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Abstract

The large-scale use of surveillance cameras in public
spaces raised severe concerns about an individual privacy
breach. Introducing privacy and security in video surveil-
lance systems, primarily in person re-identification (re-id),
is quite challenging. Event cameras are novel sensors,
which only respond to brightness changes in the scene.
This characteristic makes event-based vision sensors vi-
able for privacy-preserving in video surveillance. Integrat-
ing privacy into the person re-id; this work investigates
the possibility of performing person re-id with the event-
camera network for the first time. We transform the asyn-
chronous events stream generated by an event camera into
synchronous image-like representations to leverage deep
learning models and then evaluate how complex the re-id
problem is with this new sensor modality. Interestingly, such
event-based representations contain meaningful spatial de-
tails which are very similar to standard edges and contours.
We use two different representations, image-like represen-
tation and their transformation to polar coordinates (which
carry more distinct edge patterns). Finally, we train a per-
son re-id model on such images to demonstrate the feasibil-
ity of performing event-driven re-id. We evaluate the per-
formance of our approach and produce baseline results on
two synthetic datasets (generated from publicly available
datasets, SAIVT and DukeMTMC-reid).

1. Introduction

Person re-identification (re-id) aims at recognizing
the same person across multiple non-overlapping camera
views. Re-id has gained significant interest in the com-
puter vision community as being an enabling technology
for intelligent video surveillance systems (e.g., tracking in
non-overlapping views, forensic and security applications
[41, 17]). The person re-id problem has been extensively
studied in standard (RGB) camera networks and the advent

Figure 1. The proposed event-based person re-id system: (a) shows
the block diagram where the output of event-camera converts to
event-frame and then fed to the deep learning-based re-id network
to perform person re-identification; (b) presents an example of
query image (event-frame) matching with gallery set (in green).

of deep-learning-based re-id approaches [36, 41] has im-
proved the performance rapidly. Most of such existing re-id
models are developed for conventional RGB cameras, al-
though some methods have been proposed for cross-modal
re-id between RGB and infrared [7] or depth frames [2].

Because of the growing demand for intelligent video
surveillance systems, security and privacy concerns are
coming closer together as parallel requirements. However,
unauthorized access to the video surveillance data captured
with traditional vision sensors is a severe threat to individu-
als’ privacy. It is essential to make surveillance data secure
from misuse, where it may be used for identity theft, black-
mail, and mass surveillance [8]. According to the European
General Data Protection Regulation (GDPR), article 5(1)(b)
states: “Personal data shall be collected for specified, ex-
plicit and legitimate purposes and not further processed in a
manner that is incompatible with those purposes.”

In recent years, event cameras have attracted attention
of the computer vision community due to their working
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principle and advantages such as high frame rates, high
dynamic range (HDR), and no motion blur. Unlike stan-
dard cameras, which capture frames at a fixed frame-rate,
event cameras record asynchronous brightness changes of
a scene (called events), which substantially decreases the
sensor’s latency and extends its applications in surveillance.
Besides naturally discarding redundant visual information,
event cameras are indeed a feasible option for such vi-
sual surveillance applications where privacy-preserving is
required. As without image appearance, it can better guar-
antee the anonymity of the subjects that can lead to solving
the privacy concerns of vision applications in public spaces.
To address the privacy-related issues, in current literature
various approaches are suggested based on standard vision
sensors, e.g., masking the human subjects [39] or blurred
the detected faces [8] in the video, selective video surveil-
lance method [11] and other image encryption techniques
[12]. One of the main drawbacks is that it is difficult and
complicated to ensure end-to-end privacy with these hand-
designed techniques. Nevertheless, an event camera is an
adequate substitute to prevent invasion of the individual’s
privacy in visual surveillance. In addition, as opposed to
standard cameras, event-based vision sensors are quite effi-
cient to work in varying or low illumination conditions and
record fast movement.

