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Abstract

Multi-object tracking (MOT) has long been a crucial
topic in the field of autonomous driving and security moni-
toring. With the saturation of the bounding-box-based MOT
algorithms in recent years, a new task to track objects
with instance segmentation, called multi-object tracking
and segmentation (MOTS), provides a finer level of scene
understanding and introduces potential improvements in
tracking accuracy. In this paper, we introduce a video-
based MOTS framework, named DIstill Observations to
Representations (DIOR). A feature distiller is designed to
extract and balance the comprehensive object representa-
tions: 1) the temporal distiller aggregates context informa-
tion for consistency of features and smoothness of predic-
tion longitudinally; 2) the spatial distiller on the target of
interest within each bounding box removes ambiguity and
irrelevance of background in the learned features. The sub-
sequent tracking steps start with Hungarian matching based
on feature similarity and masks continuity, which is effi-
cient and straightforward. In addition, we propose short-
term retrieval (STR) and long-term re-identification (re-ID)
modules to avoid missing associations due to failures in de-
tection or possible occlusion. Our method achieves state-
of-the-art performance in both MOTS20 and KITTI-MOTS
benchmarks.

1. Introduction

Multi-object tracking (MOT) has been a hot spot in
the computer vision research community due to the in-
creasing demands on various applications, including au-
tonomous driving [12, 45], security monitoring [47, 35], in-
telligent transportation systems [10, 30, 11] and smart city
[29, 9, 41]. In general, MOT targets to associate the ob-
jects across time by their locations and appearance features.
Therefore, how to extract, fuse and match the features that
belong to the same object and distinguish the difference of

others become the key challenges.

Current MOT frameworks can be divided into two main-
streams, the tracking-by-detection paradigm and the joint
detection and tracking paradigm. In the former one, bound-
ing boxes hypothesis of objects are generated by the video
object detector frame-by-frame and followed by a tracklet
association stage utilizing the appearance features from a
deep feature extractor [37, 5, 34, 3]. In recent years, re-
searchers start to combine the detector with features extrac-
tor either by inserting the previous frame’s results as the cur-
rent frame’s initial proposals or adding an extra embedding
head to the detector [4, 1, 36, 46]. The joint method is neat
and efficient, making the MOT possible to be real-time and
boosting up the practical applications [16, 22]. However,
both of the previous frameworks are based on a similar in-
tuition — extract the object-level features in bounding boxes.
When the target boundary is hard to estimate or occlusions
exist, the quality of bounding-box features is ambiguous for
localization in a single frame, not to mention to be used
for matching multiple objects longitudinally. Recently, as
the performance of tracking by the bounding boxes is about
saturating, researchers try to seek the light at the end of the
tunnel by extracting more useful representations and fusing
multiple levels of information.

Back to the nature of tracking, human-beings link the
objects through different scenes not only rely on the appear-
ance and locations of the objects, but also on the candidates’
boundaries, the most distinguishable regions, and surround-
ing environments. Therefore, by integrating the segmenta-
tion into tracking, the multi-object tracking and segmenta-
tion (MOTS) [32, 25] pushes the research into a new stage
— the feature sources used for tracking algorithms are not
only including the object-level information (i.e., categories,
bounding box location and size), but also the pixel-level fea-
tures (i.e., boundary, foreground, and background). Being
considered as a new direction of potential improvements,
however, pixel-level information is sometimes overabun-
dant. How to integrate both levels becomes a new chal-
lenge. Thus, an attention mechanism for extracting, fusing
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and balancing the multi-level features is necessary for the
MOTS to avoid information redundancy.

In this paper, we propose a multi-level feature em-
bedding and fusion framework for MOTS - DIstill
Observations to Representations (DIOR), which aims to de-
tect, segment and track objects in video sequences. A fea-
ture distiller is designed to extract and balance the com-
prehensive object representations. By such a customized
embedding component, the spatio-temporal information,
object-level and pixel-level features can be sufficiently ex-
tracted and fused to achieve reliable and precise multi-
object tracking in heavy occlusion scenarios. Specifically,
the paper yields the following contributions:

¢ A novel MOTS framework named DIOR, which is
a complete workflow for multi-object feature embed-
ding, detection, segmentation and tracking with only
monocular videos as input, is introduced. It is a
uniform solution for pedestrian tracking in crowded
scenes and car tracking for various driving scenarios.

