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Abstract

It is well-known that the most existing machine
learning (ML)-based safety-critical applications are vul-
nerable to carefully crafted input instances called ad-
versarial examples (AXs). An adversary can conve-
niently attack these target systems from digital as well
as physical worlds. This paper aims to the generation
of robust physical AXs against face recognition sys-
tems. We present a novel smoothness loss function
and a patch-noise combo attack for realizing power-
ful physical AXs. The smoothness loss interjects the
concept of delayed constraints during the attack gener-
ation process, thereby causing better handling of opti-
mization complexity and smoother AXs for the physical
domain. The patch-noise combo attack combines patch
noise and imperceptibly small noises from different dis-
tributions to generate powerful registration-based physi-
cal AXs. An extensive experimental analysis found that
our smoothness loss results in robust and more trans-
ferable digital and physical AXs than the conventional
techniques. Notably, our smoothness loss results in a
1.17 and 1.97 times better mean attack success rate
(ASR) in physical white-box and black-box attacks, re-
spectively. Our patch-noise combo attack furthers the
performance gains and results in 2.39 and 4.74 times
higher mean ASR than conventional technique in phys-
ical world white-box and black-box attacks, respectively.

1. Introduction
The adversarial machine learning (AML) domain

has been expanding rapidly recently due to increased
adversarial attacks on various traditional ML and deep
learning (DL) systems. An adversarial attack is a pro-
cess of causing well-planned misclassifications from a

target classifier. In short, let us assume a ML system
f , input sample xclean, which is a natural input (Non-
adversarial) and its true label ytrue. The ML system
correctly classifies this input i.e. f(xclean) = ytrue.
Now the system will be said under adversarial attack
if an adversary carefully crafts an input sample xadv

such that f(xadv) ̸= ytrue.
An adversary can attack a target ML-based system

from the digital world as well as the physical world.
When the adversary leverages its digital access to the
target system, creates and presents an adversarial ex-
ample (AX) digitally to the target system, the realized
attack is called a digital adversarial attack. On the
other hand, it is called a physical adversarial attack
if the adversary realizes the attack from the physical
world. The target system for these AXs could be a face
recognition system (FRS), where a trained DL model
tries to validate the claimed identity of an input face
image.

The adversarial attack can be of dodging type or
impersonation type based on the attacker’s objective.
However, crafting impersonation (targeted) attacks is
more challenging than dodging-type attacks. In this
work, we focus on the generation of impersonation at-
tacks. Also, an adversary can attack a target system
during the training [1, 3, 2, 18], testing [8, 21, 20, 7],
or model deployment stage[19, 24].

For physical adversarial attacks, the standard meth-
ods to transfer digital AXs to Physical World include
printing and painting. The success of physical attacks
depends on physical transferability, which is the abil-
ity of digital AXs to successfully transfer/imitate to
the physical world. However, the attack performance
in the physical world has been relatively lower than in
the digital world.

Some practical FRSs use a printed image to verify
a subject’s identity, e.g., person re-identification, auto-
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Figure 1: Physical image registration attacks against
FRSs. An adversary registers an AX xadv generated
using a clean source image xs in the target system. At
the time of face verification, the registered xadv results
in the successful verification of a person at the security
gate even the person (xp) is different from the person
of xadv image.

matic ID document (like a passport) photo-matching
systems at international borders. When an adversary
submits a physical adversarial image in a registration
process that causes a mistake by the target FRS, this
attack is called a physical image registration attack.
It allows an adversary to impersonate a target iden-
tity; This causes serious security concerns[11]. This
work considers physical image registration setting dur-
ing physical world evaluation and focuses on improving
physical transferability.

