
Where are we with Human Pose Estimation in Real-World Surveillance?

Mickael Cormier3,1 Aris Clepe1,2 Andreas Specker3,1 Jürgen Beyerer1,3

1Fraunhofer IOSB, Karlsruhe, Germany; 2Fraunhofer Center for Machine Learning;
3Vision and Fusion Lab, Institute for Anthropomatics and Robotics,

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
firstname.lastname@iosb.fraunhofer.de

Abstract

The rapidly increasing number of surveillance cameras
offers a variety of opportunities for intelligent video analyt-
ics to improve public safety. Among many others, the auto-
matic recognition of suspicious and violent behavior poses
a key task. To preserve personal privacy, prevent ethnic
bias, and reduce complexity, most approaches first extract
the pose or skeleton of persons and subsequently perform
activity recognition. However, current literature mainly fo-
cuses on research datasets and does not consider real-world
challenges and requirements of human pose estimation. We
close this gap by analyzing these challenges, such as in-
adequate data and the need for real-time processing, and
proposing a framework for human pose estimation in un-
controlled crowded surveillance scenarios. Our system in-
tegrates mitigation measures as well as a tracking compo-
nent to incorporate temporal information. Finally, we pro-
vide a detailed quantitative and qualitative analysis on both
a scientific and a real-world dataset to highlight improve-
ments and remaining obstacles towards robust real-world
human pose estimation in uncooperative scenarios.

1. Introduction

An aim of research on intelligent video surveillance and
human activity recognition in the real world is to provide
near real-time detection of persons in need of assistance due
to an accident or fall with subsequent injury, as well as de-
tection of violence in public places. In all instances, the
surveillance footage requires immediate processing in or-
der to provide human assistance on-site in a matter of min-
utes. However, the rapidly increasing number of surveil-
lance cameras rightly raises important concerns regarding
privacy as well as proven bias towards distinct groups of
persons based on their appearance [32]. An attempt to
circumvent such problems relies on skeleton-based activ-
ity recognition, which promises an interesting degree of

Figure 1: In a real-world setting person detection and pose
prediction encounter various obstacles: train tracks, power
cables and moving trams block different parts of the image;
camera angle creates variance in person size.

anonymization [13]. Furthermore, since a skeleton repre-
sentation is a heavy abstraction, it further reduces comput-
ing considerably which is an essential aspect against tra-
ditional two-streams RGB and Optical Flow-based meth-
ods [57]. Public services such as hospitals or police de-
partments often lack essential funding and infrastructure to
support large-scale models. Therefore, video processing of
a live feed is usually required to fit on a single consumer-
grade GPU or even on smaller embedded systems. Hence,
processing pipelines are constrained to be lightweight and
thus models must have a low memory footprint, which often
correlates with reducing the number of model parameters.

While Human Pose Estimation (HPE) arguably provides
promising results for scientific datasets, there is no large-
scale dataset for outdoor HPE in surveillance scenarios.
Publicly available datasets lack large fields of view, dif-
ferent elevated views with multiple steep angles, etc. As
illustrated in Figure 1, real-world data distribution highly
differs from conventional datasets. Public transportation in-
frastructure such as rails, pavement, and power cables may
dominate a surveillance area. Due to the elevated view
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persons are partially or almost totally occluded by diverse
structures, each other or even themselves. Furthermore, de-
pending on the time of the day and the year, different chal-
lenges such as brightness and contrast arise. Consequently,
detections from a person vary over time or may be absent
shortly, and pose estimation is accordingly difficult. Even
small perturbations in the size of the bounding boxes often
lead to different poses over time, which strongly impairs
the quality of action recognition. In this paper, we pro-
pose a framework for crowd pose estimation in real-world
surveillance. In contrast to similar approaches for detec-
tion and tracking of human poses which use memory costly
3D CNNs [40, 14], our framework fits in a single consumer
GPU and can be replicated and scaled for multiple cameras
with only little effort. Our framework contains three main
components: a person detection module for real-world per-
son detection, a robust and fast visual tracking module de-
livering temporal consistent tracks, and a crowd pose esti-
mation module for fast pose estimation with multiple tracks.