* An observations distiller is designed to transform the
raw image sequence into instance-aware embeddings,
fusing class, bounding box, mask, key distinguishable
regions and appearance features by cross-perspective
attention mechanism. With the distiller, the input video
clips can be well captured and summarized into feature
spaces and fully use in the tracking algorithm.

* A multi-object tracking algorithm is implemented us-
ing the jointly learned instance-aware representations
along with the temporal consistency of trajectories.
The short-term and long-term re-ID steps help to re-
duce ID switches caused by occlusion.

» Extensive experiments are conducted on two real-
world large-scale datasets which consist of pedes-
trian and vehicle tracking including static and moving
cameras. The proposed DIOR achieves the state-of-
the-art performance on the MOTS20 benchmark with
sMOTSA 69.5% and IDF1 70.3%, and the KITTI-
MOTS benchmark with sSMOTSA 76.5% (car) and
63.9% (pedestrian).

2. Related Work

Multi-Object Tracking. Tracking multiple objects in the
video, i.e., multi-object tracking (MOT), especially persons
and vehicles, are extensively studied in recent years. Most
prior works [37, 5, 34, 3] perform association based on
hypothesis locations from off-the-shelf detectors. These
frameworks utilize a separate deep neural network model
to extract object appearance features and perform tracking
along with the trajectory continuity. The redundant and dis-
joint use of two parts usually results in degraded perfor-
mance. Therefore, the recent prevailing stream for MOT is
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Figure 1. The comparison between the general MOT framework
and the proposed DIOR, where the differences are shown in blue.
In addition to the use of instance segmentation, we also introduce
a distiller module to fuse the bounding-box-level and pixel-level
features in both temporal and spatial domains. Our instance-aware
features are more informative and less redundant for multi-object
tracking and segmentation tasks.

based on joint detection and embedding (JDE) [1, 36, 46],
i.e., performing detection and feature learning in the same
network, which are more run-time efficient. However, their
association is simplified to connection between two adja-
cent frames [1] or retrieve shortly lost objects based on ap-
pearance features [36]. In this paper, our proposed method
deploys both short-term re-linking and long-term relD, uti-
lizing the appearance, location and motion featuers.

Multi-Object Tracking and Segmentation. The concept
and dataset of MOTS was proposed by Voigtlaender et al.
[32] in 2019, where the instance masks of the MOT17 [22]
and KITTI [6] datasets are semi-automatically labeled [21].
The baseline method of MOTS, named Track R-CNN, is
a conventional Mask R-CNN [7] with two temporal 3D
convolution layers to incorporate the adjacent frames and
an additional embedding head to extract instance features
for tracking. The embedding head idea is consistent with
the aforementioned joint detection and tracking, which is
efficient and practical. However, their presented ablation
study of tracking performances (in sSMOTSA, MOTSA and
MOTSP, as formulated in Section 4.2 show only slight in-
creases in the pedestrian category but decreases in those of
the car category. Therefore, in this paper, we explore a more
effective structure for context aggregation based on atten-
tion learning.

As for the KITTI dataset [6], which is mainly for au-
tonomous driving applications. There are several algo-
rithms [20, 43] take multiple sensors as input in addition
to monocular images, such as lidar point clouds, stereo im-
ages, GPS, and efc. The fusion of various data sources en-
ables 3D scene understanding and solves the occlusion issue
with more clear clues. However, temporally and spatially
synchronized multi-modal data are not commonly unified
for general applications and the performance of some of
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those sensors are commonly sensitive to object sizes and
distances. In this paper, we confine to leverage the use of
monocular video only.

Video Object Segmentation and Mask Refinement.
Video object segmentation, also known as visual object seg-
mentation (VOS), aims at tracking and segmenting an arbi-
trary target specified in the first frame throughout the en-
tire video sequence. Same as MOTS, VOS also requires
the smoothness of masks longitudinally. However, as only
the masks of the first frame are provided, VOS study is
dominated by detector’s fine-tuning and target re-ID, which
is too heavy to be integrated into MOTS workflow di-
rectly. In general, VOS studies with temporal aggrega-
tion or mask refinement modules, including Youtube-VOS,
RVOS and PReMVOS, are correlated with MOTS and our
proposal [38, 31]. PReMVOS [21] focuses on mask re-
finement throughout the video and achieves promising re-
sults on DAVIS dataset segmentation challenges [25]. The
framework consists of four neural networks for mask gen-
eration, optical flow estimation, mask refinement and object
re-ID, respectively. However, the pipeline is too large to be
run in real-time. Though there are no off-the-shelf models
for MOTS in VOS study, the successes of these challenge-
winning algorithms inspire us to utilize temporal informa-
tion to refine single-frame results.

