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Abstract

In recent person re-identification (Re-ID) approaches,
combining global and local appearance-based features has
been shown to increase performance effectively. These
types of models are often characterized by multiple
branches that act as experts for specific local regions or
global high-level semantic features. We argue that attention
mechanisms can be useful for multi-branch Re-ID models
by creating more robust representations based on the in-
teraction of informative image features. In this paper, we
investigate this idea and propose a novel multi-branch ar-
chitecture with experts that learn distinct representations
based on (i) the global image appearance and (ii) the inter-
action between features. Unlike former methods with local
experts acting on partitions that are fixed a-priori, our fea-
ture interaction expert uses a novel attention-based pooling
to automatically extract semantically-rich and discrimina-
tive features from different regions of a person image. Com-
pared with existing attention-based algorithms, our method
maintains the feature interaction information separately in
order to discriminate between identities. Our approach
achieves state-of-the-art performance across three popu-
lar benchmarks - CUHK03, Market1501 and MSMT17.
Furthermore, saliency visualizations show that appearance
and interaction experts learn complementary representa-
tions that attend to multiple discriminant regions, leading
to improved classification ability.

1. Introduction
Person re-identification (Re-ID) is a crucial component

of smart cities, surveillance and ambient intelligence sce-
narios. Given a query image of a person of interest and a
gallery of images corresponding to different identities (cap-
tured by cameras in different places at various times), the
goal is to determine a match between the images based only
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Figure 1. We propose a novel architecture with parallel branches
that specialize independently as feature appearance and feature in-
teraction experts. While the feature appearance branch builds a
representation where the channels correspond to high-level seman-
tic features, the feature interaction branch uses a novel attention-
based mechanism to project the features associated with a person
image to a semantic space based on the relationships between the
features. Subsequently, images are matched considering extracted
appearance and interaction features separately.

on their whole appearance, and typically without using bio-
metric cues.

Traditional research focused on hand-crafted features
based on color and texture [10, 1]. Recently, deep learning
techniques - mainly based on convolutional neural networks
(CNNs) - have been used to automatically learn features
from large datasets. Global representation learning was the
primary choice in Re-ID, where (i) the feature maps are ex-
tracted from query and gallery images, (ii) feature pooling
is used to attain a global feature vector for each image, and
(iii) matching is performed between the features of query
and gallery images [30].
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Models that also extract local appearance representations
that decompose the body into parts have performed consis-
tently well in Re-ID [15, 32]. The aim of these approaches
is to create more robust local representations that are more
discriminative for overall person matching. For example,
simple methods partition the feature maps in the spatial and
channel dimension to create local experts specialized for
specific regions or subsets of channels (loosely correspond-
ing to semantic features) [4]. However, fixed spatial parti-
tions may not align well with body parts due to variations
in human poses and bounding box fit. Some methods have
addressed this misalignment problem by using a pre-trained
semantic segmentation model [15] or unsupervised cluster-
ing techniques [38] to parse body parts, but they result in
more computational expense.

Another line of works has investigated how to strengthen
feature representations by incorporating learning mecha-
nisms known as attention into Re-ID models [19, 3, 5]. Re-
cent studies have found that modeling the interactions be-
tween channels can help to selectively emphasize the most
discriminative parts of the person, leading to improved per-
formance on a number of tasks [13, 2].

By deeply investigating these methodologies, we realize
that not only the strong features themselves are useful for
discrimination, but that the interaction between the strong
features also assume a vital role. We assert that this interac-
tion information is complementary to the appearance-based
features, in the same way that local appearance information
supports global appearance information in part-based mod-
els. We argue that each person has a unique signature of
interacting features (e.g., red bag together with blue jeans),
which is useful for distinguishing between identities. How-
ever, this interaction information is typically used for re-
scaling [13] or mixing [2] with the original appearance fea-
tures, which hides and likely limits its discriminative ability.