Given that event cameras output stream of sparse and
asynchronous event data, traditional image-based re-id al-
gorithms cannot be applied directly. A methodological re-
placement is to develop probabilistic filters and spiking neu-
ral networks (SNN) to process event data [1, 25]. Alter-
natively, groups of events are converted into intermediate
input representations with a regular - synchronous - tensor-
like structure which are compatible with conventional vi-
sion algorithms [14, 21, 34]. This work is the first attempt to
address the opportunities and the challenges of the privacy
preserving re-id problem in event-based vision. Initially,
we construct two synthetic dataset from publicly available
benchmarks through event simulators [13, 29]. Next, uti-
lizing group of events (2D histogram or event-frame) to
perform person matching in non-overlapping event-camera
views as shown in Fig 1. We can observe that event-
frame representation contains meaningful information simi-
lar to edges while the subjects are moving, as event cameras
only record intensity changes and thus mainly encoding the
boundaries of the person shape.

Hence, the redundant visual information is discarded,
and the proposed re-id model only relies on motion-
triggered events. Our experiments validate that person re-id
is possible with such nominal spatial information. More-
over, recent advancements have shown that it is indeed pos-
sible to recover grayscale images from event streams using
event-to-image reconstruction techniques [3, 24, 28, 30, 37,
6]. These works certainly are considered as computational

attacks to the privacy-preserving properties of event sen-
sors. Additionally, we implement person re-id on recovered
grayscale images (via E2VID [30]) to inspect the impact of
these computational attacks on the privacy preserving capa-
bilities of event cameras.

The contributions of this works are as follows:
• We investigate if person re-identification using event

cameras is viable. To the best of our knowledge, this
work is the first attempt at deploying an event-based
solution for such vision task.

• We propose a re-id pipeline which accumulates events
into frames that are processed by a Polar Transforma-
tion and then fed to a Convolutional Neural Network
(CNN).

• Since re-id datasets with event cameras do not ex-
ists, we propose two synthetic event-based person
re-id datasets to show the validity of our method-
ology. These are generated from RGB datasets:
DukeMTMC-reid [32] and SAIVT [5] by means of
an open-source event simulator [13, 29], which have
proven extremely effective in other vision tasks in past
works.

• We explore the influence of computational attacks on
privacy-preserving attributes of event sensors through
multiple experiments; trained person re-id model on
reconstructed grayscale images from event-stream and
compare their results with those obtained on standard
RGB/grayscale images.

The rest of the paper is organized as follows: section
2 reviews related literature in the event-based vision and
person re-id; section 3 details the proposed methodology;
experimental details and results are provided in section 4,
while conclusions are drawn in section 5.

2. Related Work
Person Re-Identification: In the last decade, re-

searchers have worked extensively on person re-id with con-
ventional cameras, and re-id models based on deep learn-
ing have shown significant progress [36, 41, 43]. Never-
theless, current approaches still have a strong image texture
bias. Shape/contour sketch-based re-id methods [26, 40]
have been proposed to overcome dependency on color infor-
mation. Pang et al. [26] introduced sketch re-id with a focus
on cross-domain feature learning. Their approach matches
professional artists’ sketches with their RGB counterparts.
Yang et al. [40] demonstrated the use of person contour
sketch images for re-id but under moderate clothing change.
Our work might have similarities with contour sketch [40],
but it presents substantial differences. First, Yang et al. only
focus on cross-cloth person re-id. Second, they employ an
edge detector to generate contour sketch images. On the
other hand, our approach employs event-cameras to capture
moving targets directly and efficiently.
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Privacy-Preserving: The widespread usage of visual
surveillance in public places putting people’s privacy at risk
[8]. Strict data privacy regulations such as the California
Consumer Privacy Act (CCPA) and the GDPR exist to pre-
vent the possible misuse of data. Though, illegal access to
visual data is a serious threat to a privacy breach. The re-
search community developed various techniques to secure
surveillance systems and visual data from recognizing in-
dividuals and unauthorized access [11, 12, 8, 27]. Alem
et al. [11] implement selective surveillance that contained
only aggressive and suspicious behavioral patterns video
frames by introducing a dynamic chaotic image encipher-
ing scheme, which enables frame encryption.