Our proposed DIOR overcomes the issues of the above
designs and results in a more flexible and reliable end-to-
end single network solution, which also allows effective
track recovery after long-time occlusions.

3. The Proposed Method

The workflow of DIOR is shown in Figure 1. Video
frames are sent into the temporal feature distiller sequen-
tially in a sliding window (clips), utilizing the adjacent
frames to concentrate on the area with objects in the
keyframe. It complements the detection difficulty caused
by occlusion and ensures the consistency of features lon-
gitudinally. The generated clip-level feature for the target
object is distilled to emphasize the foreground with spatial
attention, eliminating the redundancy of the background.
Moreover, this observation embedding not only represents
the appearance information but also be trained to minimize
intra-instance similarity and enlarge inter-instance diversity.
Finally, the features are associated with Hungarian match-
ing [15] efficiently.

3.1. Temporal Feature Distiller

The Temporal Feature Distiller (TFD) is mainly achieved
by a temporal attention (TA) module, as shown in Figure 2
(b), which is to smooth the embeddings time-wisely and
distill context information to focus on objects on the scene.

With features of three consecutive frames x;_1, x; and x;11
generated by a backbone ¥y, the TA module learns a pixel-
wise attention map for each time stamp and uses them to
compute weighted fused features. Feature maps of the three
frames are concatenated and 3D convolutions are applied to
couple them in the time dimension. Then SoftMax is per-
formed over each pixel location to generate the TA maps,
which are used to create the TA feature that is the weighted
sum of the original backbone features. Formally, the TA
maps for each frame 7 is represented as

ar = o(Wi[¥p(z:)])r, (1)

where W, means a 3D convolution operation and ¢ is Soft-
Max operation. Then the center frame’s appearance feature
and the weighted TA features are concatenated

tem _ Wz[qla(-rt) D ZaT . \I/Q(JJT)]; 2)

where W5 is a 3D convolution and @ represents concate-
nation. The fused features are sent to the following region
proposal network (RPN) and prediction heads. The sliding-
window input produces results for the center frame.

Since there are no abrupt changes in the background,
and object occlusion as well as motion blur are the main
causes of mask discontinuity, incorporating the neighbor-
ing frames’ features could be a useful supplement. Besides,
for partially occluded objects, TFD learns to borrow infor-
mation fore-and-aft, thus increases the recall of detection.
Examples of learned TA maps are shown in Figure 3, which
shows higher weights are assigned on the frames that ob-
jects are less occluded.

3.2. Instance-Aware Representations Learning

In the MOTS scenarios, the crowd is much denser
than common object segmentation scenes, such as those in
COCO [18]. Therefore, it is likely to include multiple ob-
jects within the same bounding box, resulting in erroneous
segmentation results. The intuition of the instance-aware
features learning comes from the human-beings experience
— extracting the distinguishable region at the instance or
pixel level for matching candidates. Here, we use the spa-
tial attention (SA) module to highlight the boundary of ob-
jects, and then dispatch the foreground (target of interest)
and suppress the background, so that more concentrated in-
stance appearance features can be obtained. Details of the
prediction heads are shown in Figure 2 (c).

The ROI features for object i, denoted as Ffem, are
pooled and flattened for classification and bounding box re-
gression. Simultaneously, they are passed through an SA
module to generate an SA map

Bi = 6(¢1 (™)), 3)

where ¢ are 2D convolutional layers shared with the mask
head and § is a pixel-wise Sigmoid operation. The values in
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Figure 2. (a) Framework for our proposed DIOR. Features are produced by the backbone with shared weights for three consecutive frames,
which are aggregated by a temporal attention (TA) sub-network. The proposals are generated by a typical region proposal network (RPN).
There are three prediction heads in parallel: a bounding box head for object classification and localization, a mask head for segmentation,
and an embedding head for appearance feature extraction. A spatial attention (SA) module, which is inserted between the mask and the
embedding head, will heavily weigh on the foreground object to enhance instance-specific appearance features and suppress the noise in
the background. (b) Detailed structure of the TA module. (¢) Detailed structure of the prediction heads with SA module.