To investigate the capabilities of interaction features for
re-identification, we propose the AIR-Net architecture. The
novelty of our approach lies in the use of parallel branches
that specialize independently as feature appearance and fea-
ture interaction experts, as shown in Figure 1. The first
branch uses global max pooling to build a traditional ap-
pearance representation. For the second branch, we real-
ize that the structure of existing attention modules limits
their ability to match based on interaction features, and thus
we introduce a novel attention-based mechanism that dif-
fers from a standard spatial attention block. While exist-
ing modules are always used to augment the original fea-
ture map by combining the appearance and interaction fea-
tures [13, 2, 7], our attention module instead maintains the
information related to discriminant high-level feature in-
teractions separately. Since an expert branch devoted to
analyzing the signatures of feature interaction must also
build a representation of the features themselves, we also

include a parallel global max pooling operation in the in-
teraction branch. The various representations output by the
branches are then used separately for the subsequent match-
ing. In fact, we argue that there are additional benefits to
matching person images directly in the semantic interac-
tion space in addition to the traditional appearance space.
We show the capability of our approach by an extensive
ablation study employing separate sets of appearance and
interaction features. This is also empirically proved by vi-
sualizing the saliency of features extracted by the proposed
attention mechanism, which shows that the interaction rep-
resentations focus on multiple areas of the person image that
are more discriminant and characteristic of an identity.

To the best of our knowledge, the newly-proposed multi-
branch model is the first to fully exploit the potential of
attention-based interaction features that are learned auto-
matically, allowing for more fine-grained discrimination of
people in the Re-ID scenario. Our solution addresses the
misalignment problem of part-based models by extracting
semantically-significant regions of person images, while si-
multaneously reducing computational cost.

We evaluate the model on three popular benchmarks
where our model achieves state-of-the-art results for Re-ID
in the closed-set scenario. In summary, we have made three
major contributions:

• We put forward a novel multi-branch Re-ID model
that learns distinct and discriminative representations
based on both semantically-significant appearance fea-
tures as well as interaction of features, using parallel
branches acting as specialized experts.

• We devise a new learnable attention-based pooling
module as the primary component of the feature in-
teraction branch. Unlike popular part-based models
where the partitions are fixed a priori, our approach
extracts semantically-discriminant regions of person
images automatically. Compared with existing atten-
tion modules, ours maintains the information of strong
high-level feature interactions separately, rather than
fusing it with the original features. This mechanism
allows the model to focus on discerning the signatures
of interactions between informative parts of an image,
proving to be highly effective for re-identification.

• We show that learning both appearance and inter-
action representations brings state-of-the-art results
across three mainstream benchmarks - CUHK03, Mar-
ket1501 and MSMT17.

2. Related Work
2.1. Person Re-identification

Person re-identification in the closed-set scenario ad-
dresses the problem of identifying individuals across a set
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Figure 2. Our proposed Re-ID system composed of (i) feature extraction (ii) feature pooling, and (iii) feature matching. Feature extraction
uses a multi-branch architecture consisting of an (a) appearance expert and (b) interaction expert. Feature pooling uses a combination of
global max pooling (GMP) and our attention-based pooling. Feature matching is performed on each individual representation.

of non-overlapping cameras.
Recently, with the advent of deep learning and publicly-

available Re-ID datasets of large capacity, efforts in this do-
main have focused on end-to-end deep learning solutions.
One of the first approaches from Yi et al. [31] was to train
a CNN with two sub-networks with a terminal cosine dis-
tance layer for determining the similarity between inputs.
More recent state-of-the-art efforts however, have opted for
using a backbone network pre-trained on ImageNet [8] as
initial feature extraction module. An architectural approach
improving the network for Re-ID is that proposed by Zhou
et al. [37], who created a new multi-resolution bottleneck.
Chen et al. [4] investigated the use of rough spatial and
channel feature partitioning in higher layers to retain im-
portant secondary features. Martinel et al. [20] proposed
a pyramidal network with multiple resolution learning ob-
jectives and spatial partitions to improve the network’s dis-
criminative ability.

Another Re-ID strategy using deep learning models is to
incorporate semantic information of human parts using an
auxiliary network. Safraz et al. [22] created an embedding
using both fine and coarse pose information. Building upon
DensePose [11], Zhang et al. [32] extracted dense pose in-
formation from 24 regions of a person. Zhu et al. [38] pro-
posed a self pseudo-label generation method for human-part
classification in order to learn more discriminative feature
representations associated to human parts. While these ap-
proaches are effective, there is always a significant compu-
tational cost associated with incorporating extra semantic
information, whether it be from clustering, a separate net-
work for pose estimation or part segmentation.

