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Abstract

In this work, we address the problem of 3D object de-
tection from point cloud data in real time. For autonomous
vehicles to work, it is very important for the perception
component to detect the real world objects with both high
accuracy and fast inference. We propose a novel neural net-
work architecture along with the training and optimization
details for detecting 3D objects using point cloud data. We
present anchor design along with custom loss functions used
in this work. A combination of spatial and channel wise
attention module is used in this work. We use the Kitti 3D
Bird’s Eye View dataset for benchmarking and validating
our results. Our method surpasses previous state of the art
in this domain both in terms of average precision and speed
running at > 30 FPS. Finally, we present the ablation study
to demonstrate that the performance of our network is gen-
eralizable. This makes it a feasible option to be deployed in
real time applications like self driving cars.

1. Introduction

A lot of work has been done in 2D object detection us-
ing convolutional neural networks. The object detection
algorithms can be broadly grouped into the following two
types:

1. Single stage detector - Yolo (Redmon et al., 2016),
SSD (Liu et al., 2016).

2. Two stage detector - RCNN (Girshick et al., 2014), Fast
RCNN (Girshick, 2015), Faster RCNN (Ren et al., 2015).

The difference between the two is that in the two stage
detectors, the first stage uses region proposal networks to
generate regions of interest and the second stage uses these
regions of interest for object classification and bounding box
regression. These are proven to have achieved better accu-
racy than the one stage architecture but comes at a tradeoff
of more computational burden and time taken. On the other
hand, a single stage detector uses the input image to directly
learn the class wise probability and bounding box coordi-
nates. Thus these architectures treat the object detection

as a simple regression problem and thus are faster but less
accurate.

There has also been a lot of work done on 3D object
detection. Some of them use a camera based approach using
either monocular or stereo images. Also work has been done
by fusing the depth information on RGBD images taken from
the camera. The main problem with camera based approach
is the low accuracy achieved. Therefore lidar data has been
proven to be a better alternative achieving higher accuracy
and thus safety which is a primary concern for self driving
cars. The challenge with using lidar data is that it produces
data in the form of point clouds which have millions of points
thus increasing the computational cost and processing time.

Point cloud data are of many types, of which the main
type is 3D voxel grid. However, monocular 3D object de-
tection is a difficult problem due to the depth information
loss in 2D image planes. Recent networks have been pro-
posed to first predict the pixel-level depth and convert the
monocular image to 3D point cloud representations. These
methods although achieves good performance but it intro-
duces additional expensive computational cost for predicting
high-resolution depth maps from images, making them chal-
lenging to be deployed in real time settings like self driving
cars.

In this work, our approach uses only the bird’s eye view
for 3D object detection in real time. The context of our
work is in self driving cars but can be deployed in other
settings as well. To validate our work, we benchmark our
results on the publicly available 3D Kitti dataset (Geiger
et al., 2012). We use spatial and channel attention modules
in one branch for finding out where is an informative part
in the image and finding out what feature is meaningful in
the image respectively. The second branch locates the 2d
bounding box co-ordinates while the third branch is used
to get the deviations between the predicted and actual co-
ordinates. The individual features are summed to give the
refined 3d bounding box co-ordinates. For the evaluation
metric, we use the class wise average precision. Our work
beats the previous state of the art approaches for 3D object
detection while also running at greater than 30 FPS. We also
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further show the learning and optimization aspects along
with ablation study of this approach and present how it could
potentially be generalized to other real world settings.

A sample of the predicted 3D detection from the KITTI
validation dataset is shown in Figure 1:

Figure 1. 3D detection from the KITTI validation dataset projected
onto an image

2. Related Work

Recently there have been a surge of papers on 3D object
detection from various kinds of data like LIDAR, stereo etc.
VOTE 3D (Qi et al., 2019) uses a sliding window on a 3D
voxel grid to detect objects. The pre-trained model is fed to a
SVM classifier later. VELOFCN (?) projects 3D point cloud
data to a perspective in the front view and gets a 2D depth
map. The objects are detected by running a convolutional
neural network on the depth map. MV3D (Qi et al., 2018)
architecture also used a similar approach by combining the
features extracted from multiple views like front view, birds
eye view and camera view. These extracted features are
passed through a CNN to detect 3D objects.