In summary, we address the challenges of human pose
estimation for real-world surveillance and review both
quantitatively and qualitatively the state-of-the-art HPE
methods against a real-world dataset designed to highlight
those challenges. Our contribution is threefold: (1) we pro-
pose a framework for real-world HPE in surveillance and
crowd, (2) we show that CNNs in HPE don’t generalize
well to the surveillance domain and highlight remaining ob-
stacles towards a fast and robust real-world HPE, (3) and we
propose strategies to stabilize poses over time in order to fa-
cilitate skeleton-based activity recognition.

2. Related Work

2.1. Human Pose Estimation

Since the first application of CNNs for HPE [44] mul-
tiple datasets with growing size gained in importance and
were subsequently made available [28, 2, 1, 42, 12, 22,
51, 31]. The COCO dataset [28], which is one of the
most commonly used, has over 200,000 images and 250,000
poses. Similar to the MPII dataset [2], COCO features
non-continuous images with common poses and a frontal
view. PoseTrack18 [1] bases on the MPII dataset and fea-
tures continuous video frames with more complex real life
scenarios in controlled environments, such as sport events.
COCO defines it own topology with 17 keypoints, of which
five (nose, eyes, ears) are on the head. In more realistic
scenarios with steeper camera angles, reliably detecting the
ears and eyes of a person is challenging. Therefore, the
MPII and Posetrack18 topologies simplify the pose by re-
ducing the head keypoints to two and three, respectively.

Such datasets primary represent the human pose in com-
mon and simple situations with favorable camera angles.
OCHuman [51] and OCPose [31] are smaller datasets that

address (self-)occlusion with similar frontal views on sin-
gle, non-continous images with two subjects. Crowd-
Pose [22] also belongs to the category of smaller datasets
and contains crowded scenarios. This dataset also consists
of non-continuous images and the crowds are in controlled
environments such as group photos or sport events. There-
fore, training on these datasets transfers poorly to real-world
surveillance scenarios, with steep camera angles, heavy
(self-)occlusion, and people in dense crowds.

Occlusion through crowd and complex poses is a chal-
lenging topic in the field of human pose estimation. A pos-
sible approach to tackle this challenge are bottom-up meth-
ods [3, 20, 6]. These methods first detect all body parts in
a scenario and fuse the found keypoints to create a human
pose. Since these methods detect keypoints independently
from the actual person count on the image, the inference
time is independent of the amount of people present. De-
spite these advantages, their prediction performance drops
significantly in the surveillance context, as those fail to re-
liably create correct poses in complex human interactions,
such as street fights.

An alternative approach to bottom-up are top-down
methods composed of a person detector to create bound-
ing boxes for each person, for which a pose estimator then
predicts the actual pose separately. The pose estimation is
done mainly by CNNs [39, 45] or transformers [46, 25].
Due to the dependency on a person detector the quality of
a top-down method is linked to the person detection. Addi-
tionally, the inference time increases relatively to the person
count. With recent, accurate person detectors and batch-
processing, these issues are addressed and enable top-down
methods as reliable approaches for HPE in surveillance con-
text. Recently, further approaches focus on improving the
detection of occluded keypoints [15] as well as directly pre-
diction pose for crowds using GNNs [11].