We are inspired by effective part-based approaches for
Re-ID that use local appearance-based representations (typ-
ically consisting of spatial and channel partitions fixed a pri-
ori) to complement global appearance information. While
our method retains a global appearance expert, the local
expert branches (consisting of spatial and channel parti-
tions that are fixed a priori) are replaced with a feature in-
teraction expert, which uses a learnable channel attention

mechanism to automatically learn a complementary feature
representation for discriminating between person identities.
Compared with techniques that use clustering algorithms or
separate pre-trained segmentation and human pose models,
ours is computationally more flexible and efficient in ad-
dressing the part misalignment problem.

2.2. Attention-based Models

Attention-based mechanisms have become widespread
and are used to tackle a variety of downstream tasks.
In general, the primary objective of traditional attention
modules is to rescale the original features to focus re-
sources towards the most informative parts of images.
Wang et al. [25] proposed Residual Attention Network
that uses an encoder-decoder to predict the attention maps.
Squeeze-and-Excitation network (SENet) [13] introduced a
self-attention function on channels to perform feature re-
calibration, where global information can be used to learn
to strengthen useful features. The Convolutional Block At-
tention Module (CBAM) used channel attention [28] that
included max-pooled features in addition to average-pooled
features.

Later works exploit attention to aggregate global context
using long-range dependencies. The non-local neural net-
work [26] set out to learn an attention map based on the
affinity of query and key positions of an image, that was
subsequently used to aggregate the features of all positions.
Cao et al. [2] observed that the global context of non-local
neural networks was actually independent of query posi-
tion, and proposed Global Context Network (GCNet) that
learned query-independent attention maps. Furthermore,
this work generalized existing attention modules by ab-
stracting the functional steps: (i) a context modeling stage,
where the features of all positions are aggregated to form a
global descriptor, (ii) a feature transform module to model
the relationship between channels, and (iii) a fusion module
that merges the global context feature into features of all po-
sitions. The Fully Attentional Block (FAB) [24] discarded
the first step of the above general framework to maintain
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some spatial information for mining useful features.
Another group of works exploit a similar mechanism to

project the feature maps to a space where the interaction be-
tween the semantic features may be modeled and exploited.
The global reasoning (GloRe) unit [7] was used to project
the features to nodes in an interaction space where the re-
lations between a number of disjoint regions were reasoned
on using graph convolutions. The visual transformer [29]
used a similar operation to extract visual “tokens” that rep-
resent semantic concepts in the image, and modeled rela-
tionships between them using a transformer.

Attention has also been successfully applied in Re-ID
with the motivation that it can selectively emphasize the
discriminative appearance-based image features. Harmo-
nious Attention CNN (HA-CNN) [19] used hard region-
level attention and soft pixel-level attention to enhance the
convolutional response maps. Wang et al. [24] proposed a
multi-task attention network that maintains spatial structure
in addition to channel attention. Chen et al. [3] proposed
an attention module to model complex high-order statisti-
cal information in images. Chen et al. [5] proposed ABD-
Net, which introduced novel channel and spatial attention
modules, as well as a soft orthogonalization constraint for
de-correlating feature embeddings and hidden layer weights
to promote diversity in feature representations. Chen et al.
[6] introduced an architecture with layered attention mech-
anisms, as well as a novel module for aggregating low-level
and high-level features. Zhang et al. [33] presented another
attention module which uses learned pairwise affinity met-
rics between feature nodes. Fang et al. [9] devised a nested
attention unit to be used in a bilinear attention network [16].

Different to previous works, we put forward that it is pos-
sible to create more robust representations of person images
by maintaining the feature interaction information learned
by an attention mechanism separate from standard global
appearance-based features. To this end, we devise a new
learnable attention-based pooling module that facilitates the
matching directly in a semantic space that represents the
relationships (i.e., interactions) between the features, and
show that this new method improves performance compared
to existing attention-based modules [2].