Figure 3. Two examples of TA map visualization, which are best
viewed in color. The first column is input images and the second
column is TA maps. (Left) The man (labeled in red bounding box)
is occluded by the lady in the green shirt in frame ¢ —1 and frame ¢.
The feature of frame ¢ is unclear on this bounding box area. Thus
higher weights are learned on frame ¢ 4 1, which can supplement
the center frame. (Right) The lady on the pink top is gradually oc-
cluded and we observe weight decay in the three adjacent frames.

SA map indicate the probability of objectiveness. Then the
SA feature is

FoP = o (FF™)) @ (B - ¢2(FF™))), S

where ¢- are convolution layers in the embedding head.
Then single-dimensional feature is further extracted by fully
connected layers. Figure 4 shows visualizations of SA maps

Figure 4. Examples for SA map visualization. For each object, the
left figure is the cropped and resized bounding box on the raw im-
age, and on the right is the corresponding SA map. The SA maps
highlight the foreground of the proposals and suppress the noisy
background, helping to extract more purified and target-specific
appearance features.

on the validation set, which are rough masks with differ-
ent weights on specific human body parts through implicit
learning.

3.3. Objective Function

The objective function of the DIOR network is

Ltotal = Lbboz + Lcls + Lmask: + Lemba (5)
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Figure 5. (a) The object in red bounding box and object in yellow
bounding box occlude each other. Using bounding box IoU to
measure the overlap between the two can cause ambiguity. On
the other hand, the overlapping of masks makes better sense. (b)
Objects existing in the scene and being gradually occluded have
incomplete masks, which change significantly in the heights and
widths than those of its previous frame. Here, orange arrow (light
color mask) indicates mask in frame ¢ — 1 and magenta bound box
(dark color mask) indicates mask in frame ¢. To better handle the
frequent occlusion as well as leaving and approaching the camera,
using minimum mask area between the two is more practical than
the union of them.

where Ly, denotes the bounding box location regression
loss, which is the smooth L1 loss. L is the cross-entropy
classification 10ss. L,k 1s the binary cross-entropy loss
for segmentation. Due to the insufficiency of MOTS train-
ing data, the instance embedding is trained with cross-
entropy loss instead of triplet loss [26], based on the recog-
nition results of identities of the persons included in the
training set. The experiments in [36] also support that cross-
entropy loss is more effective and convenient than triplet
loss in training object embedding features. Therefore, we
also apply a fully-connected layer on the embedding fea-
tures for object identity classification. L.,,; is the cross-
entropy loss for identity recognition, which helps to gener-
ate more distinctive embeddings.

3.4. Tracking with Short-term Retrieval and Long-
term Re-ID

The detections, masks and embedding features are first
sent to the Hungarian algorithm [15] to match with previ-
ously tracked objects of the same object classes (i.e., pedes-
trians or cars). The predictions of frame ¢ are denoted as
P®) consisting of detections D(*) = {dgt)7 dét)7 e dgf,)},
masks M® = {m{? m{ _ m}, the correspond-
ing embeddings E®) = {egt), e(2t), . egf,)}. Trk =
{Trky, Trks,...,Trky} represents a set of established
tracks. Considering the visibility of an object may vary due

to camera movement, features of each track are represented
as an online updated stack of its features of first five frames
and the most recent five frames, denoted as Trk:;f’. Simi-
larly, Trk;»i and T'rk}" are the bounding boxes and masks
of T'rk;. The assignment cost C between the i-th prediction
pgt) = {dl(.t),mgt), egt)} and j-th track Trk; is computed
by

- () m!t (t) e
C=2—1IoM(m;’,Trk" ) —D(max(e; ,Trkj)),(6)
where the Trk}“ti1 is the Trk;’s mask in frame F,_;.
D(max(-)) denotes the maximum of cosine similarity from
pair-wisely comparison. Here, the mask IoM (Intersection-
over-Min) is defined as

Z(maq,my)
min(S(mq),S(my))’

where S represents the area and Z is the intersection. Us-
ing the intersection of masks avoids falsely producing high
Intersection-over-Union (IoU) value for two objects that oc-
clude each other, as the example shown in Figure 5 (a). In
addition, exiting objects have incomplete masks, which are
incomplete in shape compared to their former frames, as the
case in Figure 5 (b). Therefore, the minimum area of two
masks is used in the denominator of IoM.

