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Abstract

In this paper, we consider the problem of generating a
face image based on its match scores with other face im-
ages. Such an exercise is not only useful in understanding
the relationship between face images, but it can also be used
to understand the degree of privacy associated with match
scores. We address the problem using two approaches. The
first mixes face images to deduce the appearance of a miss-
ing face image and the second uses a convolutional autoen-
coder to further enhance the mixed face image. Experi-
ments suggest the potential of the proposed approaches in
generating a missing face image in a database by utilizing
its relationship with other images in the database.

1. Introduction
Biometrics is the process of recognizing people using bi-

ological or behavioral attributes like face, fingerprint, iris,
voice, or gait [12]. A typical biometric system includes a
feature extraction stage and a comparison stage. In the fea-
ture extraction stage, a biometric sample (e.g., face image)
is analyzed by a machine to extract salient features. In the
comparison stage, the features corresponding to a pair of
biometric samples are compared. The result of the compar-
ison is a match score which is a single number representing
the degree of similarity (if a similarity score) or dissimilar-
ity (if a distance score) between the biometric samples. In
the verification mode, two biometric samples are compared
and the match score is used to render a decision (match or
no-match). In the identification mode, an input (probe) bio-
metric sample is compared against several biometric sam-
ples in a database (gallery) and the resulting match scores
are used to deduce the identity of the probe.

With the rise in deployment of biometric systems [8],
so too has the interest in the security and privacy of these
systems. For example, it has now been established that
the feature set stored in a database (known as the template)
can be used to reconstruct the original biometric sample in
some cases [14, 19, 6] and thereby compromising the pri-
vacy of subjects. Further, the templates may also reveal de-
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Figure 1: An illustration depicting face images and match
scores, with one face image missing (indicated by a ques-
tion mark). The aim of this work is to deduce the miss-
ing face image using information from the remaining face
images and the match scores between the missing image
and the other images. Face images are from the LFW
dataset [11].

mographic attributes of an individual such as age, gender,
or race [20].

While previous work has focused on the security and pri-
vacy of the extracted features, one other entity has received
relatively less attention – the match scores. Match scores
can reveal information about an unknown or missing face
image. For example, if it is known that the missing face
image has a similarity match score of 0.2 with Alice and
0.6 with Bob, then we can infer that the missing face will
look more like Bob than Alice. Availability of additional
match scores pertaining to several identities can potentially
aid in reconstructing a missing face image with more cer-
tainty. In 2007, Mohanty et al. [16] were successfully able
to generate face images from match scores by modeling a
matcher using a “break in” set. The generated face images
were successfully able to fool simple face matchers (e.g.,
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Eigenfaces).
In this paper, we explore the effectiveness of using only

relationship information (i.e., match scores) to learn a con-
cept (i.e., a face image). Consider a dataset consisting of N
faces where the match scores between every pair of faces
is known (resulting in

(
N
2

)
match scores). If some of the

face images were missing, can we use the match scores to
synthesize a missing face in a single shot?

The first benefit for answering this question is related
to privacy. Match scores are not generally considered per-
sonal identification information. As biometric databases
from governments and companies grow in size, then un-
derstanding the risk of compromise is paramount. If some
match scores can be used to synthesize a subject’s appear-
ance, then the match scores require additional privacy con-
siderations.

A second use-case is related to missing data. In an opera-
tional setting, such a technique could be useful when secure
data goes missing due to accidentally deleted data, hard-
ware failures leading to data loss, or adversaries preventing
data access by installing ransomware. If all data is lost, then
re-acquiring the data is the only option. However, if there is
partial data loss, then the relationship of the known data to
the missing data may assist with its recovery.

In this work, we consider a set of face images and match
scores. The match scores between every pair of images is
assumed to be known including the match scores between
the known face images and the missing face image. We seek
to determine if this information can be used to successfully
generate the missing face image in a single shot (rather than
multiple shots like in a hill-climbing attack). Figure 1 illus-
trates this problem.

Our paper is organized as follows. Section 2 reviews
autoencoders. Section 3 formulates the problem in detail.
Section 4 and Section 5 presents the proposed approaches.
Section 6 describes the data, and Section 7 reports the ex-
periments and results. Section 8 discusses the results, and
Section 9 concludes the work.

2. Autoencoders
Autoencoders provide a method to condense and then

regenerate data [10]. At a high-level, an autoencoder is a
neural network which copies the input to the output. An
autoencoder consists of an encoder network, E(·), and a
decoder network, D(·). The encoder network takes input,
X = {x1,x2, . . . ,xn}, and outputs a corresponding latent
code, Z = {z1, z2, . . . ,zn}, where

zi = E(xi) .