3. Method
In this section, we describe our proposed network for

learning appearance and interaction representations (AIR-
Net) for Re-ID. We decompose the system into a number
of stages that are typical of Re-ID systems, namely (i) fea-
ture extraction, (ii) feature pooling, and (iii) feature match-
ing between the query and gallery images, where AIR-Net
operates mainly at the first two stages. In contrast with ex-
isting attention-based architectures [2, 33], we use a pair
of parallel feature extractors that share early layers while
maintaining separate representations for optimizing the net-

work, as shown in Figure 2. The first branch focuses on ex-
tracting a global feature representation based on the overall
person appearance. The second branch aims at encoding
a representation based on the interaction between the fea-
tures described by the feature map channels. This branch
uses both global max pooling and attention-based pooling,
where the first facilitates learning of the features themselves
so that the second can analyze the interaction of these fea-
tures. Finally, the images are matched separately based on
the unique signatures of feature appearance and interaction.

3.1. Feature Extraction

Part-based approaches [4] have consistently shown
strong performance for Re-ID. Separately, attention mech-
anisms have recently shown much promise [6, 33]. We are
inspired by these methods to propose a novel multi-branch
architecture where the feature extraction sub-networks aim
to specialize on (i) the features representing the whole per-
son appearance, and (ii) the interaction between strong
high-level semantic features associated with the channels of
the feature map. The overall architecture is shown in Fig-
ure 2. We use a ResNet-style backbone, which is typically
broken down into five stages based on the sequential down-
sampling operations. Following recent works in Re-ID, we
do not downsample the feature map at the end of the 4th
stage of the network X0. Rather, we duplicate the weights
of the 5th stage to form two branches, which we refer to as
the appearance feature extractor Fa and the interaction fea-
ture extractor Fi. The resulting features are then given by:

Xa = Fa(X0), (1a)

Xi = Fi(X0), (1b)

where Xa, Xi ∈ RC×H×W , and C, H and W are the chan-
nel, height and width dimensions of the feature map.

3.2. Feature Pooling

The purpose of the feature pooling step is to capture
global context of the image within the feature vector rep-
resentation. Most studies use first-order pooling, such as
average and max pooling, which compute the average and
the maximum over individual spatial dimensions of the en-
coded features, respectively.

We suggest that attention-based pooling is complemen-
tary to standard global pooling methods. Recent studies on
attention use global information based on the interactions
between channels to selectively emphasize certain infor-
mative features [13, 2]. However, existing modules either
aggregate or weight the original features with this interac-
tion information. We suggest that the interaction informa-
tion is complementary to the original features and that the
individual characteristics of the alternative representations
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are weakened when the features are amalgamated. Thus,
we propose that distinct feature pooling operations be per-
formed on each feature extractor branch to account for this
(see Figure 2). For the feature maps Xa, Xi from the feature
extraction stage, Global Max Pooling (GMP) is performed
on the feature map of the first branch (see Figure 3(a)):

A1 = GMP (Xa), (2)

where GMP is global max pooling that computes the max-
imum over individual spatial dimensions of the coded fea-
tures, and A1 ∈ RC×1 is the appearance feature vector.
GMP encourages subsequent feature matching to focus on
the most discriminative part of the feature map [28]. For the
second branch, the spatial dimensions of the feature Xi are
combined to give X̄i ∈ RC×HW before being passed to the
attention-based pooling module, as depicted in Branch 2B
of Figure 3(b), defined as:

I = (X̄iWv)
T (X̄iWu), (3)

where learnable weights Wu ∈ RC×1 are used to collapse
the channel dimension to a single strong semantic feature,
and weights Wv ∈ RC×C model the channel interdepen-
dencies. The resulting interaction feature vector I is a lin-
ear combination of the original features. Existing attention
modules [13, 2] would mix this interaction information with
the appearance-based features (see Figure 3(c)):

M = f(Xi, I), (4)

where M is the mixed feature vector, and f is a fusion func-
tion such as aggregation or weighting.

However, we suggest that it is beneficial to maintain the
attention-based global representations separately for subse-
quent matching. The original features Xi are also pooled
using another GMP operation, to give a second appearance
feature vector A2 = GMP (Xi), that may differ from A1

as a result of the weights in the second branch that are not
shared (see Branch 2A of Figure 3(b)). This is consistent
with existing part-based approaches where global pooling
is included in every local expert branch [4]. This results in
multiple complementary global feature vectors, that com-
bine the unique advantages of the conventional global max
pooling and attention-based pooling mechanisms. The abil-
ity to attend to different locations of the input enables the
second branch to localize discriminative features automat-
ically compared with hand-crafted partitions. Compared
with a single fused feature representation, the individual
differences between the alternative representations are more
easily discerned during matching, improving the network’s
discriminative ability.