Matched tracks are updated with new detections while
the unassigned ones are sent into a short-term retrieval mod-
ule to be matched with the live tracks that without a detec-
tion in frame x;_1. Tracklets will be marked as terminated
if there is no alignment for the most recent N; frames.

In offline applications, re-ID could reduce identity
switch (IDS) by reconnecting broken-up tracks. Here, the
long-term occlusions are recovered by feature-based re-ID.
In this stage, two tracklets T'rk, and T'rk, without over-
lapped frames in time (assuming 1'rk,, is earlier than T'rk,),
within Ny frames apart, and with feature similarity higher
than 61, are considered as possible matched pairs.

ToM (mg, mp) = @)

4. Experiments
4.1. Dataset and Implementation Details

The datasets for evaluation are MOTS20 and KITTI-
MOTS datasets [32]. MOTS20 has 8 sequences for pedes-
trian tracking only, and is evenly split for training and test-
ing. The videos are captured both indoor and outdoor by
static, hand-held, stroller-mounted and car-mounted cam-
eras. In the testing set, the resolution varies from 640 x 480
to 1920 x 1080 with an average density of 10.6 targets per
frame. The ground truth of MOTS20 dataset is for monoc-
ular images only. KITTI-MOTS is a dataset for the au-
tonomous driving scene. It consists of 21 training sequences
and 28 testing sequences from car-mounted cameras, cover-
ing the street view, high-way and pavement view. The target
categories are both cars and pedestrians.
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centric video); MOTS20-0007 (hand-held camera, outdoor, high density); MOTS20-0012 (hand-held camera, indoor).

The proposed network uses ResNet50 [8] as the back-
bone, which is pretrained on the COCO dataset [18] and
fine-tuned on the MOTS20 and KITTI-MOTS dataset.
Noted that no other training datasets are included. The di-
mension of the output feature is 1024. Short-term mem-
ory interval to determine the state of a track is Ny = 0.2
second, while the long-term interval for re-ID is Ny = 1
second. Furthermore, to fairly assign hyper-parameters and
conduct ablation studies, MOTS20-0002, MOTS20-0005
and MOTS20-0009 are selected as the training set, and
MOTS20-0011 is the validation sequence. Results are re-
ported based on our implementations using Pytorch [23]
and mmdetection [2] using two Nvidia Titan Xp GPUs on a
Linux Ubuntu 18.04 system.

4.2. Evaluation Metrics

Metrics for MOTS [32] is an extension of the CLEAR
MOT, established in [22]. Here we briefly introduce several
necessarily defined evaluation metrics for MOTS. The cor-
respondence ¢ of ground truth masks m and hypotheses h
are established based on mask IoU with threshold 0.5 [13]

{arg max loU(h,m), if max IoU(h,m) > 0.5,
c(h) = meM meM
0, otherwise.
)
Based on the correctness of the masks correspondence,
there are sets of true positive (TP), false positive (FP) and

false negative (FN). Additionally, soft TP is defined as

TP = Y IoU(h,c(h)) 9)
heTP

which evaluates the accumulated quality of the segmenta-
tion rather than a hard counting with the threshold. ID
switches (IDS) is defined as the set of ground truth masks
whose predecessor was tracked with a different id. The
MOTS accuracy (MOTSA), MOTS precision (MOTSP) and

soft MOTSA (sMOTSA) are separately formulated as
MOTSA — 1 — |FN| + ||FI\I/’[|| + |IDS|

N — (10)

TP TP — |FP| — |IDS|
MOTSP = —, sMOTSA = .
TP ° M|

4.3. Performance

The performance of DIOR in the MOTS20 benchmark
is shown in Table 1. By the date of submission of this pa-
per, there are very few published competitors. Comparing
to the baseline TrackRCNN [32] method, we significantly
improve the recall by 25.2%, and thus increase the number
of mostly tracked (MT) and reduce the mostly lost (ML) to
a large extent. TrackRCNN uses a 3D convolution layer to
extract context information; differently, we design the at-
tention mechanism on spatial and temporal domains. The
result proves the effectiveness of our future distillation.