2.2. Person Re-Identification

Recently, the research focus on person re-identification
has shifted from developing mainly heavyweight mod-
els [5, 43, 37] to task-specific and lightweight architec-
tures [55, 24] and generalizable methods [18, 26, 36, 56,
7, 17, 35, 38, 52]. Literature shows that optimized smaller
models achieve state-of-the-art results [29, 47, 55] with in-
creased generalization capabilities on unseen data [29, 56,
19]. In general, approaches for generalizable person re-
identification are divided into two categories: Methods that
learn from a single dataset [18, 26, 36, 56] and methods
learning from multiple datasets [7, 17, 35, 38, 52]. Since
several datasets are available that meet our requirements,
namely a realistic outdoor surveillance scenario [21, 33,
53, 23, 19, 54], we rely on the second approach in this
work. Most related work uses either instance [7, 17, 56]
or batch [52] normalization layer to learn features that are
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independent of the training domains. Other strategies in lit-
erature are the use of data augmentation techniques [38], ad-
versarial training [49], or separate mapping networks [35].
In this work, we leverage the combination of a task-specific
model with instance normalization, training on multiple
datasets, and data augmentation to construct a lightweight
and generalizable re-identification model.

3. Real World Challenges

(a)

(b) (c)

Figure 2: Various challenges are present in real-world sce-
narios. A selection of these are: (a) Strong camera glare
through reflection on mobile devices, camera distortion,
train tracks interfering with human shape and sharp shad-
ows that can lead to false positive detections, (b) people
that are partially or completely obscured by environmental
shadows and (c) complex, entangled and occluded poses

Human Pose Estimation in Surveillance is a challenging
task. Different from laboratory conditions, a surveillance
camera streams continuously days and nights through dif-
ferent weathers the whole year. While during summer the
reflection from a cell phone may partially blend a camera as
illustrated in Figure 2a, illumination within the same scene
may strongly vary as shown in Figure 2b. Furthermore,
due to the nature of video surveillance, the images are of-
ten heavily distorted and the cameras are mostly installed
at altitude and inclined to deliver large fields of view. This
camera perspective emphasizes occlusions by other objects
or oneself, and sometimes even by one’s own shadow, as
shown in Figure 2b and 2c.
Data Acquisition and Annotation is an essential part of
real-world surveillance projects. Large amounts of raw data
are generated at a high rate, but due to the high cost of anno-
tation, only a small part of this data may be used for super-

vised learning. Due to policies regarding personal privacy
as well as logistical problems, e.g. persisting and storing
this data, only a fraction of the available data should be au-
thorized for storage and further processing. While active
learning methods aim to select the potentially most useful
data for improving deep learning models, we found no sig-
nificant improvements from these methods for human pose
estimation in the wild. Nevertheless, the data requires semi-
automatic processing with humans in the loop to select the
most promising material based on qualitative observation
of the models in production at that point. For instance, pose
estimation may be disturbed by strollers or specific distor-
tions. In this work, a private dataset for Real World Surveil-
lance Crowd Pose Estimation (RWS-CPE) is created to pro-
vide quantitative analysis from 100 frames selected out of
11 different cameras with 4,785 bounding boxes and 1,894
poses, with at least a dozen up to more than one hundred
person per image. Bounding boxes and human poses are an-
notated interactively using model predictions as described
in [9]. Poses are annotated using the Posetrack18 topol-
ogy [1] for bounding boxes with more than 100px vertically,
the others are annotated with bounding boxes only. The size
distribution is challenging with 1,323 small (< 32× 32px),
2,834 medium (32×32px≤box≤ 96×96px) and 628 large
boxes (> 96× 96px).

4. Top-Down Crowd Pose Estimation
The aim of our system is to provide HPE for a live video

stream from surveillance camera in order to perform ac-
tion recognition on the generated skeleton and detect vio-
lence as illustrated in Figures 2b and 2c. While skeleton-
based action recognition is mostly performed with ground
truth annotation in the literature, providing clean and sta-
ble skeleton tracks from surveillance footage in real-time
remains extremely challenging. Large-scale video surveil-
lance systems require flexibility and scalability in an almost
plug-and-play matter when new servers and cameras are
added. Therefore, our processing pipeline is compiled and
delivered in a Docker container within a Kubernetes cluster
to reduce administrative workload. Since authorities often
have extremely limited hardware budgets, our pipeline is re-
quired to deliver acceptable results and speed on consumer
hardware, e.g. the pipeline is required to process a camera
stream on a single GPU RTX 2060 with 6GB RAM. In this
section, we offer a brief overview of our system and intro-
duce each main processing component.