3.3. Feature Matching

We claim that there are benefits to matching person im-
ages directly in the interaction space, in addition to the tra-
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Figure 3. Comparison of (a) feature pooling of appearance fea-
ture extractor (Branch 1), (b) feature pooling of interaction feature
extractor (Branch 2A & 2B), and (c) GC block [2] that fuses the
interaction feature descriptor with the original features.

ditional appearance space. Hence, the individual contri-
butions of the feature representations - computed from the
previous feature extraction and pooling steps - are consid-
ered during subsequent identification and metric learning,
as shown in Figure 2.

Given an input image xj with label yj , the predicted
probability of xj being recognized as class yj is encoded
with a softmax function, represented by p(yj |xj). The iden-
tity loss is then computed by the cross-entropy loss:

Lce = −
N∑
j=1

yj log(p(yj |xj)), (5)

where N is the number of training samples in each batch.
For the triplet loss, we consider the positive and negative

batch-hard choice [12]. We generate batches by randomly
sampling P classes of human identities, and K images of
each class. The triplet loss is given by:

Ltri =

P∑
k=1

K∑
j=1

max(0, Dmax(F (xk
j ), F (xk

p)) +m+

−Dk ̸=w
min (F (xk

j ), F (xw
n ))),

(6)

where xk
j represents a data sample corresponding to the j-th

image of the k-th person in the batch, xk
p and xw

n indicate
the positive and negative samples in each batch (with k ̸=
w), m denotes the triplet distance margin, and Dmax and
Dmin are defined to consider the hard pairs as the maximum
and minimum cosine distances between the representations
F (i.e. A1, A2 or I) of xk

j and the positive and negative
samples in the batch, respectively. The full loss is given by:

Ltot =
1

Nce

Nce∑
j=1

Lce +
1

Ntri

Ntri∑
j=1

Ltri, (7)
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Method
CUHK03

Market1501 MSMT17Labeled Detected
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

ABD-Net (ResNet-50) [5] - - - - 95.6 88.3 82.3 60.8
PyrNet (DenseNet) [20] 71.6 68.3 68.0 63.0 93.6 81.7 - -
BAT-net (GoogLeNet) [9] 78.6 76.1 76.2 73.2 95.1 87.4 79.5 56.8
SCR (ResNet-50) [4] 84.8 81.4 82.2 77.6 95.7 89.0 - -
RGA-SC (ResNet-50) [33] 81.1 77.4 79.6 74.5 96.1 88.4 80.3 57.5
SCSN (ResNet-50-CBAM) [6] 86.8 84.0 84.7 81.0 95.7 88.5 83.8 58.5
ISP (HRNet) [38] 76.5 74.1 75.2 71.4 95.3 88.6 - -
AIR-Net (ResNet-50) 85.8 ± 0.3 83.2 ± 0.1 83.0 ± 0.1 80.4 ± 0.1 95.2 ± 0.1 89.3 ± 0.2 84.2 ± 0.3 63.8 ± 0.1
AIR-Net (IBN-ResNet-50) 86.8 ± 0.6 84.8 ± 0.4 84.3 ± 0.8 82.0 ± 0.4 95.2 ± 0.1 89.3 ± 0.1 84.7 ± 0.1 64.5 ± 0.2

Table 1. Performance (%) comparisons between our approach and the state-of-the-art methods on CUHK03, Market1501 and MSMT17
datasets. For our AIR-Net strategy, we report the average and standard deviation results over three runs. The adopted backbone is reported
in brackets for each approach. The top results are highlighted in bold for each metric.

where the number of summed feature representations for
cross-entropy and triplet losses Ntri = Nce = 3.

4. Experiments
In this section, we first introduce the Re-ID benchmark

datasets that are used to evaluate our proposed approach.
The architecture and setup considered in our experiments
are then described. Finally, the results are discussed along
with an ablation study showing each individual contribution
to the overall performance by our proposed multi-branch
architecture. Saliency map visualizations are also provided
to better interpret the results.

4.1. Datasets and Protocols

We consider the most popular ReID bechmark datasets
following recent works [9, 33, 6].