Effective optimization of adversarial noise during
the attack generation process results in robust AXs fol-
lowing misclassification objectives. For a better physi-
cal attack success rate (ASR), the generation of smooth
patterns is a well-known approach for lower physical re-
construction losses. Physical reconstruction loss is the
total amount of information lost and the noise added
to the physical AX while transferring it from the dig-
ital world[12, 27]. The errors during printing, camera
noises, change in camera angles, variable lighting con-
ditions [27], attack surface characteristics, and realism
is the critical parameters influencing the physical re-
constructability of digital AXs, thereby the success of
a physical AX.
Our main contributions from this work are as
follows:

1. We propose a novel smoothness regularizer for gen-
erating robust AXs with high physical transfer-
ability for attacking FRSs from the physical world.
Our smoothness loss also provides black-box per-
formance improvements to the generated attacks
due to the regularization effect.

2. We propose a novel patch-noise combo attack
method for generating powerful digital and physi-
cal adversarial attacks against FRSs by combining
patch and imperceptibly small adversarial noises.

3. We perform extensive white-box and black-box
evaluation in the digital and physical worlds
for state-of-the-art attack generation algorithms,
for the proposed smoothness regularizer and the
patch-noise combo attack method. We present a
practical methodology for the physical world eval-
uation of registration-based adversarial attacks.
We also provide the physical world evaluation for
the ineffectiveness of the attacks with impercepti-
bly small noises in the physical world.

1.1. Related Works

To reduce physical reconstruction loss, previous
works focused on generating smoother patterns in the
adversarial noise. Existing studies found that abrupt
pixel variations in a digital image, when compared to
smoother patterns, cause significant printing [25] and
camera [17] errors when transferred to the physical
world. The smooth adversarial patterns result in a
better ASR for the printed AXs. Sharif et al. [25] pro-
posed a smoothness loss function to generate smoother
adversarial patterns for physical AXs. Their smooth-
ness loss is given below.

TV (r) =
∑
i,j

(
(ri,j − ri+1,j)2 + (ri,j − ri,j+1)2

) 1
2 (1)

Where ri,j is the pixel intensity in the noise image with
coordinates (i, j). This smoothness penalty is used as
a regularizer in the adversarial loss function and mini-
mizes the differences in the adjacent pixel values in an
image r. They improved the smoothness of the adver-
sarial patch, thereby improving the inconspicuousness
and physical realizability of the generated adversarial
patches.

Though the smoothness loss used by Sharif et al.
[25] results in the performance of improvements of the
generated AXs in the physical world, it suffers from
some primary limitations. It causes more substantial
constraints on the optimization procedure for adver-
sarial attack generation, reducing the convergence rate
and white box ASR in the digital environment. Also,
this reduction in the feasible solution space restricts a
large number of possible practical patterns. It treats
the imperceptible noise as well as perceptible noise in
the same manner. Moreover, it does not allow se-
lective optimization of the adversarial noise. It does
not allow the formation of smooth sub-patches within
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the main malicious patch when the pixel distribution
within the sub-patch and the remaining area of the
patch is substantially different, thus, making it unfea-
sible for generating AXs with a sub-region representing
a small smooth area of significantly different colors or
patterns.

2. Our Proposed Smoothness Loss
We propose a smoothness loss based on an activation

threshold τ that causes calculation of total variation
(TV) only for the pixel pairs having deviation greater
than τ from an initial reference value. Our proposed
smoothness penalty is given in equation 2.

Lsmooth =
∑
i,j

((pi+1,j − pi,j)2 · (Mi+1,j ·Mi,j) +

(pi,j+1 − pi,j)2 · (Mi,j+1 ·Mi,j)) 1
2 (2)

Where,

Mi,j =
{

1 pi,j ≥ τi,j and τi,j ∈ Z

0 else
(3)

pi,j is the difference in the value of a pixel from the ref-
erence value at location (i, j) in the adversarial noise re-
gion. M is a dynamic mask that activates the smooth-
ness loss for pixels with intensities greater than a pre-
defined level. The threshold matrix Z activates the
smoothness penalty for respective pixels in the adver-
sarial patch region. The matrices M and Z have the ex-
act dimensions as the source face image xs using which
AX is generated. Each pixel-level threshold τi,j ∈ Z
can have a predefined fixed value or can be updated
iteratively.