Julia et al. [8] and Marina et al. [27] introduce privacy-
preserving in person re-identification. Juila at al. create
anonymized datasets using face blurring on publicly avail-
able person re-id benchmark and demonstrate that data can
be safely anonymized by blurring faces without compromis-
ing the performance of person re-id. In comparison, Ma-
rina et al. proposed person re-id system that uses an RGB-
D camera in a top-view configuration to extract anthro-
pometric features for the recognition of people to address
both occlusions and privacy-preserving problems. The tech-
nique in [8] is hand-designed that is not able to ensure end-
to-end privacy and the RGB-D camera top-view arrange-
ment in [27] is not feasible in a practical environment. On
the other hand, event cameras are considered inherently
privacy-preserving due to their working principle.

One could posit that the event-based sensor modality
is a step towards privacy-preserving vision but recent ad-
vancements have shown that it is indeed possible to recover
grayscale images from event streams using patch-based
dictionaries [3], variational models [24], photometric con-
stancy [28], and deep learning-based solutions [30, 37, 6].
These works indeed are considered computational attacks to
the privacy-preserving properties of the event camera. Note
that this security aspect has already been detected and ad-
dressed in a recent work [9] that provides a method with a
dedicated encryption framework for event-based stream.

Event-based Vision: Event cameras are a relatively re-
cent vision modality useful for several computer vision ap-
plications, from low-level vision (e.g., objects detection and
tracking [15, 22], and optical flow [4, 42]) to high-level
vision (e.g., image reconstruction [31], segmentation [35],
and recognition [1, 25]). The research community devel-
oped two main approaches to process events-based data
streams: (i) methods for event-by-event, which use events
as an asynchronous stream, such as probabilistic filters and
spiking neural network (SNN) [1, 25]; (ii) methods that
group events into image-like tensors that are then processed
by image-based learning methods (DNNs, SVMs, Random
Forests) [14, 21, 34]. Recent literature has promoted the
latter (named group-of-events) as the most effective method

for event-based vision tasks. Such advantage is given by
the image-like representation that carries spatial informa-
tion about scene edges, which are the most informative re-
gions in standard (RGB) images. Moreover, it allows the
employment of existing deep learning techniques, and it
achieves remarkable results on several vision benchmarks
using traditional machine learning methods [14, 21].

In [14], authors proposed a framework to convert
event streams into grid-based representations for end-to-end
learning, which yields an improvement on the object recog-
nition task. Maqueda et al. [21] processed event-frames
to predict steering angle for self-driving cars. Lagorce et al.
[19] proposed classification model based on image-like rep-
resentation called time-surface to classify 36 characters(0-
9, A-Z). Scarpellini et al. [33] developed a pipeline for 3D
human pose estimation in event-based vision by accumu-
lating events stream into frame data and applied CNN to
predict body keypoints. In addition, Wang et al. [38] devel-
oped human gait recognition approach in event-based vi-
sion. Nevertheless, the person re-identification problem has
never been studied in event-based vision yet.

In this work, we try to answer whether person re-
identification in event camera networks is feasible. Since
event cameras naturally respond to moving edges in the
scene, synchronous event-frames contain meaningful spa-
tial details (e.g., edges and contours) while lacking redun-
dant visual information. Building upon the insights of
above mentioned methods, we exploit event-frame (con-
tained edges and contour information) to tackle the person
re-identification problem.

3. Methodology
Our approach aims at solving person re-id with event-

cameras. Person re-id is a classical computer vision prob-
lem, but the research community lacks dataset captured
with event-cameras to tackle this task. Moreover, conven-
tional machine learning techniques (e.g. CNN) developed
for image-based data can not be applied directly on asyn-
chronous events. Section 3.1 describe how to synthesize
events data from classical person re-id datasets. Section
3.2 explains a standard methodology for converting asyn-
chronous events into event frames to enable learning with
traditional CNN architectures.