CUHK03 [18]: Following the CUHK03-NP (New Pro-
tocol), this dataset consists of 14,097 images of 1,467 peo-
ple from 10 different cameras divided into a training set of
767 individuals and a testing set of 700 individuals. The
dataset provides two types of annotations The labeled ver-
sion consists of 7,368 training images, 1,400 query im-
ages and 5,328 gallery images. The detection version in-
cludes 7,365 training images, 1,400 query images and 5,332
gallery images.

Market-1501 [34]: This dataset contains 32,668 labeled
images of 1,501 individuals in total acquired by 6 differ-
ent cameras. The dataset is is divided into a training set of
12,936 images of 751 individuals, and a test set of 19,732
images of 750 people (with 3,368 query images and 16,364
gallery images).

MSMT17 [27]: This is the most recent, challenging, and
largest publicly-available person Re-ID dataset. It includes
126,441 images of 4,101 identities captured by 15 different
cameras, considering both outdoor and indoor scenarios. It
is divided into a training set of 32,621 images of 1,041 in-
dividuals, and a test set of 93,820 images of 3,060 people

(with 11,659 query images and 82,161 gallery images).
Following common practice in the Re-ID problem, we

use the mean average precision (mAP) and the cumulative
matching characteristics (CMC) at Rank-1 to evaluate the
performance of our proposed method.

4.2. Architecture and Setup

Network: We test our approach using both ResNet-50
and IBN-ResNet-50 [21] backbones pre-trained on Ima-
geNet [8]. The latter is a simple variant of ResNet-50 with
an instance normalization module. For ResNet-50 we add
global context (GC) blocks [2] after the third and fourth
stages of the backbone to facilitate a fairer comparison with
other state-of-the-art models that use similar non-local at-
tention units in the backbone [6, 33]. We change the stride
of conv4 1 from 2 to 1 to exploit larger spatial informa-
tion in the feature maps. The 5th stage of the backbone
(the layers after conv4 1) is duplicated to give 2 indepen-
dent branches that do not share weights. After performing
a combination of global max pooling and attention-based
pooling, we apply batch normalization [14] and a fully con-
nected layer in each branch.

Training: We resize all images to 384 × 192 pixel res-
olution. Following recent methods, we deploy random hor-
izontal flipping and random erasing [36] on the images for
data augmentation. The batch size is set to 64 with a random
selection of 16 identities and 4 images for each identity. We
adopt the Adam optimizer [17] to train all models for 200
epochs with a weight decay of 5×10−4. The initial learning
rate is set to 3.5× 10−4, which is reduced to 3.5× 10−5 af-
ter 40 epochs and 3.5× 10−6 after 70 epochs. Each branch
of our proposed model is optimized with cross-entropy and
triplet losses. The margin of the triplet loss m is set to 0.2.
During evaluation, we concatenate all the feature vectors
after the final batch normalization layers as the attention-
based global representation for images in query and gallery
sets. We run each experiment three times and report the
average results with standard deviation.
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Model # parameters
ABDNet (ResNet-50) [5] ∼ 85M

SCR (ResNet-50) [4] ∼ 53M
RGA-SC (ResNet-50) [33] ∼ 42M

SCSN (ResNet-50-CBAM) [6] ∼ 110M
ISP (HRNet) [38] ∼ 44M

Baseline (IBN-ResNet-50) ∼ 24M
AIR-Net (IBN-ResNet-50) ∼ 42M

Table 2. Comparison of total number of parameters for AIR-Net
and recently proposed models for Re-ID in closed-set scenario.
The adopted backbones are reported in brackets for each approach.

4.3. Comparison with State-of-the-Art Methods

We compare the performance of our proposed AIR-Net
with recent state-of-the-art methods across three popular
datasets 1 in Table 1. We note that the compared works use
a variety of backbones including ResNet-50, ResNet-50-
CBAM, DenseNet, GoogLeNet and HRNet. We report re-
sults for both the simpler and the more powerful backbone -
ResNet-50 and IBN-ResNet-50 models, respectively. These
results demonstrate that our method outperforms the current
state-of-the-art in mAP across all datasets. With respect to
the CMC metric at Rank-1, AIR-Net achieves the highest
result for CUHK03 Labeled and MSMT17, and just shy
of the top performances for CUHK03 Detected and Mar-
ket1501. We highlight that our approach tends to achieve
the largest improvements on less-saturated metrics of the
datasets, with an increase in mAP of 3.7% for the most re-
cent, largest, and most challenging MSMT17 dataset. This
suggests that AIR-Net may be even more beneficial for
datasets with a larger amount of images in the training set.
Our results with ResNet-50 backbone still achieves compet-
itive results while outperforming the other methods which
fairly utilize the same backbone.