The decoder network takes the latent code, zi, and outputs
a reconstructed input, x̃i, i.e.,

x̃i = D(zi) ,

such that x̃i is approximately the same as xi. Originally,
autoencoders were used to reconstruct the input faithfully
so that the latent code could be used as a compressed repre-
sentation or feature. However, subsequently, autoencoders
were developed with alternate goals such as to generate or
modify images (e.g., in medicine [9], astronomy [13], or
biometrics [23]).

The use of autoencoders with face images is particularly
relevant to our work. Autoencoders have been extensively
used in the context of face recognition and analysis. Ex-
amples include altering facial appearance [22, 26]; simulat-
ing facial aging [24]; imparting facial privacy [15]; recon-
structing occluded or obscured faces [2, 25]; face frontal-
ization [1]; and cross-spectral face recognition [5]. Autoen-
coders have also been directly incorporated into face recog-
nition networks [7, 21].

3. Problem Formulation

Suppose we are given N face images, x1, x2, . . . , xN .
We use a matcher, m(·, ·), which takes two face images
as input and produces a face similarity score, s. For two
images xi and xj , a match score between them is given
by si,j = m(xi,xj). We have a set of face images,
X = {x1,x2, . . . ,xN}, and a set of face similarity scores,
S = {s1,2, s1,3, . . . , s1,N , s2,3, . . . , sN−1,N}.1 Now, sup-
pose one of the face images xt is no longer available. Can
we deduce the missing face image xt? That is, can we syn-
thesize an image x̃t from {X \ xt,S} such that x̃t and xt

are similar?

4. Image Mixing Approach

A simple approach for deducing the missing image is by
mixing other images that are similar to it. Such an approach
has been previously used to enhance the privacy of face im-
ages [17]. Figure 2 illustrates the approach. To create a
mixed image (x̃t), the input images from the set X \ xt are
considered.2 We record the indices of images which satisfy
the condition si,t ≥ τ , i.e., images whose match scores with
the missing image are greater than a threshold. Thus the in-
dices of the mixing set for a target image xt are given by:

Mt = {i | si,t ≥ τ} .

If |Mt| > K, we only retain the K indices corresponding
to the K highest match scores.

To create a single image, x̃t, to reconstruct the target
image xt, we use a weighted average. The mixed image

1To simplify notation, and since the scores are assumed to be symmetric
(si,j = sj,i), we will use si,j and sj,i interchangeably.

2The notation A \ B indicates set difference, i.e., elements in A that
are not in B.
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Figure 2: An overview of the two approaches to reconstruct face images from match scores. The first, a face mixing approach,
simply uses a weighted average of the input images to create a mixed face. The second takes as input the mixed face image
and modifies it using a convolutional autoencoder to a produce a synthetic version of the target image. Face images (with the
eye region obscured to preserve privacy) in this figure are from the BIOMDATA dataset [3].

is a weighted average of the unaligned input face images.
That is,

x̃t =
∑
i∈Mt

si,t∑
j∈Mt

sj,t
xi.

We evaluate the quality of the mixed image, x̃t, by deter-
mining its biometric similarity with xt.

5. Convolutional Autoencoder Approach
The goal of our work is to infer the face image of a per-

son based on their relationship to other face images of dif-
ferent individuals. To carry out this task, we need to define
the function, f(·), which will further refine the mixed face
image (x̃t). That is,

x̂t = f(x̃t) ,

where, x̃t is the mixed face image calculated as described
in Section 4 and x̂t is the synthetic image (which should re-
construct xt as faithfully as possible). Next, we use an au-
toencoder neural network to further enhance the mixed im-
ages generated in Section 4. The mixed images result from
a simple average of input face images without alignment,
i.e., face landmarks like the mouth, nose, or eyes are not
aligned. This gives the mixed face a “blurry” appearance
(see examples in Figure 4). Here, we train the autoencoder
to synthesize a face image which looks even more like the
target image. Figure 2 illustrates the approach.

5.1. Convolutional Autoencoder

The Convolutional Autoencoder (Conv. AE) takes a sin-
gle channel d × d face image as input and outputs a single

channel d × d face image, x̂t. The autoencoder consists of
two parts: an encoder and a decoder. The encoder, E(·),
takes the mixed face image as input and outputs a latent
code. The decoder, D(·), takes the latent code as input and
outputs a single face image.

As our datasets are small, the encoder and decoder con-
sist of only 3 convolution layers and 3 deconvolution layers,
respectively. All layers of the encoder use Leaky ReLU acti-
vation. The first two layers of the decoder use Leaky ReLU
activation while the third layer layer uses TanH activation.
See Table 1 for details about the architecture.