3.1. Synthetic Event Generation

Event Generation Model: An event camera trigger
event ek = (xk, yk, tk, pk) independently whenever mag-
nitude of the log brightness at pixel vk = (xk, yk)

T and
time tk exceeds a predefined threshold, C > 0 as:

∆L(vk, tk) = L(vk, tk)− L(vk, tk −∆tk) ≥ pkC, (1)

where the polarity of the event pk is a Boolean value (±1)
and ∆t is the time since the last event at vk. In a given
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Figure 2. The complete pipeline of the proposed method, the existing re-id dataset is converted to synthetic events using an event simulator.
(a) SAIVT video dataset is transformed using Vid2e simulator (b) DukeMTMC-reid image data using ESIM by applying an event-camera
model on homographic movements of the image plane. Then in (a) & (b) asynchronous events are accumulated polarity pixel-wise into
2D histogram over constant time interval T. (c) ResNet-50 backbone with global average pooling (GAP) and a classifier as re-id network
that is jointly trained on the event and polar images. At test time, the classifier is stripped off and a concatenated feature vector FConcat is
utilized for ID prediction

time interval δt , the event camera will activate a number of
events:

E = {ek}Nk=1 = {(xk, yk, tk, pk)}Nk=1. (2)

Event Generation: Due to the novelty of event sensor,
event-based datasets are hardly available. To boost new re-
search using event-cameras for different tasks, various event
simulators [13, 29, 23] can transform RGB videos and im-
ages in most datasets into events streams. In this study, we
applied simulators that act upon single image and videos.
For classical image-based datasets (e.g DukeMTMC-reid),
we adopt the open-source event simulator ESIM [29]. This
method simulates homographic movements of the image
plane and applies an event-camera model to synthesize sim-
ulated events. For video-based datasets (e.g. SAIVT), we
adopt the event-simulator Vid2e [13]. Vid2e upsamples
standard videos using a CNN and generates events from up-
sampled videos. We set the predefined threshold, C for both
positive and negative events to Cp = Cn = 0.1.

3.2. Event Representation and Learning

Event-to-Frame Conversion: Because of their asyn-
chronous nature, events are represented as a set of points
in a four-dimensional manifold comprised of spatial coor-
dinates (x, y), time, and polarity. To process events with
a CNN, it is necessary to convert the asynchronous events
into a grid-like representation. Hence, we convert the asyn-
chronous and sparse event stream into synchronous frames
called “Event-frame” in order to leverage image based CNN
architecture. Then, we accumulate the events polarity pixel-
wise into a 2D histogram H± [21] of both negative and pos-
itive events, using pk = ±1, over a constant time interval
given by:

H±(x, y) =
∑

tkϵT,pk=±1

δ(x− xk, y − yk), (3)

where δ is the Kronecker delta, and T is the time interval.
Note that [21] preserves polarity while it converts events

462



into two-channel event images. On the contrary, we discard
temporal as well as polarity information and produce single
channel event image. The output image carries spatial in-
formation of scene edges, as shown in Fig. 2a. In the next
step, the person re-id network is trained on generated syn-
thetic event-frames and original bounding box labels from
the RGB dataset. To achieve this, we choose the time in-
terval (T≈40ms) to accumulate events which leads up to
the time stamped ground truth label following [13] and then
train the re-id model.

(a) (b)
Figure 3. Illustration of Spatial Polar Transformation (SPT). (a)
example of SPT with uniform sampling angle θi; (b) top row,
event-image of same identity in three different camera-view, be-
low their transformation to polar coordinates.

Spatial Polar Representation: Since event cameras
have a strong response to motion in the scene, we assume
that person edges information in event-frame can be related
to the person contour sketch. Inspired by Yang et al. [40],
we transform an event-frame into polar coordinates. Thus,
we aim at learning discriminant features from edge patterns
as shown in Fig. 3. The size of the transformed image is
set equal to the event image. Unlike the method in [40], we
only use uniform sampling for transformation to polar coor-
dinates to examine its influence on event-driven re-id. An-
other option would be to learn specific polar transformation,
but [40] already demonstrated negligible improvements.