While SCSN [6] achieves the second-top performance
overall (with the top and joint-top Rank-1 results on two
datasets), we note that this architecture uses a multi-faceted
approach that includes spatial and channel attention within
the backbone, non-local multi-stage fusion between the fea-
ture maps of different stages and a cascaded multi-stage
suppression sub-network that is designed to iteratively cap-
ture less prominent features. In particular, we argue that
the post-processing of the feature representations by the
multi-stage suppression sub-network is uniquely suited to
improving Rank-1 score. In addition, SCSN contains al-
most 3 times the number of parameters as shown in Table 2,
which compares the size of our model with the most re-
cent approaches proposed in the Re-ID closed-set scenario.
Our multi-branch attention-based approach adds a relatively

1While we are aware that DukeMTMC-reID [35] is no longer publicly
available due to improper collection procedures, we test our approach on
it for completeness. Here also, AIR-Net outperforms the current state-of-
the-art [4] in both metrics, obtaining 82.0% mAP and 91.2% in CMC at
rank-1 as compared to 81.4% and 91.1%, respectively.

small overhead on top of the baseline model and contains
fewer total parameters than other state-of-the-art models,
while achieving the top results across all datasets. This fur-
ther shows the validity of our approach that takes account
of both feature appearance and interaction information.

4.4. Ablation Study

In this section, we evaluate the effectiveness of using
multiple expert branches and maintaining the appearance-
based and interaction-based feature representations sepa-
rately for subsequent matching. Furthermore, we compare
the performance of our attention-based pooling approach
with a popular existing attention module [2]. The abla-
tion study is reported in Table 3. Starting with an IBN-
ResNet-50 performance as a baseline (line 1), we replaced
the global max pooling (GMP) with ABP to directly com-
pare attention-based pooling versus standard global pool-
ing. We find that the ABP block brings the highest perfor-
mance increase when added after the 5th stage of the back-
bone. We note a consistent improvement in line 2, as the
attention-based interaction features are learned rather than
handcrafted. We then analyze the effects of incorporating
a standard attention-based module - the GC block [2] - in a
single branch architecture, followed by GMP (line 3). Since
the GC block aggregates information based on the inter-
actions between channels, we see a performance increase
compared to the baseline and ABP block.

Secondly, we investigate the use of a multi-branch strat-
egy [4], where the local part-based experts are replaced by
an existing attention module [2], used to automatically ag-
gregate information from discriminative regions of person
images. A further improvement is observed compared to
the single-branch variants, demonstrating the importance of
multiple branches to create complementary features (line 4).
However, the performance remains sub-optimal since the
existing attention block fuses the learned feature interaction
information with the original appearance features. We an-
alyze the replacement of the existing attention block with
our attention-based pooling module, which shows an over-
all improvement over all the datasets. This suggests that
using feature interaction information independently in the
second branch is beneficial (line 5).

Nonetheless, we argue that an expert branch devoted to
analyzing the signatures of feature interaction must also
build a representation of the features themselves. Hence, we
add another GMP operation in the second branch (Branch
2A) to facilitate this learning. We complete the ablation
with the last comparison in lines 6 and 7, which add the
GC and ABP blocks in Branch 2B respectively. The com-
plete AIR-Net shows a large improvement compared with
the other variations, suggesting that discriminating between
identities using a unique representation based on feature
interaction brings a clear advantage in performance (line
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Variants
CUHK03

Market1501 MSMT17Labeled Detected
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