2.1. Working of Existing [25] vs. Our Smoothness
Loss

The existing smoothness loss [25] starts penalizing
the total variation (TV) present in the input image’s
trainable pixels (adversarial noise pixels) right from
the beginning of the attack generation process. This
causes excessive constraints on the adversarial opti-
mization process from the start, considerably limiting
the feasible solution space for the adversarial noise pat-
terns. On the other hand, our smoothness loss starts
penalizing the TV only for pixel pairs with a signif-
icant deviation from an initial reference value. Thus
the pixels away from the initial reference value only
are smoothened.

It is to be noted that giving very high weightage
to our smoothness regularizer might result in confining
the solution space near a ball (with radius proportional
to thresholds in Z) around the reference value, but

the constraints remain softer than the existing penalty
[25] because of the hinge type margin caused by Z.
Hence our smoothness loss introduces delayed smooth-
ness constraints only at selected pixel locations during
the attack generation process resulting in faster and
better converged final solutions while maintaining a
similar level of smoothness present in the generated
AXs.

3. Our Patch-Noise Combo Attack
Existing works focus on generating adversarial noise

coming from a single distribution. To generate stronger
AXs for FRSs, we combined an adversarial patch (eye-
glass) noise δp with an imperceptibly small noise δs

(calling imperceptible noise from hereon). The small
noise δs is placed in the remaining area of the face im-
age xs.

xp−n
adv = xs + Ms · δs + Mp · δp (4)

Where, the mask matrix Mp takes values 1 for the pix-
els at patch location in xs and 0 otherwise.

In this attack, adversarial noises of different sizes
and different distributions are combined to form a sin-
gle strong AX. We abbreviate it as “patch-noise combo
attack” due to the combination of adversarial noises
coming from different distributions. Our patch-noise
combo attack is illustrated in the Figure 2. This at-
tack causes increased ASR in the digital domain mainly
because the increased feasible solution space resulted
from additional adversarial noise. However, for the
physical world success of this attack, the size con-
straints on the imperceptible noise play a vital role
(can be understood further in Section 6).

The minimal size of the imperceptible noise δs re-
sults in digital world ASR increase only because the
physical reconstruction losses neutralize the effect in
the physical world. However, increasing the size (by
relaxing L∞ size constraints) increases physical ASR
but decreases the physical imperceptibility of gener-
ated AXs. Hence, a target domain-specific choice of
the size constraints for δs can be made for generat-
ing powerful patch-noise combo attacks in the physical
world.

This type of attack can be successfully used for at-
tacking FRSs digitally and physically where the sub-
mission of a printed image is required for the verifica-
tion, e.g., registration attacks.

4. Experimental Setting
4.1. Pretrained DL Models

We used state-of-the-art DL models as deep feature
extractors in the FRS setting. In the feature extractor
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Figure 2: Generation of our patch-noise combo at-
tack combining imperceptibly small noise with eyeglass
patch for highly transferable digital and registration-
based physical AXs.

setting, the final layer of a DL model outputs a vec-
tor of deep representative features for the given input
compared to the output class probabilities in the clas-
sification setting. A properly trained classifier can be
used as a feature extractor by removing the last soft-
max/classification layer.

We used ResNet50[9], ResNet100[9], VGG16[26],
SE-IR100[10], and SphereFace[15] model architectures.
The VGG16 model was trained on VggFace[22] data
using the softmax loss. We trained two variants for
each of ResNet50 and ResNet100 models using soft-
max and arcface[6] loss functions on VggFace2[4] and
MS1MV2[6] data, respectively. The IR-SE100 model
was also trained on MS1MV2 dataset. We calculated
the verification threshold τ for best accuracies. Only
four models were used at a time for each attack set-
ting. The diverse model setting allows the elimination
of unnecessary biases during the evaluation.