3.3. Person Re-Id

To unlock the potential of CNN architectures for our
problem, we pre-process the output of the event camera
(synthetic events). Initially, we partitioned the event stream
into batches of events, and then each batch aggregated to
build event-frames. Afterward, we employ ResNet-50 [18]
as the backbone image feature embedding. The network
takes two input images, event-frame Xe and its transforma-
tion to polar coordinates Xp of size 384 × 128. Thus, our
model is trained jointly on events and polar images. The
feature map of the last residual block feeds into the global

average pooling layer. Finally, to predict the identity of the
input person, we input the extracted feature vectors (Fe, Fp)
into a classifier, which consists of a fully-connected (FC)
layer and a Softmax loss function such as:

Fe = GAP (Convθ(Xe)) (4)

Fp = GAP (Convθ(Xp)). (5)

Further, we apply two classification losses (event loss
and polar loss) to facilitate the learning feature Fe from
event-frame and feature Fp from edge patterns in polar im-
age respectively. Therefore, the overall loss of our model
is,

LT = αLe + βLp, (6)

where Le and Lp represent the cross-entropy loss of ID clas-
sification of feature Fe and Fp respectively, both α and β are
coefficients which control the contribution of the each loss.
We empirically set these coefficients to α = 1 and β = 0.3.

At test time, the classifier is stripped off and to perform
person re-id our network encodes the query image by fea-
ture FConcat. as:

FConcat = Concat(Fe, Fp), (7)

obtained through concatenation of learned features Fe and
Fp, which is applied for matching the gallery ones via near-
est neighbour search (in Euclidean distances).

4. Experimental Setup and Results

4.1. Datasets

As no event-based re-id datasets are available, we gen-
erate synthetics events from two classical image-based
datasets for re-id, SAIVT [5] and DukeMTMC-reid [32].
SAIVT is our main benchmark, having annotated sequences
of 152 IDs, total 64,472 images captured from eight surveil-
lance cameras. The dataset is recorded in an uncontrolled
environment, each identity may only appear in a subset of
cameras and images are subject to changes on viewpoints,
illumination, and background. Most of the state-of-the-art
methods evaluate this dataset for two camera pairs: cameras
3/8 (SAIVT-38) and cameras 5/8 (SAIVT-58), as the major-
ity of the persons appeared in these two pairs. SAIVT-38
consists of 99 IDs, whereas SAIVT-58 from a dissimilar
view, consists of 103 IDs. Furthermore, we also test on
DukeMTMC-reid that contains 16,522 training images from
702 IDs, 17,661 gallery images from another 702 IDs, and
2,228 query images from the same IDs as query set. In ad-
dition to the viewpoint variations. DukeMTMC-reid main
challenges are occlusions and people at lower resolutions.
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Table 1. Rank accuracy and mAP (%) of the proposed method (us-
ing different representation) on SAIVT dataset.

SAIVT-38 R1 R5 R10 mAP
OursEvent 63.6 77.9 85.1 50.2
OursPolar 56.5 73.5 81.6 39.0
OursEvent+Polar 73.5 84.7 89.8 55.3

SAIVT-58
OursEvent 21.6 33.3 46.1 14.5
OursPolar 18.6 26.5 35.3 09.9
OursEvent+Polar 24.6 37.8 47.1 15.5

Table 2. Performance comparison of our proposed method with
baseline (RGB) on SAIVT dataset in terms of rank accuracy and
mAP(%).

SAIVT-38 R1 R5 R10 mAP
BaselineRGB 87.8 93.9 97.0 82.8
OursEvent+Polar 73.5 84.7 89.8 55.3

SAIVT-58
BaselineRGB 53.9 65.7 72.6 51.2
OursEvent+Polar 24.6 37.8 47.1 15.5

4.2. Experimental Setup

Evaluation protocol: After the conversion of SAIVT
dataset, We obtained 8,110 event-frames for SAIVT-38 and
6,642 for in SAIVT-58. In both pairs, we randomly split the
IDs into training and testing; in SAIVT-38, we take event-
frames corresponding to 50 IDs for the training set and 49
IDs for the test set while, in SAIVT-58 52 IDs for the train-
ing set and 51 IDs for the test set. In the test set, we pick
one query image for each Id in each camera and put the
remaining images in the gallery. Besides, for DukeMTMC-
reid, we acquired five event-frames for each image in the
dataset. In the training set, we use all five event-frames
while randomly selecting one event-frame for each image
in the original gallery and query set. For evaluating our
proposed method, we outline rank-1, rank-5 and rank-10
accuracy, and mAP for SAIVT dataset.