4.1. Overview

Our system for live real-world HPE is designed for high
flexibility. Therefore, each component is encapsulated in a
separate module, which allows the visualization and config-
uration at each pipeline step. The video stream produced by
a surveillance camera is the input of the processing pipeline.
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Figure 3: Examples of invalid poses return by the bottom-up
approach OpenPose[3] on the MOT20 Dataset [12] which
combines joints of different persons.

Unless stated otherwise, each component processes single
frames. While bottom-up HPE approaches tend to scale
nicely with a growing number of persons to detect, which
would be beneficial to guarantee processing time, a gap in
the prediction quality compared to top-down approaches ex-
ists. Moreover, they produce artifacts that strongly impair
further processing for activity recognition, as illustrated in
Figure 3. Therefore, we first implement a CNN person de-
tector which generates bounding boxes for person predic-
tions. Those are subsequently processed by a visual tracker,
which creates, curates, and sorts tracks using a person re-
identification module. From this step a tensor of dimensions
N × T × B is returned, where N is the number of tracks,
T the temporal length, and B an abstraction of the detection
parameter. This tensor serves as input to the HPE module.
Here, following [13] we represent a 2D pose as a heatmap
of size K × H × W , where K is the number of joints, H
and W are respectively the height and width of the frame.
The heatmap should be zero-padded to match the bounding
box heatmap produced by the pose estimator with the size
of the frame. Finally, we obtain a 3D heatmap volume of
size N × K × T × H × W for each track by stacking all
heatmaps along the temporal dimension. Depending on the
requirement of the action recognition following our system,
this tensor may also be compressed with a skeleton abstrac-
tion of dimension N × T × S.

4.2. Person Detection

Person detection in real-world surveillance scenarios is a
complex trade-off problem: on the one hand, the detector is
expected to process frames at high speed to avoid becoming
the main bottleneck of the pipeline. On the other hand, the
detector is required to deliver accurate bounding box predic-
tions that include all body parts to enable precise pose esti-
mation. Furthermore, false positives cause cascading noise
and thus should be avoided. Following [10] we choose a
one-stage person detector, YOLOv4, for acceptable speed

Figure 4: Overview of our real-world system for HPE. De-
pending on the interface of a following action recognition
module, the output is either a 3D Heatmap Volume or a
compressed skeleton abstraction

and its superior accuracy against other one-stage detectors
for person detection in surveillance scenarios. Since real-
world projects for intelligent surveillance usually start with-
out annotated material, only a few frame examples are used
to precise the project’s specifications. However, such sam-
ples are insufficient for supervised training in the target do-
main.