4.2. Algorithms for Attack Generation

For a comprehensive experimental analysis, we se-
lected the four most widely used gradient-based attack
generation algorithms. We applied all these algorithms
in a feature-extractor setting. The algorithms that we
use for the attack generation are given below.
(1) Projected Gradient Descent (PGD) Attack
[16]. We initialized the PGD attack for source im-
age xs with some initial Gaussian random noise δ as
x0 ← x + δ. The update step during tth iteration of
attack generation process for the PGD attack is given
in equation 5.

xt+1 ← Clipx,ϵ

(
xt + α · Sign (∇Ladv)

)
(5)

Where, ∇Ladv is the gradients calculated w.r.t the ad-
versarial loss function Ladv.
(2) Carlini and Wagner Attack (CW) [5]. The
Carlini Wagner attack minimized the ∆L and training
adversarial noise δ while keeping x + δ ∈ [0, 1] for all

pixels in the adversarial region of the training image.
For making sure to satisfy the above constraints, the
following transformation was used.

xi + δi = tanh(wi) + 1
2 (6)

Where, wi’s were trainable parameters.
(3) Layerwise Origin-Target Synthesis (LOTS)
Attack [23]. This attack is proposed explicitly for
feature extractors. In our setting, we calculated the
loss for the final layer of the model only.
(4) Iterative Fast Gradient Sign (IFGSM) At-
tack [13, 14]. This attack is almost the same as the
PGD attack except the training images were initialized
as x0 ← x.

4.3. Black-box Attack Techniques

To generate black-box attacks, we used three tech-
niques for attack robustness and transferability en-
hancement.
(a) Input Diversity Method [29]: we applied ran-
dom crop transformations to the training image in each
training iteration of the attack generation process. The
random crop was limited to 7% of the original image’s
length for every four edges.
(b) Ensemble Diversity Method [28]: we used
ResNet50[9] and SE-IR50[10] models (with equal
weights to loss) out of the four pre-trained DL models
for attack generation and remaining models for black-
box evaluation.
(c) Combination of Input and Ensemble Diver-
sity: we combined the input diversity [29] and ensem-
ble diversity [28] to further enhance the robustness and
black-box transferability.

4.4. Type of Attacks and Adversarial Objective

All of the experimentations were performed for an
impersonation attack objective. In the impersonation
attacks against FRSs, a source image xs is perturbed
to an adversarial image xadv considering an adversar-
ial loss for impersonation Limper, such that the deep
features of xadv becomes similar to the deep features
of a target identity’s image xtar. Hence, the adversar-
ial image xadv is classified as xtar by the target model,
causing a mistake by the target DL model. We used
the following loss functions for generating imperson-
ation attacks:

Ladv = γ · Lsmooth −
K∑
i

fd (fi (xt) , fi (xtrain)) (7)

Where, Lsmooth is either the TV loss or our smooth-
ness loss function, xtrain is the face image xs combined
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with adversarial perturbations. For patch only attacks,
xtrain = xs + Mp · δp. For the patch-noise combo at-
tacks, xtrain follows equation 4. xt is the image of
target identity. fi is the pre-trained face feature ex-
tractor. For non-ensemble models, K = 1 and f1 is
one of the feature extractors. For ensemble models
[28], K = 2, and f1 and f2 represents ResNet50[9], SE-
IR50[10] feature-extractors. γ is the weight parameter
for the smoothness loss function. For the instances
with input diversity transformation [29], the training
image become x

′

train = fDI (xtrain). The function fDI

applies input diversity transformation [29]. fd calcu-
lates the L2 distance between given inputs.