5.2. Loss Function

The loss function for our network consists of two com-
ponents: L1 loss and identity loss. The first term in the loss
function is a per-pixel loss. This loss can be defined as

LPP (E,D, x̃t,xt) = ∥D(E (x̃t))− xt∥1 .
This term guides the training to learn a mapping where the
output is visually similar to the ground-truth image xt. The
second term is an identity loss. This loss can be defined as

LI (E,D, x̃t,xt) = ∥Φ (D(E (x̃t)))− Φ (xt)∥1 ,
where, Φ (·) returns the feature representation from a VGG-
19 network [18] pre-trained on a face dataset. This term
guides the training to learn a mapping where the synthe-
sized face image shares similar biometric content as the tar-
get ground truth image. The overall loss is given as follows:

L (E,D, x̃t,xt) = λPPLPP (E,D, x̃t,xt)

+ λILI (E,D, x̃t,xt).
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Table 1: Architecture of the Convolutional Autoencoder (Conv. AE).

Module Layer Input Size Output Size Activation

Encoder
2× 2 Conv. @32 112x112x1 56x56x32 Leaky ReLU
2× 2 Conv. @64 56x56x32 28x28x64 Leaky ReLU
2× 2 Conv. @128 28x28x64 14x14x128 Leaky ReLU

Decoder
2× 2 DeConv. @64 14x14x128 28x28x64 Leaky ReLU
2× 2 DeConv. @32 28x28x64 56x56x32 Leaky ReLU
2× 2 DeConv. @1 56x56x32 112x112x1 TanH

Figure 3: Examples of face images (with the eye region
obscured to preserve privacy) in the BIOMDATA dataset.

where, λPP and λI denote the regularization parameters.

6. Datasets

In this work we use two datasets, the BIOMDATA
dataset and a proprietary (PROP) dataset. These two
datasets contain multiple modalities, but we use only the
face modality in this work. These two datasets were se-
lected as they contain frontal face images. In this prelimi-
nary work, the goal is to evaluate the possibility of generat-
ing a missing face image from match scores. “In-the-wild”
face images have a myriad of pose and illumination varia-
tions that can detract from the task of face reconstruction by
introducing too many uncontrolled variables.

Table 2: Summary of the BIOMDATA and PROP datasets
used in this work.

Dataset Partition # Images # Subjects

BIOMDATA

Fold 1 320 48
Fold 2 320 48
Fold 3 320 48
Fold 4 320 48
Fold 5 318 48

PROP

Fold 1 442 220
Fold 2 442 220
Fold 3 441 220
Fold 4 441 220
Fold 5 440 219

6.1. BIOMDATA

The WVU Multimodal Biometric Dataset Collection
(BIOMDATA) Release 1 consists of biometric data col-
lected in a controlled setting [3]. The available modali-
ties include iris, face, voice, fingerprint, hand geometry, and
palm print. In this work, we use only the face modality data
from BIOMDATA. The face images were collected at 5 dif-
ferent yaw angles (-90°, -45°, 0°, 45°, 90°), but we use only
the 0° yaw angle face images (i.e., those with subjects look-
ing directly at the camera). There are 1,598 faces images
of 240 subjects with an average of 6.7 images per subject.
The data is split into 5-folds in a subject-disjoint manner.
Table 2 summarizes the data and Figure 3 shows examples
of images from the dataset.

6.2. PROP

We also use a proprietary dataset (referred to as PROP)
consisting of biometric data collected in a controlled set-
ting. The available modalities include iris and face. In this
work, we use only the face modality data from PROP. There
are 2,206 faces images of 1,099 subjects with an average of
2.0073 images per subject. The data is split into 5-folds in
a subject-disjoint manner. Table 2 summarizes the data.

7. Experiments
Our experiments evaluate the face mixing approach and

the convolutional autoencoder approach. We refer to im-
ages generated by the face mixing approach as mixed im-
ages (x̃t) and images generated by the convolutional au-
toencoder as synthetic images (x̂t). We use the term gen-
erated image to mean either a mixed image or a synthetic
image.

All experiments are 5-fold cross-validated. In each run,
four of the folds are combined into a single training set and
the remaining fifth fold is used as the test set. In each run, a
different fold is used as the test set.

We use two face matchers in this work: (1) the Arc-
Face matcher [4] (specifically the “buffalo l” model pack3)

3https://github.com/deepinsight/insightface/
tree/master/python-package
(commit ID: 41bf106fa0f9a3c998dd717f2abb5f3c2fada6da)
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Table 3: Statistics indicating the (a) percentage of “missing” images for which input images were available (i.e., impostor
scores greater than τ ); and (b) the percentage of images for which a template could be extracted using the COTS matcher.
Statistics are reported as mean and standard deviation across the five folds.