1 - Baseline 74.0 ± 0.4 71.9 ± 0.2 70.3 ± 0.5 68.7 ± 0.5 94.7 ± 0.3 86.3 ± 0.1 73.4 ± 0.2 48.4 ± 0.3
2 - Baseline with ABP 74.9 ± 0.4 72.0 ± 0.1 72.3 ± 0.8 69.7 ± 0.8 94.4 ± 0.2 86.0 ± 0.3 76.9 ± 0.2 52.4 ± 0.3
3 - Baseline with GC 77.2 ± 0.2 74.6 ± 0.2 73.4 ± 0.2 71.4 ± 0.1 95.2 ± 0.3 87.3 ± 0.2 77.1 ± 0.2 53.0 ± 0.2
4 - // branch 1 GMP + GC 83.8 ± 0.4 82.3 ± 0.4 81.1 ± 0.5 78.8 ± 0.5 95.3 ± 0.2 88.6 ± 0.1 79.9 ± 0.1 56.5 ± 0.1
5 - // branch 1 GMP + ABP 84.8 ± 0.7 82.7 ± 0.6 80.9 ± 0.6 78.9 ± 0.6 95.1 ± 0.1 89.2 ± 0.1 83.0 ± 0.2 61.3 ± 0.2
6 - // branch 2 GMP + GC 84.9 ± 0.4 82.8 ± 0.2 80.5 ± 0.7 78.6 ± 0.4 95.2 ± 0.1 88.6 ± 0.1 82.5 ± 0.1 60.9 ± 0.1
7 - AIR-Net 86.8 ± 0.6 84.8 ± 0.4 84.3 ± 0.8 82.0 ± 0.4 95.2 ± 0.1 89.3 ± 0.1 84.7 ± 0.1 64.5 ± 0.2

Table 3. Ablation study for evaluating the effectiveness of using multiple expert branches and comparing existing attention modules - the
global context (GC) block - with our attention-based pooling (ABP) module. All variants use the IBN-ResNet-50 backbone. The average
and standard deviation results over three runs are reported.

7). We highlight the large improvement gained by AIR-Net
over the standard baseline for all the considered datasets
(e.g., a 16.3% increase in mAP for MSMT17).

4.5. Visualizations of Saliency Maps

To provide a better interpretation of our proposed model,
we use the popular Grad-CAM [23] saliency approach to vi-
sualize where our method is focusing on the images. Grad-
CAM can highlight image cues that the network consid-
ers important for a specific prediction. We qualitatively
compare the saliency visualizations of the baseline and our
model in Figure 4. In particular, we select samples from the
MSMT17 dataset and visualize each individual branch for
our AIR-Net. In general, the saliency maps for feature of
Branch 1 and Branch 2A are similar to the baseline, since
the same GMP operation is used. This is expected since the
primary purpose of Branch 2A is to facilitate learning of
feature representations so that their interactions can be mod-
eled in Branch 2B. Nonetheless, slightly larger regions of
activation are noticeable for Branch 2A (e.g., the area near
the head of the person for the last three samples), owing to
the different weights learnt in the parallel branch. Interest-
ingly, the feature interaction branch Branch 2B appears to
consistently focus on multiple discriminative small regions
of the person (e.g., head, shoes, hood, suitcase) at the same
time. This reinforces the idea that this branch specializes in
the interaction between strong features. The difference in
saliency extracted from Branch 2B compared with those of
Branch 1 and Branch 2A supports the fact that the parallel
feature representations of AIR-Net extract complementary
information from the images.

5. Conclusions
We proposed a novel multi-branch architecture, com-

posed of parallel appearance and interaction feature extrac-
tors, for person Re-ID. We argue that existing attention
modules are sub-optimal since the interaction information
is mixed with the original features, reducing the discrimina-
tive ability of the network. Hence, we designed an attention-

Original Baseline AIR-Net-1 AIR-Net-2A AIR-Net-2B

Figure 4. The first column shows the original images from the
MSMT17 dataset and the remaining columns show the Grad-CAM
saliency visualization for our baseline and proposed AIR-Net,
fine-tuned on the MSMT17 dataset. AIR-Net-n is the saliency
visualization of the n-th branch of our model. By individu-
ally optimizing the branches, AIR-Net is able to jointly consider
appearance-based features of Branches 1 and 2A and interaction-
based features of Branch 2B. Notably, the feature interaction
Branch 2B appears to consistently focus on multiple discrimina-
tive regions of the person (e.g., head, shoes, hood, suitcase).

based pooling module that maintains the global representa-
tion of feature interaction for subsequent matching between
person images. We performed rigorous evaluation and ab-
lation studies, finding that our method outperforms recent
state-of-the-art models on the popular public datasets, while
also reducing computational expense.
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