Implementation details: We use ResNet-50 as our
backbone. Following [16], we apply GAP on the fea-
ture map from the last residual block and a linear layer
(FC+BN+ReLU) to compute a 256-D feature embedding.
We use ResNet trained with softmax loss and set the stride
from 2 to 1 of the last stage. All training images are re-
sized to 384 × 128 and then augmented by horizontal flip
and normalization [16]. We set the batch size to 32 and
train the model with a base learning rate 0.05 for 30 epochs
and 0.005 for 60 epochs. We set momentum µ = 0.9 and the
weight decay to 5× 10−4. Our implementations are based
on PyTorch framework with a single NVIDIA GeForce
GTX 1180 GPU.

Table 3. Performance comparison of our proposed method with
baseline on DukeMTMC-reid dataset in terms of rank accuracy.

Method R1 R5 R10
BaselineRGB 79.9 89.8 92.2

OursEvent 16.6 26.1 31.8
OursPolar 06.6 12.0 17.1

OursEvent+Polar 17.0 26.4 31.8

4.3. Results and Discussions

We conduct several experiments on the synthetic event
dataset: SAIVT and DukeMTMC-reid and compare results
with baseline.

SAIVT: Table 1 shows the experimental results on
SAIVT-38 and SAIVT-58 (subsets of SAIVT) datasets for
different settings. The model is trained jointly on two rep-
resentations event-frame and its transformation to polar co-
ordinates. Additionally, the model is trained on each sin-
gle representation to validate the effectiveness individually.
From Table 1 the following observations can be drawn:
(i) Performance of event-frame vs polar image. The
impact utilizing single representation suggest that model
trained with event-frame consistently perform better than
polar image.
(ii) Impact of joint learning & feature concat. Accuracy
of all ranks (1, 5, 10) and mAP of joint learning and feature
concatenation strategies is higher than the processing single
representation on both datasets. On SAIVT-38 the rank-
1, rank-5 and rank-10 accuracy increases by 9.86%, 6.81%
and 4.76% respectively and mAP are improved by 5.05%
than those results obtained by processing event-frame. Sim-
ilarly, on SAIVT-58 dataset the rank-1, rank-5, rank-10 and
mAP are improved by 2.98%, 4.5%, 1.02%, and 1.04%.
(iii) Impact dissimilar camera view. Both baseline and
proposed approach accuracy drop on SAIVT-58 dataset due
to the extreme camera view changes.

As this paper is the first to explore the event-driven per-
son re-id and present benchmark results, no state-of-art
frameworks are trained on event data. Hence, we trained
the same network on original dataset (RGB) and called it
“baseline” to observe how far is the event-driven re-id from
conventional re-id in terms of accuracy. Table 2 shows that
the proposed event-driven re-id did not meet the baseline
performance (with conventional RGB images). Because the
event camera suppresses redundant visual information and
the proposed person re-id model only relies on minimum
visual information (contours and edges).

DukeMTMC-reid: For DukeMTMC-reid Table 2
shows that the rank accuracy gap substantially increases be-
tween baseline and proposed method compared to the re-
sults on SAIVT. The degradation in performance is mainly
due to two reasons: the acquisition setup of synthetic events
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cam03 cam05 cam08
Figure 4. Reconstructed grayscale images from event-stream

generation for both datasets was different and DukeMTMC-
reid is a more challenging dataset than SAIVT.

4.4. Evaluation for Privacy-Preserving

We also validate the privacy-preserving prospect of
event-based person re-id, in view of the privacy attacks ap-
proaches [30, 37, 6]. Therefore, the grayscale images were
reconstructed from synthetic event-stream through E2VID
[30] for SAIVT dataset, shown in Fig. 4. Afterward, we
train our baseline method together with state-of-the-art per-
son re-id model BoT [20] on those reconstructed images
(Grayevent) to examine the performance. The performance
comparison of both methods trained on Grayevent against
RGB and Grayrgb (converted from RGB) plus with pro-
posed event-based re-id are reported in Table 4, 5, and 6.
Results on two subsets of SAIVT: SAIVT-38 and SAIVT-
58 are shown in Table 4. and 5. while the results for the
complete dataset reported in Table 6.