PointNet (Qi et al., 2017) proposed an end-to-end clas-
sification neural network that directly takes a point cloud
as input without any preprocessing and outputs class scores.
(Zhou and Tuzel, 2018) subdivides the point cloud into 3D
voxels and then transforms points within each voxel to a
trainable feature vector that characterizes the shape informa-
tion of the contained points. The representation vectors for
each voxel stacks together and passes to a region proposal
network to detect the objects. (Chen et al., 2020) proposed
and anchor free method using firing of different hotspots.
(Ge et al., 2020) used anchor free one stage network for 3d
object detection. Pairwise spatial relationship of features
was used for monocular 3D object detection (Chen et al.,
2020). A learnable depth guided convolution was used to
tackle monocular 3D object detection problem (Ding et al.,
2020).

Triple attention module was used (Liu et al., 2020) for
3d object detection from point clouds. A comprehensive
study of various localization errors involved while detecting
3d objects was presented (Ma et al., 2021). A new voting
algorithm was individually proposed for improving the ro-
bustness of 3d object detector (Qi et al., 2020) and (Xie
et al., 2020). (Zhou et al., 2020) used an end to end learn-
able network using multi view feature fusion from lidar data.

(Vora et al., 2020) similarly used sequential fusion approach.
A more generalizable method taking into account different
shapes and sizes of objects present in image was proposed
by (Zhang et al., 2021). Both 3d object detection and track-
ing problem was tackled using a single network (Yin et al.,
2021).

We summarize our main contributions as follows:

* A novel approach using spatial and channel attention
mechanism to simultaneously detect and regress 3D bound-
ing box over all the objects present in the image.

* A thorough analysis of backbone, optimization, anchors
and loss function used in our network which is end to end
trainable.

* Evaluation on the KITTI dataset shows we outperform
all previous state-of-the-art methods in terms of average
precision while running at >30 FPS.

3. Model
3.1. Dataset

For this work, we have used the Kitti dataset (Geiger
et al., 2012) which contains LIDAR data taken from a sensor
mounted in front of the car. Since the data contains millions
of points and is of quite high resolution, processing is a
challenge especially in real world situations. The task is to
detect and regress a bounding box for 3D objects detected
in real time. The dataset has 7481 training images and 7518
test point clouds comprising a total of labelled objects. The
object detection performance is measured through average
precision and IOU (Intersection over union) with threshold
0.7 for car class. The 3D object KITTI benchmark provides
3D bounding boxes for object classes including cars, vans,
trucks, pedestrians and cyclists which are labelled manually
in 3D point clouds on the basis of information from the cam-
era. KITTT also provides three detection evaluation levels:
easy, moderate and hard, according to the object size, occlu-
sion state and truncation level. The minimal pixel height for
easy objects is 40px, which approximately corresponds to
vehicles within 28m. For moderate and hard level objects
are 25px, corresponding to a minimal distance of 47m.

3.2. Problem Definition

Given a RGB images and the corresponding camera pa-
rameters, our goal is to classify and localize the objects of
interest in 3D space. Each object is represented by its cat-
egory, 2D bounding box Bsp, and 3D bounding box Bsp.
Bsp is represented by its center ¢; = [z, yolep and size
[ho, wo)2p in the image plane, while Bsp is defined by its
center [z, y, z]sp, size [h, w, l]3p and heading angle  in the
3D world space.

The 3D bounding box Bsp is the final goal of prediction.
The first task is 2D object detection in which the goal is to
predict the 2D bounding box By p of the object and its class.
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Bsp = (’UJQD, hop, Uy, Ub) where (’UJQD, th) indicates the
size of Bap and (uy, vp) represents the center of Bap on the
image plane.

3.3. Spatial Attention Module

The spatial attention module is used for capturing the spa-
tial dependencies of the feature maps. The spatial attention
(SA) module used in our network is defined below:

fsa(x) = fsigmoia (W2 (frRerv (Wi(x)))) (1

where W7 and W5 denotes the first and second 1 x 1
convolution layer respectively, « denotes the input data,
fsigmoia denotes the sigmoid function, fr.ru denotes the
ReLu activation function.

The spatial attention module used in this work is shown
in Figure 2:

Spatial Attention Module
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Figure 2. Illustration of our spatial attention module

3.4. Channel Attention Module

The channel attention module is used for extracting high
level multi-scale semantic information. The channel atten-
tion (CA) module used in our network is defined below:

fCA(x) = fsigmoid(WQ(fReLU(Wlf}ingool(x)))) (2)

where W7 and W5 denotes the first and second 1 x 1 con-
volution layer, z denotes the input data. f}, gPool denotes
the global average pooling function, fs;gmoia denotes the
Sigmoid function, fr.r denotes ReLLU activation function.