The performance of DIOR in the KITTI-MOTS is shown
in Table 3. PointTrack [39] is one of the leading algorithms
in the benchmark. It regards the object’s mask and its sur-
rounding environment as two sets of 2D point clouds and
learns the foreground and background features separately.
Nevertheless, this is built upon an accurate initialization of
segmentation, achieved by a pretrained network for opti-
cal flow estimation, which is unreliable for unsteady mov-
ing cameras (e.g., hand-held or stroller-mounted, as in the
MOTS dataset), resulting in degraded performance. Re-
MOTS [40] proposed an intra-frame self-supervised triplet
construction network to learn object features for both train-
ing and testing set for re-ID. GMPHD-SAF [27] uses Gaus-
sian mixture probability hypothesis density (GMPHD) filter
and a simple affinity fusion (SAF) model. Though computa-
tionally simple, the GMPHD-SAF is tracking-only method,
relying on well-preprocessed detections and masks. The
ReMOTS is a refinement of other methods’ tracking results.
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Tracker sMOTSAtT IDF1t MOTSAT MOTSPt MT{ ML} Recallt Precisiont IDS|
GMPHD_MAF 69.0 65.6 82.9 84.2 249 11 87.7 96.7 566
ZXPointTrack 62.3 429 76.8 82.3 186 41 81.4 96.5 541

SORTS _RelD 55.8 65.8 69.1 81.9 107 52 73.4 95.7 541
TrackRCNN [32] 40.6 42.3 55.2 76.1 127 71 60.8 94.0 567
ReMOTS [40] 70.4 75.0 84.4 84.0 248 9 87.6 97.2 231
DIOR (Ours) 69.5 70.3 83.3 84.2 253 9 87.1 97.2 421

Table 1. Performance on MOTS20 dataset. The results are from https://motchallenge.net/results/MOTS/. We submit

under name COSTA _st.

KITTI-MOTS
Car Ped MOTS
MCEFPA [28] 77.0 67.2 66.1 69.1
TPM-MOTS [42] 75.8 67.3 66.6 69.1
ReMOTS [40] 72.6 64.6 67.9 68.3
GMPHD_SAF[27] | 76.2 64.3 64.3 67.3

Method

Total

Lif_TS 77.5 55.8 65.3 66.0
SRF [17] 714 | 60.9 60.0 63.1
KQD 744 | 61.8 57.3 62.7
USN 72.1 59.3 59.5 62.6
YLC 62.3 57.2 59.1 59.4
SI 68.5 55.5 56.2 59.1
FK [14] 64.1 54.5 543 56.8

DIOR (Ours) 764 | 64.0 69.4 69.8

Table 2. Track 3 (tracking-only track with given detection and
segmentation) competition results of the BMTT Challenge in
CVPR 2020, evaluated by sMOTSA.Information of detailed leader
board and teams is available at the challenge host site https:
//motchallenge.net/workshops/bmtt2020

Therefore, our method yields higher integrity and practica-
bility. We are the 2"? place for both car and pedestrian cat-
egories.

As a supplement, tracking-only performance is reported
in Table 4.2 based on the BMTT Challenge in CVF/IEEE
CVPR 2020 workshop (tracking-only track with public de-
tections on both MOTS20 and KITTI-MOTS datasets). The
pre-computed detections are generated from Mask R-CNN
X152 [7] and refined by the refinement net [19]. MCFPA
[28] is based on Min-Cost network Flow (MCF) [44] opti-
mization, then the post association (PA) of tracklets is per-
formed by a single object tracker SPM [33]. TPM-MOTS
adjusts TMP [24] trackor with mask input. Processing time
and offline requirements are the major drawbacks of these
methods. Besides, all of them are following tracking-by-
detection scheme, the performance highly relies on detec-
tion accuracy. The proposed method could perform detec-
tion and feature extraction jointly, which is more robust and
efficient.

4.4. Ablation Studies

How does SA module improve tracking performance?
As mentioned in Section 3.2, the proposed SA module in
spatial distiller manages to suppress the noisy background
information, resulting in better feature representations for
reliable multi-object tracking. Some visualization results of
the SA module is shown in Figure 4. The quantitative re-
sults of the contributions for TA and SA to the tracking per-
formance are shown in Table 4. It shows that the SA mod-
ule can improve sSMOTSA by around 20%, which shows our
high-quality instance-aware features.