Dataset Method Successfully Generated Successfully Extracted

BIOMDATA

Mixing (τ = 1.1) 100.0% ± 0.0% 99.9% ± 0.3%
Conv. AE (τ = 1.1) 99.8% ± 0.3%

Mixing (τ = 1.2) 49.1% ± 7.4% 49.1% ± 7.4%
Conv. AE (τ = 1.2) 49.1% ± 7.4%

PROP

Mixing (τ = 1.1) 100.0% ± 0.0% 99.5% ± 0.4%
Conv. AE (τ = 1.1) 99.5% ± 0.4%

Mixing (τ = 1.2) 69.4% ± 3.2% 69.1% ± 3.1%
Conv. AE (τ = 1.2) 69.0% ± 3.2%

and (2) a commercial-off-the-shelf (COTS) matcher. The
ArcFace matcher is used to compute match scores be-
tween images in a dataset which are then used for se-
lecting impostor images and generating the mixed image.
The COTS matcher is used to compare the generated im-
age with the original ground-truth image. For the ArcFace
matcher, the resulting match score is in the range 0 to 2 (i.e.,
m(xi,xj) ∈ [0, 2]). For the COTS matcher, the resulting
match score is in the range 0 to 1 (i.e., m(xi,xj) ∈ [0, 1]).

To evaluate the quality of the mixed image and the syn-
thetic image, we require a threshold to render a match
or non-match decision. We calculate the threshold cor-
responding to a False Match Rate (FMR) of 1% for the
COTS matcher. This threshold is 0.405 for the BIOMDATA
dataset and 0.250 for the PROP dataset.

7.1. Face Mixing

For the face mixing approach, we use K = 10. Thus, we
construct a generated target image from the 10 imposter im-
ages with the highest match score (provided they are above
the threshold τ ). We also experiment with two values for
τ : (1) τ = 1.1 and (2) τ = 1.2. These τ thresholds corre-
spond to score values near the 80th and 98th percentile of
all imposter scores. Table 3 shows the percentage of im-
ages that are generated and the percentage of templates that
are extracted by the COTS matcher. Figure 4 shows exam-
ples of generated images for the BIOMDATA dataset with
τ = 1.1 and τ = 1.2. Figure 5 shows the matching results
for τ = 1.1 and Figure 6 shows the matching results for
τ = 1.2. Table 4 shows the percentage of mixed faces that
are correctly matched at the threshold corresponding to the
1% FMR.

7.2. Convolutional Autoencoder Approach

For the Convolutional Autoencoder approach, we first
train the network from scratch using the training set of each
cross-validation run. For this approach, the mixed image is
used as input to the Convolutional Autoencoder. This ex-

periment is repeated twice, once with τ = 1.1 and once
with τ = 1.2. The training proceeds for 1000 epochs
with a learning rate of 0.00001, a weight decay of 0.00001,
λPP = 0.5, and λI = 0.5. Table 3 shows the percentage of
images that are generated and the percentage of templates
that are extracted by the COTS matcher. Figure 4 shows
examples of generated images for the BIOMDATA dataset
with τ = 1.1 and τ = 1.2. The match scores between the
synthetic image (x̂t) and the real image (xt) are presented
in Figure 7 for τ = 1.1 and Figure 8 for τ = 1.2 Table 4
shows the percentage of synthetic faces that are accepted at
the threshold corresponding to the 1% FMR.

8. Discussion

The mixing approach was observed to be more success-
ful than the autoencoder approach as far as matching with
the original image is concerned. However, the autoencoder
approach generated images from which face templates were
more successfully extracted by the COTS matcher.

The face mixing approach successfully generates the
missing target image when the minimum imposter score
threshold (τ ) is high. However, there is a clear trade-off be-
tween the number of successfully generated images and the
number of mixed images accepted at the 1% FMR thresh-
old. If τ is low, then the number of successful generations is
high (see Table 3) but the percentage of generations which
would be classified as a match at the 1% FMR threshold is
low (see Table 4). But if τ is high, then the number of suc-
cessful generation is low (see Table 3) but the percentage of
generations which would be classified as a match at the 1%
FMR threshold is high (see Table 4). A potential way for-
ward is to use a larger database of face images. The number
of input images (K) is fixed regardless of database size, so
increasing the number of imposters will also increase the
chances of observing imposters above the threshold τ . It
makes intuitive sense that higher values of τ produce better
reconstructions of the target image. The higher the imposter
score the more similar a missing image is with that impos-
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Conv. AE (τ=1.1)Mixed (τ=1.1) Mixed (τ=1.2) Conv. AE (τ=1.2)

Figure 4: Examples of generated BIOMDATA dataset face images using the mixing approach and the Convolutional Autoen-
coder (Conv. AE) approach with τ = 1.1 and τ = 1.2.