The channel attention module used in this work is shown
in Figure 3:
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Figure 3. Illustration of our channel attention module

3.5. Network Architecture

We divide the point cloud data into 3D voxel grid cells.
Our CNN backbone takes as input the image in the form
of voxel and outputs a feature vector. We use Resnet as
backbone for our network. Residual blocks are used for
locating the 2d bounding box co-ordinates which is then
propagated to a Roi Align operator which is then sent to
a fully connected layer. In parallel, spatial and channel
attention mechanism are used for finding out where is an
informative part in the image and finding out what feature is
meaningful given in the image. the individual features are
summed up which is in turn summed up with the first block
to produce the 3d bounding box co-ordinates. In parallel,
a third block uses Roi Align and fully connected layers to
find out the deviations between the actual and predicted co-
ordinates. Anchors are used in these deltas blocks to adjust
the coordinates according to the size and shape of the object
detected. This block is learnable thus improving the hyper-
parameters in every iteration. The learned deviations are
finally summed up with the 3d bounding box co-ordinates to
give the refined 3d bounding box co-ordinates.

The residual blocks are made up of: a fully connected
layer followed by a non linearity activation function which
is ReLU used in this case and a batch normalization layer.
These layers are used for transforming each point in the
voxel to a point wise feature vector. Element wise max-
pooling layer is also used which extracts the maximum value
from all the neighbouring pixel values when the filter is
applied on the image. This operation is used for getting the
locally aggregated features. Also a point wise concatenation
operator is used which concatenates each point wise feature
vector with the locally aggregated features. For our detector
there are in total 7 parameters - three for the offset center
coordinates, three for the offset dimensions and the last is
for offset rotation angle. The network architecture is shown
in Figure 4:

3D Bounding
Box
Refined 3D
Bounding Box

Input Image

Figure 4. Illustration of our network architecture. SA denotes
spatial attention module, CA denotes channel attention module, FC
denotes fully connected layer and + denotes summation operator.

630



4. Experiments
4.1. Anchors

Anchors are very important for efficient object detection.
These are basically prior beliefs containing information of
the size for the detected object, its position is the image, its
pose, its orientation etc. Anchors of multiple shape, size
are more stable, also helps in reducing the computational
burden and time taken by the model. We have chosen two
anchors for each of the classes as shown in Table 1, Table 2
and Table 3 respectively:

Table 1. Car anchors

Height(m) Width(m) Length(m) Rotation(Theta)
1.6 1.6 4 0

1.6 1.6 1.6 90

Table 2. Pedestrian anchors

Height(m) Width(m) Length(m) Rotation(Theta)
1.7 0.5 0.7 0

1.7 1.5 0.7 90

Table 3. Cyclist anchors

Height(m) Width(m) Length(m) Rotation(Theta)
1.6 0.7 2 0

1.6 0.7 2 90

4.2. Loss Functions

A vector s = (z,y, 2,1, h,w, 0) represents 3D bounding
box center coordinates, height, width, length and yaw respec-
tively. The geometric relations between various parameters
is illustrated in the equation below where s represents the
ground truth vector and a represents the anchor vector. The
localization regression between ground truth and anchors are
defined using set of Equations 3-10:

Ts— X
Ar = 2 _—2 3
VI2 + w? ©)
hs h
Azp=2i— 5 —2at 5 4)
Ys — Ya
Ay = —=— 5
VST W )
hs hq
AZt:ZS‘i‘? Za 7 (6)
Ls
Al =log = 7

Aw = log Os )
Wq

A¢ = |sin (05 — 0,,)] )

An = cos (6s — 0,) (10)

Since the angle localization loss cannot distinguish the
bounding boxes which are flipped, we use a softmax classifi-
cation loss as shown for both positive and negative anchors.
For the object classification, we have used focal loss as
shown in Equation 11 and Equation 12 respectively:

Epos = —Qq (1 - pa)’y logpa (11)

—ag (1 —p*)" logp® (12)

We used Intersection Over Union (IOU) for evaluating
the performance of our network. All the positive anchors
have an IOU value above 0.60 while those with less than
0.45 are treated as negative anchors. We used binary cross
entropy loss for detection and a variant of huber loss for
regression.

Let ¢ and j denote the positive and negative anchors and
let p denote the sigmoid activation for the classification
network. Let pos represent the positive regression anchors
and neg the negative regression anchors. The individual loss
terms can be denoted using set of Equations 13-15.