4.3. Visual Tracking and Temporal Consistency

In top-down HPE the model is used to predict a pose for
each bounding box provided by the person detector, regard-
less of time information. Only single frames are available in
most popular datasets therefore evaluation of temporal as-
pects isn’t possible. Thus, neither predictions from the past
nor from future frames is involved in the prediction of a
pose at a specific point in time t. Consequently, predictions
on frame sequences are highly volatile over time, which im-
pair the performance of action recognition systems. A com-
mon problem is the interruption of skeleton sequences due
to missing detections caused by slight variations in illumi-
nation or pose. The whole pipeline attempts to fulfill real-
time requirements and HPE accounts for a significant share
of the computational costs. Therefore, multiple detections
and incomplete tracks should be discarded to reduce com-
putation time. To this aim, we develop a light, visual tracker
that is required to perform at least as fast as the person de-
tection component. Its main function is to track persons
for at least a few seconds in order to enable sequence-based
activity recognition. A few interruptions of the tracks are
tolerable, as far as they retain a minimal length. Since the
input stream from static surveillance comes in with at least
25 FPS, physical assumptions about the movement speed
of persons can be met, i.e. a person will only move a few
pixels between consecutive frames. We argue that a person
re-identification model is both accurate and fast enough to
allow sufficient tracking quality.
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We apply the OSNet-x1.0 architecture with instance nor-
malization [56] since it offers state-of-the-art performance
at reasonable computational costs. The model is trained
with the proposed parameter setting from [55]. During
training, several data augmentation mechanisms are applied
to increase the variance of training data. Concretely, images
are randomly flipped, their brightness and contrast are ad-
justed, and rotated up to 30 degrees in both directions. The
latter helps to overcome real-world challenges such as steep
camera views, as it simulates different viewing angles of a
person from an almost vertical viewpoint [30]. We lever-
age multiple complementary datasets with different char-
acteristics to learn domain-invariant re-identification fea-
tures. Market-1501 [53] and DukeMTMC-reID [33] consist
of typical surveillance imagery captured by low-mounted
static cameras, while PRAI-1581 [50] is a drone-based
dataset and thus represents steep views from overview cam-
eras. We realize the tracking by extracting l2-normalized
feature vectors for all persons present in the video frame.
Afterward, the Euclidean distances to feature vectors from
people occurring in preceding frames (gallery) are com-
puted. When the distance is below an adjustable threshold,
the person ID of the gallery track is assigned to the match-
ing detection. Otherwise, a new track is created.

Our module saves the feature directly in memory to pro-
vide the best speed result. Since the module runs continu-
ously and needs to fulfill legal requirements, we implement
a ring buffer and only save features from a few preceding
frames. This gallery size is empirically set to five, which
proved sufficient for solid re-identification performance.

For temporal consistency a tensor Ñ × T × B is con-
structed from the Ñ tracks available. If a minimum of 60%
detections for the track in chosen time length are missing,
we argue that completing those gaps is misleading and thus
the track won’t be forwarded. Given a gap size G, one or
multiple gaps with size smaller than G will be filled either
by copy from the last frame or linear interpolation, prevent-
ing gaps in pose estimation. Empirical studies on qualitative
results indicate that pose estimation on bounding boxes with
less than 100 px in vertical is highly uncertain and produces
severe artifacts over time. Therefore tracks outside a user
chosen size bounds are also filtered out, leading to a final
tensor of size N × T × B where N ≤ Ñ which is sorted
per track ID.

4.4. Crowd Pose Estimation

While top-down HPE is more accurate for surveillance
scenarios, its speed highly depends on the crowdedness of
the scene. This dependency is due to the general process
of top-down approaches. For each bounding box the cor-
responding image patch is taken as input for a backbone,
which creates low-resolution features. These features serve
as a bottleneck from which an upsampling process cre-

ates a heatmap for each keypoint. These heatmaps can be
used directly, to take advantage of surrounding information
around the keypoint, or the coordinates of each keypoint
can be extracted by the position with maximum value. The
resulting keypoint coordinates are then transformed from
the patch to the actual input image dimension. The infer-
ence time of such a heavy model is high, and therefore the
computation time increases with each detection for com-
plex scenes. As mentioned in the last section, avoiding the
processing of invalid tracks and filtering too small detec-
tions is the first step to improve runtime. A second step
is to define regions of interest for which skeletons are re-
quired. Depending on a camera’s field of view, the place-
ment of the camera intends to analyze person behavior in
spatially well-defined areas. Reducing the resolution of the
input boxes may improve the runtime of the HPE compo-
nents. However, the speed benefit is small compared to
the deterioration concerning accuracy. The same applies to
the use of smaller models such as MobileNet [34] or Lite-
HRNet [48], but we observe that batch processing at infer-
ence and reducing precision to FP16 improves the overall
speed without significant impact regarding accuracy. Since
the newly introduced transformers reduce the number of pa-
rameters and computational load while improving results,
we train a hybrid transformer model with truncated CNN
backbone Transpose-R and Transpose-H. Furthermore, ex-
tracting the keypoints from the heatmaps or similar post-
processing steps to get well-formed tensors can be done in
parallel during the inference of the next frame.