4.5. Ablation Study Instances

Algorithm 1 Attack Evaluation Procedure Outline
Inputs: Source image xs, target image xt; algorithms

A = {PGD,CW,LOTS,IFGSM}; black-box meth-
ods B = {None, DI, Ensemble, DI+Ensemble}; at-
tack techniques T = {No regularizer, TV Loss, Our
Loss, Patch-Noise Combo+TV Loss, Patch-Noise
Combo+Our Loss};

For all ai ∈ A, bi ∈ B, ti ∈ T do
Generate digital AXs (Xadv) using combination of
ai,bi, and ti, while following the loss function of equa-
tion 7 and update rule of ai;

Perform digital evaluation of Xadv;
Perform physical evaluation of successful digital

Xadv as per section 5;

For the ablation study, we implemented a total of
80 attack combinations following Algorithm 1; out of
them, 48 were baselines, and 32 were our method’s in-
stances. We took training face images for attack gen-
eration from VggFace2 data[4]. We generated 100 AXs
for the digital evaluation for each attack combination
and a subset of 10 AXs for the physical evaluation.

4.6. Parameter Settings

The attack parameters for all the baselines and our
methods were kept identical for effective comparison
between baselines and our methods. We set training
iterations to 2000 for PGD, LOTS, and IFGSM attacks
and 7000 for CW attacks after observing the conver-
gence for the given iterations. The ϵ parameter was
kept to 1 for all attacks as we are generating patch at-
tacks. The learning rate parameter was also kept iden-
tical for all instances at 0.01 in the gradient descent
setting.

5. Physical AXs Generation Pipeline
We considered the light conditions and the camera

angle, two main physical parameters during the real-
ization of the physical AXs.
1. Light conditions: Two sub-parameters were con-
sidered for the light conditions parameter. i. Bright-
ness levels: We considered two different brightness
levels of 800 and 1200 lux. ii. Light color tempera-
ture: We captured the images under white light with
color temperatures of 3000K, 5000K.
2. Angle of the camera w.r.t. the printed adver-
sarial image: To capture the effect of reflectivity of
the attack surface, we captured a stream of images by
moving the camera in a horizontal arc of radius 15cm
(approx.) and by subtending an angle of approximately
45° at the center of the captured image.

To transfer the successful digital AXs to the physi-
cal world for realizing physical adversarial attacks, we
followed the pipeline shown in Figure 3. The steps are
as follows:
Step 1: Generating successful digital AXs. Pow-
erful physically transferable digital AXs were first gen-
erated.
Step 2: Printing. The generated AXs were then
color printed on paper.
Step 3: Capturing printed AXs. The printed AXs
were then captured using a camera in an appropriate
format for the target system. This step transfers the
AXs in physical form back to the digital space for the
evaluation.
Step 4: Data cleaning. From captured images,
blurry and improper images were then cleaned. Around
20 images for each AX then remained.
Step 5: MTCNN face detection [30] and align-
ment. To align and crop the captured physical AX as
shown in Figure 3 (after step-4), firstly, we performed
MTCNN face detection. The detected faces were then
aligned using the similarity alignment.
Step 6: Feeding cropped and aligned AXs to the
face matcher. The cropped and aligned AXs were
fed to a target face matcher depending on the attack
evaluation setting (black/white-box).
Step 7: Checking attack success.Finally, the suc-
cess or failure of the attack is checked by distance or
cosine similarity-based thresholds obtained for best f1-
scores.

6. Results and Discussion
The comprehensive experimental analysis found

that our smoothness loss and patch-noise combo attack
method significantly exceeds conventional techniques,
especially in the physical world. The black-box trans-
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Figure 3: Our physical AX generation and evaluation pipeline in the registration attack setting.
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Figure 4: Mean adversarial ASR for white-box (left) and black-box (right) attacks in the digital domain. The
x-axis represents the different attack generation methods, and the y-axis represents ASR. The attack generation
algorithms are denoted by ‘A’ and follow the combinations of Algorithm 1.

ferability was also found to be increased for the gen-
erated attacks. The performance gains over the TVM
approach [25] for both digital and physical worlds are
mainly due to better optimization in the digital world,
better handling of the areas to be smoothened in the
adversarial patch, and convergence to more effective
solutions. Our patch-noise combo attacks in the face
recognition setting generated the most potent digital
and physical domains attacks.