We notice that the performance results follow the same
pattern for each method (baseline and BoT) and dataset, as
can be seen in Table 4, 5, and 6. When compare Grayevent

results against RGB and Grayrgb; overall, the difference in
performance is quite significant; both rank accuracy and
mAP are no way near to RGB and Grayrgb. Even the
proposed event-based re-id outperforms the state of art re-
id meodel BoT trained on Grayevent data. For SAIVT-38
dataset we observe in Table 4. the rank-1 accuracy dif-
ference between Grayevent and Grayrgb is approximately
30% and between Grayevent and RGB is 33%. Similarly,
for SAIVT-58 the accuracy gap is 33.5% and 36.4% as re-
ported in in Table 5. Lastly, in Table 6. for the complete
dataset which comprises of eight cameras, the difference
is 29.8% 34.6% in the same manner. Despite the fact that
the grayscale images can be recover from event streams,
the significantly lower performance of person re-id on the
recovered data justify and strengthen the presumption of
event-driven privacy-preserving person re-id.

4.5. Ablation Studies

To further analyze the contribution of polar feature loss
(lp) as introduced in (6), we perform an ablation study
shown in Table 3. Initially, the polar loss lp is shown to

Table 4. Person re-id performance comparison on reconstructed
grayscale images vs standard RGB/grayscale images of SAIVT-
38 dataset in terms of rank accuracy and mAP.

Method Data R1 R5 R10 mAP

BoT[20]
RGB 90.8 96.9 97.9 85.6
Grayrgb 87.8 93.8 96.9 80.4
Grayevent 57.9 68.7 75.6 49.9

OurBaseline

RGB 87.8 93.9 97.0 82.8
Grayrgb 84.7 91.8 93.9 78.2
Grayevent 58.2 69.4 77.6 51.7

Our(Event+Polar) 73.5 84.7 89.8 55.3

Table 5. Person re-id performance comparison on reconstructed
grayscale images vs standard RGB/grayscale images of SAIVT-
58 dataset in terms of rank accuracy and mAP.

Method Data R1 R5 R10 mAP

BoT[20]
RGB 55.9 67.7 75.5 52.9
Grayrgb 53.0 65.9 71.8 50.1
Grayevent 19.5 31.6 39.9 14.4

OurBaseline

RGB 53.9 65.7 72.6 51.2
Grayrgb 51.8 64.7 70.6 49.6
Grayevent 19.7 30.3 40.1 14.6

Our(Event+Polar) 24.6 37.8 47.1 15.5

Table 6. Person re-id performance comparison on reconstructed
grayscale images vs standard RGB/grayscale images of SAIVT
dataset in terms of rank accuracy and mAP.

Method Data R1 R5 R10 mAP

BoT[20]
RGB 75.9 84.7 87.8 54.9
Grayrgb 71.1 80.9 85.4 44.1
Grayevent 41.3 58.7 64.2 21.3

OurBaseline

RGB 74.2 83.3 86.2 53.1
Grayrgb 69.4 79.8 84.6 42.4
Grayevent 40.7 57.6 63.4 20.1

Our(Event+Polar) 49.8 63.4 70.7 25.8

be vital to our re-id network because we notice rank-1 ac-
curacy drop 9.86 % and mAP 5.05 % on SAIVT-38 when
the loss was excluded. This is caused by no direct super-
vision to guide our re-id model to learn discriminant fea-
tures from edge patterns in the polar images, and thus the
resulting model suffers from edges information loss. By in-
troducing the polar loss (β = 1) the performance of our
re-id model improved. However, we further investigate to
find the optimal value of the coefficient β, which controls
the contribution of the loss. In Table 3, for β = 0.3 we
can observe that the rank1 accuracy and mAP additionally
increased by 6.8% and 3.91% respectively with comparison
to β = 1.