5. Results
We conducted our experiments using the Person Re-

identification in the Wild (PRW) dataset [54] which was
captured by six surveillance cameras on a campus. PRW
is based on the same footage from low-mounted cameras
as the well-known Market-1501 [53] dataset. However,
unlike Market-1501, it contains entire video frames and
not cropped bounding boxes, which enables the evalua-
tion of person detection methods. A total of 11,816 video
frames are included, sampled every second from the orig-
inal videos. These frames contain 43,110 manually anno-
tated bounding boxes. We use the PANDA dataset [42] to
improve the generalization of our detector, which is a gi-
gapixel surveillance video dataset and contains scenes with
a large field of view and large crowds. A total of 555 static
giga-pixel images (390 for training, 165 for testing) are of-
fered, i.e. images with at least 26, 753×15, 052px, however
annotations for testing are not public. Each scene shows in
average over 205 persons per image ranging from in aver-
age 52 up to 571 persons. Finally, we also evaluate on the
RWS-CPE validation dataset introduced in Section 3, which
contains 100 frames in full HD, with 4,785 Bounding boxes
and 1,894 poses manually annotated.
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5.1. Detection

We evaluate and compare several person detection mod-
els on the scientific PRW and the real-world RWS-CPE
dataset in Table 1. Except for the YOLOv4-Panda, which
is fine-tuned on the PANDA dataset, the models were
trained using the COCO [28] dataset. Results indicate
that YOLO architectures achieve beneficial performance on
both datasets. On real-world data, the gap between the
model architectures increases. Moreover, while differences
regarding AP between COCO and PANDA trained models
are negligible on the academic PRW dataset, the YOLOv4-
Panda outperforms the other models on RWS-CPE. The
PANDA dataset is more suited for transfer learning in real-
world surveillance scenarios since it contains many tiny per-
sons and crowded scenes. Unlike the other models, it is
able to detect some of the small people, even if the APS

is very small. However, the PANDA dataset mostly con-
tains small persons and thus the APL is worse compared to
other YOLO models. This finding highlights the necessity
to select meaningful training data which show similar char-
acteristics to the target domain and represent the huge di-
versity of real-world surveillance data. Nevertheless, there
is still much potential for improvement, and hence train-
ing with target domain data seems inevitable at that point.
With respect to inference time, the use of small YOLO
models is advantageous. For instance, the YOLOv4-tiny is
able to process up to 262 FPS on our hardware setup. The
RetinaNet with the transformer backbone PVT v2 b0 [41]
achieves processing times similar to our YOLOv4-Panda
but worse AP and AR scores.

5.2. Visual Tracking and Temporal Consistency

We conducted experiments on several cameras, espe-
cially in front of a central train station where several thou-
sand persons walk through the area covered by a static
camera within a few hours. To improve speed, we fix the
gallery size to five, use FP16 precision for the person re-
identification model and resize detections to 64 × 128 px
without noticing significant degradation of performance.
The whole module provides visual tracking at a stable rate
of 10 FPS, even when the scene is extremely crowded
with around 150-200 pedestrians. In other terms, the re-
identification model processes more than 100 detections per
second. We attempted to further improve speed by batch-
ing inputs, however this impaired speed for less crowded
scenes.

We evaluate the module qualitatively on an anonymized
central station scene as illustrated in Figure 5. The results
show robust tracking for the foreground of the scene. With
growing distance to the camera, smaller bounding boxes,
and more occlusions we see more identity switches or frag-
mented tracks. Furthermore, tracking allows more stable
tracks and thus fewer are aborted.