For the white-box attacks in the digital domain, we
can see from Figure 4a that the ASR for AXs from our
smoothness loss is almost the same as the AXs gener-
ated from without any smoothness regularizer. Ideally,

the AXs generated without any smoothness regular-
izer for the white-box case should have higher ASR as
they are trained for only that single adversarial ob-
jective without any additional constraints (regulariz-
ers). Nevertheless, the attacks generated with TVM
regularizer had low ASR. The reason for low ASR was
the stricter smoothness constraints on the attack gen-
eration procedure by calculating total variation right
from the start for all pixels in the adversarial noise
region. Our smoothness loss causes fewer constraints
by the calculation of total variation during the attack
generation process. The fewer constraints are due to
the threshold-based activation of total variation calcu-
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lation. Also, due to this, the AXs generated from our
patch-noise combo attack method (using our smooth-
ness loss) considerably outperform the ones generated
from the TVM approach. The ASR for our patch-noise
combo attack was 1.48 times higher than the eyeglass
patch-only attacks because the more significant num-
ber of trainable parameters resulted in a significantly
larger feasible solution space.

From the results for the digital black box attacks
shown in Figure 4b, we found that the AXs generated
using our smoothness loss significantly outperforms in
the black-box transferability and resulted in 2.88 and
1.80 times higher mean ASR compared to the AXs
generated using TVM and without TVM, respectively.
Our patch-noise combo attack performed the best and
recorded 6.36 times higher black-box mean ASR than
TVM-based patch attack. However, the AXs generated
from the patch-noise combo attack using TVM regular-
izer also had significantly better black-box performance
than the other baselines. A good white-box ASR and
not being overfitted are the two critical parameters that
contribute to the better black-box performance of the
adversarial noise.

In the physical domain, the AXs from our smooth-
ness loss and the patch-noise combo attack using our
smoothness loss completely outperforms their respec-
tive baselines (Figure 5). The patch-noise combo
attacks with our smoothness regularizer were the
strongest in the physical domain and resulted in 2.39
and 4.74 times higher mean ASR for the white-box
and black-box settings. The performance gap between
ours and baseline methods in the physical domain was
significantly higher than in the digital domain. Hence,
proving the effectiveness of our smoothness loss and the
patch-noise combo attack for excellent physical trans-
ferability of generated AXs.

6.1. Comparing Smoothness in Generated AXs

To better understand the superior performance of
our smoothness regularizer and to confirm our hypoth-
esis, we compare the total variation present in the gen-
erated AXs from ours and the conventional [25] TVM-
based smoothness regularizers. We calculated the total
variation present in the AXs generated from the exist-
ing [25] and our smoothness loss using the following
equation 1.

We found that AXs generated without using any
smoothness regularizer, using TVM regularizer [25],
using our smoothness loss, using patch-noise combo
attack with TVM regularizer, and using patch-noise
combo attack with our smoothness regularizer had a
mean total variation of 39.31, 19.39, 20.93, 20.25, and
22.75, respectively.

Sr. Smoothness AX Generation Method
No. Regularizer A1 A2 A3 A4
1 S0 0.240 0.340 0.320 0.315
2 S1 0.250 0.345 0.447 0.379
3 S2 0.320 0.432 0.390 0.420
4 S3 0.700 0.780 0.750 0.830
5 S4 0.830 0.890 0.710 0.838

Table 1: Results for the Physical Transferability of the
Successful Digital AXs. S0, S1, S2, S3, and S4 rep-
resents the use of no smoothness regularizer, existing
smoothness loss [25], our smoothness loss, patch-noise
combo and existing smoothness loss, and patch-noise
combo and our smoothness loss.