Table 4: Results of comparing the generated image and the ground-truth target image using a COTS matcher. The acceptance
rates are given as the mean percentage across all test folds for the 5 runs, plus or minus the standard deviation.

Dataset 1% FMR Threshold Method Generated Test Images Accepted at 1% FMR

BIOMDATA 0.405

Mixing (τ = 1.1) 24.6% ± 7.1%
Mixing (τ = 1.2) 48.5% ± 6.9%

Conv. AE (τ = 1.1) 11.1% ± 5.1%
Conv. AE (τ = 1.2) 21.4% ± 6.9%

PROP 0.250

Mixing (τ = 1.1) 58.5% ± 3.0%
Mixing (τ = 1.2) 70.0% ± 5.4%

Conv. AE (τ = 1.1) 40.8% ± 2.4%
Conv. AE (τ = 1.2) 42.9% ± 2.8%

tor image. Thus, better information is available to generate
the missing biometric content.

A limitation of the convolutional autoencoder approach
is it requires a fixed number of input channels. However,
if the number of input channels could vary dynamically, we
can input each individual image used to create the mixed
image as a separate channel into the convolutional autoen-
coder (rather than input a single mixed image). Larger
datasets might also allow the network to be deeper facili-
tating a better reconstruction of the target image.

As stated earlier, the ArcFace matcher was used to se-
lect imposter images used in the mixing process, while the
COTS matcher was used to compare the generated image to
the ground-truth image. These matchers, presumably, use

different techniques to output a match score. This demon-
strates that missing face images generated based on scores
from one matcher can produce a face image that can be
matched to the original image using an entirely different
matcher.

One other interesting observation is that the PROP
dataset has much higher generation capability compared to
the BIOMDATA dataset. Both contain frontal face images
captured in controlled conditions, so it is unlikely that im-
ages in one dataset exhibit wider variations in pose or illu-
mination compared to the other. The threshold correspond-
ing to the 1% FMR is quite different between the datasets,
with the PROP threshold being lower than the BIOMDATA
threshold (see Table 4). This could indicate that this particu-
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Figure 5: Score histogram when comparing the mixed face
image (x̃t) with τ = 1.1 and the ground-truth target im-
age (xt). The colored bar shows the mean probability across
all test folds for the 5 runs, while the error bar shows the
standard deviation.
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Figure 6: Score histogram when comparing the mixed face
image (x̃t) with τ = 1.2 and the ground-truth target im-
age (xt). The colored bar shows the mean probability across
all test folds for the 5 runs, while the error bar shows the
standard deviation.

lar COTS matcher is better able to represent the faces in the
PROP dataset, as the imposter scores more frequently occur
near the bottom of the score range (i.e., overall, the imposter
scores are closer to 0). However, the threshold τ is fixed at
a value shared for both datasets and is not changed based on
the 1% FMR threshold. The PROP dataset has a 1% FMR
threshold of 0.250 while the BIOMDATA has a 1% FMR
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Figure 7: Score histogram when comparing the synthetic
face image (x̂t) with τ = 1.1 and the ground-truth target
image (xt). The colored bar shows the mean probability
across all test folds for the 5 runs, while the error bar shows
the standard deviation.
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Figure 8: Score histogram when comparing the synthetic
face image (x̂t) with τ = 1.2 and the ground-truth target
image (xt). The colored bar shows the mean probability
across all test folds for the 5 runs, while the error bar shows
the standard deviation.

threshold of 0.405. Thus, when τ = 1.1, more number of
PROP input images will be above the 1% FMR threshold
and, when combined, will likely be classified as a match at
the 1% FMR threshold.
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9. Summary and Future Work
In this preliminary work, we evaluated the use of match

scores to deduce a missing face image. We introduced two
approaches, a face mixing approach and a convolutional au-
toencoder approach. The face mixing approach resulted in
some modest success at generating missing images. We also
observed a clear relationship between the minimum thresh-
old and the quality of the generated image. Possible fu-
ture directions include improvements to the convolutional
autoencoder by including the match scores directly as input
or by more explicitly ingesting relationship information in
the form a graph. In such a network, the relationship in-
formation could reveal additional cues on how the imposter
images relate to the target image. In summary, this work
suggests that match scores can potentially be used to reveal
face images.
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