4.6. Challenges and Limitations

Despite the advantages of event cameras in person re-id
it has been held back by the unavailability of event-based
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Table 7. Ablation study of the loss function on SAIVT-38 dataset.
Note that, each row indicates the different value of coefficient β

.

Method R1 R5 R10 mAP
LT =αLe + βLp

w/ α =1
β = 0 63.61 77.89 85.04 50.22
β = 0.1 65.31 78.57 86.73 52.98
β = 0.2 67.35 81.63 86.73 49.64
β = 0.3 73.47 84.70 89.80 55.27
β = 0.4 68.37 83.67 89.80 53.15
β = 0.6 63.27 74.50 85.71 47.01
β = 0.8 63.61 77.89 85.04 50.22
β = 1 66.67 81.29 87.08 51.36

datasets. To create synthetic dataset with event-simulator
it required to process image sequences data. Very few per-
son re-id datasets are available with full-frame sequences
(tracklets); mostly are either bounding boxes with track-
lets or full-frame without tracklets. In contrast with SAIVT
which is a video-based dataset, we applied an event cam-
era model to DukeMTMC-reid dataset, homegraphic move-
ments on the image plane to generate event-data. But it also
produces events for the background region which accumu-
late noise in event-frames see Fig. 5. To address these dif-
ficulties and for future research dataset captured with event
camera would be required.

All three dataset (SAIVT-38, SAIVT-58, and
DukeMTMC-reid) poses different re-id challenges.
SAIVT-38 suffers from illumination and background
variation while SAIVT-58 includes camera view variation;
additionally, DukeMTMC-reid comprises occlusion and
background clutter. With increasing level of difficulties
from SAIVT-38−→SAIVT-58−→DukeMTMC-reid Table 1
and Table 3 shows the performance also degrade in the
similar way. We can conclude that the main challenges in
event-driven re-id are viewpoint variation, occlusion and
background clutter. These challenges are also considered
in classical person re-id.

(a) (b)
Figure 5. synthetic events includes background noise which can be
noted in (a) & (b) event-frame

5. Conclusion and Discussion

In this paper, we proposed to solve the person re-id
problem in event-based vision. Since event cameras cap-
ture scene dynamics without providing RGB image content,
event-frames deliver mostly edge and texture contours de-
tails that might be used for privacy-preserving re-id. In the
following, we discuss the main findings of this work.

The proposed method, even if using the minimal visual
information given by event cameras, shows that in specific
setups, we are still able to achieve event-driven re-id. How-
ever, the proposed approach did not reach the accuracy of
conventional re-id (based on standard RGB images). Ex-
perimental results on two synthetic datasets suggested that
event-driven person re-id can tackle illumination and back-
ground variation challenges, but they struggle to deal with
occlusions and pose/view changes.

This paper indeed shows that event-driven re-id approach
has several challenges that remain ahead; future work can
be structured to tackle such issues. In particular, to con-
struct an event-based re-id benchmark, capture with event
sensors. Subsequent efforts should be posed to reduce
the impact of viewpoints changes, possibly by leveraging
different viewpoints in synthetic scenarios as provided by
recent dataset [10]. As occlusions reduce performance,
having approaches that can detect human body parts from
event-frames might support inference [33]. In this way, it
might be possible to associate the events related to real body
parts of the target and not with other occluding bodies.

Considering existing machine learning techniques that
reconstruct images from event-stream might constrain
event-based privacy-preserving person re-id. This work
also evaluates the efficacy of privacy-preserving re-id us-
ing recovered grayscale data. The accuracy of the state-
of-the-art re-id model trained on these recovered images is
substantially lower than that trained on standard RGB or
grayscale images. That Implies event-based sensor modal-
ity is a step towards privacy-preserving person re-id. How-
ever, this issue should be investigated further before pushing
forward event-sensor as a complete privacy-compliant solu-
tion. Note that the security aspect of event sensors has al-
ready been addressed in [9] that uses a dedicated encryption
framework for event stream. Indeed these approaches are
necessary to provide a robust privacy-preserving solution
using event-cameras networks, and they should be adopted
for further research to assure the safe deployability of such
solutions.
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