We can see a more significant reduction in the to-
tal variation in the generated AXs due to a smooth-
ness regularizer. But we can also see that this dif-
ference is not very significant compared to the smooth-
ness of generated AXs from our and the existing TVM-
based smoothness regularizer. Hence, we can say that
our smoothness loss introduces a similar amount of
smoothness in the generated AXs while allowing them
to reach much better optimal solutions.

6.2. Physical Transferability of Successful Digital
AXs

Table 1 shows the physical transferability of the suc-
cessful digital AXs to the physical domain. It can be
seen that the AXs generated using any smoothness-
based regularizer have better ASR in the physical do-
main as compared to the AXs generated without any
smoothness regularizer. Also, the physical transfer-
ability of AXs generated from our smoothness loss re-
mained better than the AXs generated from existing
TV minimization even after using softer regularizing
smoothness constraints.

6.3. Imperceptible Noise Attacks in Physical World

We also evaluate the performance of physical AXs
with imperceptibly small adversarial noise distributed
over the entire face image. Conventionally, these kinds
of attacks are prevalent in the digital world only. How-
ever, in this work, we check whether they are usable
for the physical world attacks.

In our experimentation, we first generated digital
attacks for 7 different values (0.02, 0.05, 0.1, 0.25, 0.5,
0.75, 1) of the epsilon parameter. It is to be noted
that source images were normalized in the range [0, 1].
For each value of the epsilon parameter, we generated
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Figure 5: Mean adversarial ASR for white-box (left) and black-box (right) attacks in the physical domain. The
x-axis represents the different attack generation methods, and the y-axis represents ASR. The attack generation
algorithms are denoted by ‘A’ and follow the combinations of Algorithm 1.

three successful digital AXs with different identities for
the physical evaluation. We transferred all digital AXs
to the physical world and checked the physical ASRs.

From the results (Figure 6) for the white-box
ResNet50[9] model, we found direct proportionality be-
tween ϵ and physical ASR; This is because AXs with
smaller ϵ have less prominent visible adversarial pat-
terns to the target system. Less prominence or visi-
bility is caused due to physical reconstruction losses.
Also, the AXs with smaller ϵ are more sensitive to the
small perturbations than those with larger ϵ. Also,
from a subjective evaluation, we found an inverse pro-
portionality between ϵ and physical inconspicuousness.

Hence, we conclude a trade-off between the ASR and
inconspicuousness of AXs in the physical domain. For
a physical attack to succeed, it must be physically in-
conspicuous and have a high attack success probability.
That makes the simple adversarial noise attacks (adver-
sarial noise not taking any real-world patch shape) an
unpopular choice for the physical adversarial attacks.

7. Conclusions
This paper proposed a novel smoothness regularizer

and patch-noise combo attack method for generating
powerful physical adversarial examples against practi-
cal FRSs. From extensive experimentation, we found
that our proposed methods outperform all state-of-the-
art baselines in the digital and physical worlds.

The use of our smoothness loss results in better
physical transferability. Our smoothness loss also al-

0.0 0.2 0.4 0.6 0.8 1.0
Size of Imperceptible Adversarial Noise
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Physical Attack Success Rate
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Figure 6: Change in physical ASR and imperceptibility
with increasing size ϵ of the adversarial noise. Increas-
ing ϵ increases physical ASR but decreases physical im-
perceptibility.

lows generating much complex real-world adversarial
patterns due to selective smoothening in adversarial
noise, reducing unwanted boundary losses. In our
patch-noise combo attack, we confirm that using im-
perceptibly small adversarial noise along with adver-
sarial patches can result in significant performance im-
provements in the physical world. However, the size
of imperceptible noise has the trade-off of ASR and
physical imperceptibility. The generated digital and
physical AXs from our methods allow an adequate risk
assessment for the practical FRSs.
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