ACneg =

1 0S
Ly = NZL”"S (PP, 1) (13)

1
Ly =D Lneg (v, 0) (14)
J

Ly =~ (L (L") + L(h,h*) + Le (w,w*))  (15)
k

2l -

The overall loss function is shown in Equation 16:

Liotar = oLy + BLo + L3 (16)

Here o, 8 and + are the hyper-parameters with values set
as 0.5, 0.5 and 1.0 respectively.

4.3. Evaluation Metrics

We use the Average Precision with 40 recall positions
(APyp) under three difficult settings (easy, moderate, and
hard) for those tasks. We present the performances of the
Car, Pedestrian and Cyclist categories as reference. The
default IoU threshold values are 0.7, 0.5, 0.5 for these three
categories respectively. Each manually annotated object is
divided into easy, moderate, and hard level according to the
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occlusion, truncation, and box height. The metrics used
extensively in the literature are Average precisions (AP) on
the car class for bird’s-eye-view (BEV) and 3D boxes with
0.5/0.7 ToU thresholds. We present both AP;; and APy
results to make comprehensive comparisons as has been
studied in literature.

4.4. Implementation Details

We train our model on a GTX 1080Ti GPU with a batch
size of 16 for 100 epochs. We use Adam optimizer with an
initial learning rate of 0.001, and decay it by ten times at
every 100 epochs. The weight decay is set to 0.0001. We
use Non-Maximum Suppression (NMS) on center detection
results. We use 3D bounding boxes score of center detection
as the confidence of predicted results. We discard predictions
with confidence value less than 0.1. All input images are
padded to the same size of 384 x 1280. The prediction head
of the backbone consists of one 3 x 3 x 256 conv layer,
BatchNorm, ReLLU, and 1 x 1 x op conv layer where op is
the output size.

5. Results

We report our results of the Car category on KITTI test
set as shown in Table 4. Overall, our method achieves su-
perior results over previous methods. Compared with the
methods with extra data, our network still get comparable
performances, which further proves the effectiveness of our
model. Our method is also much faster than most existing
methods, allowing for real-time inference which is important
in the context of autonomous driving.

We present our model’s performance on the KITTT valida-
tion set in Table 5. Our approach shows better performance
consistency between the validation set and test set. This
indicates that our method has better generalization ability,
which is important in autonomous driving.

Our results are considerably better than the previous state
of the art approaches.

5.1. Average Precision

The ideal value of precision and recall is 1. Since it is not
possible to get perfect values, the closer the metrics ie pre-
cision and recall is to 1, the better our model is performing,
It’s often seen that there is a tradeoff between precision and
recall ie if we are optimizing for precision, recall value gets
less and if we are trying to improve recall, precision value
becomes less. So our task is to balance both and note that
threshold point. Average precision is the average value of
precision for the sampled points at various recall threshold
values. The precision - recall curve for 3D object detection
for the 3 classes i.e. cars, pedestrians and cyclists for all
the three categories i.e. easy, moderate and hard are shown
in Figure 5. The closer the curve is to (1,1), the higher
performance of the model is.

XK [ 6o [ 0z )
Recall Recall Recall

(a) Cars (b) Pedestrians (€) Cyclists

Figure 5. Precision-recall curve for 3D detection in a) Cars b)
Pedestrian c¢) Cyclists.

Finally we present the results for 3D object detection
results on KITTI validation set in Figure 6. The ground
truth bounding boxes are shown in blue and the predicted
bounding boxes are shown in orange.

Figure 6. Predicted 3D bounding boxes are drawn in orange, while
ground truths are in blue.

Note that our model is based only on LiDAR data. For
better visualization the 3D bounding boxes are projected on
to the bird’s eye view and the images.

5.2. Ablation Study

The compared results with different backbones on Aver-
age Precision metric is shown in Table 6:

The best results are achieved using ResNet50 as the back-
bone on our network.

A study of with and without using channel and spatial
attention module on Average Precision metric is shown in
Table 7:

The best results are achieved using both spatial and chan-
nel attention modules in our network.

A study of using individual loss function terms used while
training our network on Average Precision metric is shown
in Table 8:

The best results are achieved using all the loss functions
ie L1, Ly and L3 combined.

6. Conclusions

In this paper, we proposed a real time 3D object detection
network using spatial and channel attention mechanism using
LIDAR point cloud data. For making efficient computation,
our architecture uses a single stage type neural network with
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Table 4. Quantitative results for Car on KITTI test sets, evaluated by AP3D. “Extra” lists the required extra information for each method. We
divide existing methods into two groups considering whether they utilize extra information and sort them according to their performance
on the moderate level of the test set within each group. The three sets of Easy, Mod and Hard denotes Val AP, Val APy Test APyo

respectively.