Figure 7 shows the comparison of feature similarity be-
tween TA only model and TA+SA model in histogram. Here
all detections are assigned to a ground truth bounding box
based on their degrees of overlap. Thus, each detection will
be assigned an ID if the IoU is above threshold 0.75. Then
the inter-object and intra-object feature cosine similarity are
calculated pair-wisely. The histogram shows the average
similarity and the corresponding number of tracks. It is ob-
served that, with the SA model, object features are more
distinctive and separable.

How does TA module improve detection performance?
The proposed key component of temporal distiller is the TA
module, which can efficiently merge the information from
the input clip (mentioned in Section 3.1). Some examples
for qualitative visualization of the TA module are shown in
Figure 3. From Table 5, we can observe that TA module im-
proves object detection mAP by about 2%. Besides, given
the limited improvement in mAP (+0.001) and mAR (+0),
we can also find that SA module can hardly help object de-
tection. With SA module, there is a trade-off between de-
tection and embedding features, which means that to obtain
better features, the detection performance might degrade.

Short-time Retrieval and Re-ID Modules. The effect of
the short-term retrieval and long-term re-ID modules are
shown in Table 6. Since they share the same prediction from
the DIOR network, the SMOTSA, MOTSA and MOTP are
close. However, the number of IDS is significantly reduced
with these two modules.
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Tracker sSMOTSAT MOTSAT MOTSPT MOTSALT MODSAT MODSPT MTT ML] IDS|
Poin(Track [39] 785 90.9 87.1 91.8 91.8 89.7 908 0.6 346
ReMOTS [40] 75.9 86.7 88.2 88.7 88.7 90.7 845 06 716

& | GMPHD-SAF [27] 75.4 86.7 87.5 88.2 88.2 90.1 820 0.6 549
TrackRCNN [32] 67.0 79.6 85.1 81.5 81.5 88.3 749 23 692
DIOR (Ours) 76.5 874 88.1 89.9 89.9 90.5 847 1.1 649

_ | ReMOTS [40] 66.0 813 82.0 83.2 832 94.0 626 56 391
2 | GMPHD-SAF [27] 62.8 78.2 81.6 80.4 80.5 93.7 593 48 474
2| PointTrack [39] 61.5 76.5 81.0 77.4 77.4 93.8 489 93 176
B | TrackRCNN [32] 47.3 66.1 74.6 68.4 68.4 91.8 456 133 481
~ " DIOR (Ours) 63.9 80.3 815 833 833 93.6 730 22 6l1

Table 3. Performance on KITTI-MOTS dataset.
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Figure 7. Inter-object similarity is shown in green, while intra-object similarity is shown in red. z-axis is the average cosine similarity,

y-axis is the proportion of tracks. Best viewed in color.

Model sMOTSA MOTSA MOTP MODSA
base 42.1 50.9 86.9 61.8
+TA 43.6 51.6 87.4 61.7
+SA 62.7 72.8 86.7 73.3

+TA+SA 65.4 76.1 86.5 76.9

Table 4. Ablation study of TA and SA modules on tracking. The
performance is based on the validation sequence MOTS20-0011.

Model mAP mAR
@[IoU=0.5:0.95] @[IoU=0.5:0.95]

base 0.569 0.597

+SA 0.570 0.597

+TA 0.586 0.612

+TA+SA 0.578 0.602

Table 5. Ablation study of TA and SA modules on detection. The
performance is based on the validation sequence MOTS20-0011.
mAP means the mean average precision at IoU threshold from 0.5
to 0.95, with step of 0.05. mAR is the mean average recall.

5. Conclusion

In this paper, we introduce DIOR: distill observations to
representations, which is a complete framework for multi-

Model sMOTSA MOTSA MOTP IDS
Hungarian only 64.6 75.7 86.7 54
+STR 64.7 75.4 86.7 48
+STR+re-ID 65.4 76.1 86.5 21

Table 6. Ablation study of Short-term Retrieval (STR) and Long-
term re-ID modules. The tracking performance on validation se-
quence MOTS20-0011. Best results are marked in bold.

object joint detection, segmentation and tracking with only
monocular videos as input. In DIOR, the temporal dis-
tiller module incorporates context features to compensate
for mask discontinuity caused by occlusion or motion blur
and ensure longitudinal consistency. Besides, the spatial
distiller module is designed to highlight the target of inter-
est and suppress the redundant background. The distinctive
instance-aware representations significantly benefit the ob-
ject association. Our system achieves leading performance
on MOTS benchmarks.
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