly-supervised semantic segmentation via uncer-

tainty regularization. In 31st British Machine Vision Confer-

ence 2020, BMVC 2020, Virtual Event, UK, September 7-10,

2020. BMVA Press, 2020.

[7] Pengfei Chen, Ben Ben Liao, Guangyong Chen, and

Shengyu Zhang. Understanding and utilizing deep neural

networks trained with noisy labels. In Kamalika Chaudhuri

and Ruslan Salakhutdinov, editors, Proceedings of the 36th

International Conference on Machine Learning, volume 97

of Proceedings of Machine Learning Research, pages 1062–

1070. PMLR, 09–15 Jun 2019.

[8] F Chiaroni, M-C Rahal, N. Hueber, and Frédéric Dufaux.

Hallucinating a Cleanly Labeled Augmented Dataset from a

Noisy Labeled Dataset Using GANs. In IEEE, editor, 26th

IEEE International Conference on Image Processing (ICIP),

Taipei, Taiwan, Sept. 2019.

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
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gios Varisteas, and Christian Hundt. Leveraging privileged

information to limit distraction in end-to-end lane following.

In 2020 IEEE 17th Annual Consumer Communications Net-

working Conference (CCNC), pages 1–6, 2020.

[47] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015.

[48] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,

Lubomir Bourdev, and Rob Fergus. Training convolutional

networks with noisy labels. Jan. 2015. 3rd International

Conference on Learning Representations, ICLR 2015 ; Con-

ference date: 07-05-2015 Through 09-05-2015.

[49] Satoshi Tsutsui, Tommi Kerola, Shunta Saito, and David J

Crandall. Minimizing supervision for free-space segmenta-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 988–997,

2018.

[50] S. Tsutsui, S. Saito, and T. Kerola. Distantly supervised

road segmentation. In 2017 IEEE International Conference

on Computer Vision Workshops (ICCVW), pages 174–181,

2017.

[51] Satoshi Tsutsui, Shunta Saito, and Tommi Kerola. Dis-

tantly supervised road segmentation. 2017 IEEE Interna-

tional Conference on Computer Vision Workshops (ICCVW),

pages 174–181, 2017.

[52] Jamie Watson, Michael Firman, Aron Monszpart, and

Gabriel J. Brostow. Footprints and free space from a single

color image. In Computer Vision and Pattern Recognition

(CVPR), 2020.

[53] Liang Xiao, Bin Dai, Daxue Liu, Tingbo Hu, and Tao Wu.

Crf based road detection with multi-sensor fusion. In 2015

IEEE Intelligent Vehicles Symposium (IV), pages 192–198,

2015.

[54] Wenbin Xie, Qiaoqiao Wei, Zheng Li, and Hui Zhang.

Learning effectively from noisy supervision for weakly su-

pervised semantic segmentation. In BMVC, 2020.

[55] Pavel Yakubovskiy. Segmentation models. https:

//github.com/qubvel/segmentation_models,

2019.

[56] Jian Yao, Srikumar Ramalingam, Yuichi Taguchi, Yohei

Miki, and Raquel Urtasun. Estimating drivable collision-free

space from monocular video. In 2015 IEEE Winter Confer-

ence on Applications of Computer Vision, pages 420–427,

2015.

[57] Quanming Yao, Hansi Yang, Bo Han, Gang Niu, and James

Tin-Yau Kwok. Searching to exploit memorization effect in

learning with noisy labels. In Hal Daumé III and Aarti Singh,
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