Method Extra Time(ms) ~ Easy,  Mody  Hardy  FEasys Mody  Hardy  FEasyg Mods  Hards
MonoPSR depth, LIDAR 120 12.75 11.48 8.59 - - - 10.76 7.25 5.85
UR3D depth 120 28.05 18.76 16.55 23.24 1335 10.15 15.58 8.61 6.00
AM3D depth - 3223 21.09 17.26 28.31 15.76 12.24 16.50 10.74 9.52
PatchNet depth 35.10 22.00 19.60 31.60 16.80 13.80 15.68 1112 10.17
DA-3Ddet depth, LiDAR 33.40 24.00 19.90 - - - 16.80 11.50 8.90
D4LCN depth - 26.97 21.71 18.22 22.32 16.20 12.30 16.65 11.72 9.51
Kinem3D multi-frames 120 - - - 19.76 14.10 1047 19.07 12712 9.17
FQNet - - 598 5.50 4.75 - - - 2.77 1.51 1.01
MonoGRNet - 60 13.88 10.19 7.62 9.61 5.74 4.25
MonoDIS = 100 18.05 14.98 13.42 - - 10.37 7.94 6.40
M3D-RPN - 160 20.27 17.06 15.21 14.53 11.07 8.65 14.76 9.71 7.42
MonoPair - 57 - - - 16.28 1230 10.42 13.04 9.99 8.65
RTM3D - 55 20.77 16.86 16.63 - - - 14.41 10.34 8.77
Movi3D - 45 - - - 14.28 11.13 9.68 15.19 10.90 9.26
Zhang et al. (2021) - 35 28.17 21.92 19.07 23.64 17.51 14.83 19.94 13.89 12.07
AA3DNet - 26 30.22 2254 18.38 24.01 17.81 14.31 21.62 14.90 11.82

Table 5. Performance of the Car category on the KITTI validation set. Methods are ranked by moderate setting (same as KITTI leaderboard).
We highlight the best results in bold. The four sets of Easy, Mod and Hard denotes 3D;ou=0.7, BEViou=0.7, 3Drou=0.5 and

BEV;ou=0.5 respectively.

Method Easyy Modq Hardl Easyg Modg Hardg Easys Modg Hardg Easyy Mody Hardy
CenterNet 0.60 0.66 0.77 3.46 331 321 20.00 17.50 15.57 34.36 2791 24.65
MonoGRNet 11.90 7.56 5.76 19.72 12.81 10.15 47.59 3228 25.50 48.53 35.94 28.59
MonoDIS 11.06 7.60 6.37 18.45 12.58 10.66 - - - -

M3D-RPN 14.53 11.07 8.65 20.85 15.62 11.88 48.53 35.94 28.59 53.35 39.60 31.76
MonoPair 16.28 12.30 10.42 24.12 18.17 15.76 55.38 42.39 37.99 61.06 47.63 41.92
(Maetal.,, 2021) 17.45 13.66 11.68 24.97 19.33 17.01 5541 4342 37.81 60.73 46.87 41.89
AA3DNet 18.06 14.27 11.51 25.68 19.83 16.64 57.24 44.90 37.15 62.18 4755 41.24

Table 6. Ablation study of different backbone networks on APsp
(IoU=0.3).

Backbone Network Easy  Moderate Hard
VGGI16 53.68 4145 34.08
InceptionV3 5432 41.60 34.66
DenseNet169 54.26 40.04 35.06
ResNet50 56.16 42.61 35.36

Table 7. Ablation study using variations of spatial and channel
attention modules on APs;p (IoU=0.3).

Attention Module Easy  Moderate Hard
No attention 53.59 40.06 32.18
Only SA 55.05 42.06 34.58
Only CA 55.51 40.49 34.46
Both 56.16 42.61 35.36

Table 8. Ablation study using individual loss function terms on
AP3D (IOU=0.3).

Ly Lo L3 Easy Moderate Hard

X X v 4450 3233 29.10
v Vv X 52.72  40.59 33.71
v Vv v 5616 42.61 35.36

bird’s view representation. We evaluate our network on
the KITTI benchmark dataset and show that our approach
outperforms previous state of the art methids. As for the

evaluation metric, we chose class wise average precision.

The model runs at faster than 30 FPS and hence can be
used in autonomous driving applications where safety is a
major challenge. In the future, we would be interested in
studying attention mechanism in the context of 3D semantic
segmentation.
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