5.3. Pose Estimation

In Table 2, we evaluate and compare several HPE mod-
els on the real-world RWS-CPE dataset, which contains
1,894 poses, with ground truth bounding boxes and with de-
tections provided by the YOLOv4-Panda model described
in Section 5.1. We select a HPE model with a Mo-
bileNetv2 [34] backbone in order to increase inference
speed. We compare its inference speed with a HRNet-
W48 backbone model. Furthermore, we train a Trans-
pose hybrid-transformer model [46] with both a ResNet-S
and a HrNet-S backbone and compare it with the popular
ResNet-50 and HRNet-W32 backbone models trained by
MMPose [8]. We pretrain the models on the COCO Hu-
man Pose Estimation task and fine-tune on the Posetrack18
dataset for 30 epochs, both with GT detections.

On our consumer machine all models perform rela-
tively slow. MobileNetv2 and ResNet-50 achieve 5 and
7 FPS with by far the worst results regarding AP (0.32
and 0.41). In comparison, HRNet-W32 and HRNet-W48
models, which achieve state-of-the art results on the Pose-
track18 dataset, perform much slower with 3 and 1 FPS,
respectively, but achieve the best results with 0.52 and 0.53
AP. The transformer models Transpose-R and Transpose-H,
which are competitive on Posetrack18, outperform the other
models with 0.60 and 0.59 AP using ground truth boxes but
achieve worse results when inaccurate bounding box pre-
dictions are used. In terms of processing speed, the trans-
former models achieves 1 FPS, respectively. The observa-
tions indicate that the loss of precision due to the domain
gap is worse for full CNN models compared to hybrid trans-
formers. However, the performance drops on predicted de-
tections with 0.49 AP; these models show a greater loss of
0.10 and 0.11 AP between GT Boxes and predicted boxes.
It remains unclear if this is due to greater sensibility of these
models or failed detections.

5.4. Failure cases

We further evaluate the Transpose-R model qualitatively
in Figure 1. The skeletons returned by the model for clearly
visible persons without occlusion seem realistic, and the
predictions for head and shoulder are particularly accu-
rate. Misleading detections which include multiple person,
strollers or bicycles disturb the model. Keypoints are de-
tected on the bicycle or body parts of another person with
higher confidence than on the main person represented in
the bounding box. Furthermore, the model struggles to dif-
ferentiate left and right. In addition, we compare Transpose-
R with Transpose-H model on challenging poses in Fig-
ure 6. For a failed detection which includes two actors,
both models fail to predict joints for only one subject con-
sequently and predict keypoints on both. Depending on the
angle, unusual poses such as falling or lying remain chal-
lenging. In each case, Transpose-R seems to produce more
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Image Size Model FPS PRW RWS-CPE
AP AP 50 AP 75 APS APM APL AR AP AP 50 AP 75 APS APM APL AR

416× 416
YOLOv3 53 0.40 0.73 0.40 − 0.29 0.50 0.46 0.17 0.36 0.13 0.01 0.17 0.46 0.19
YOLOv4-tiny 262 0.33 0.59 0.35 − 0.18 0.47 0.38 0.08 0.15 0.07 0.00 0.04 0.36 0.09

608× 608 YOLOv4 26 0.48 0.79 0.53 − 0.34 0.60 0.55 0.23 0.40 0.24 0.01 0.24 0.60 0.25
640× 640 YOLOv4-csp-x-swish 16 0.45 0.73 0.50 − 0.32 0.57 0.52 0.22 0.35 0.24 0.01 0.23 0.60 0.24
896× 896 YOLOv4-p5 9 0.47 0.76 0.51 − 0.34 0.58 0.53 0.21 0.34 0.24 0.02 0.22 0.57 0.23
960× 544 YOLOv4-Panda 19 0.47 0.86 0.47 − 0.37 0.56 0.57 0.28 0.56 0.26 0.06 0.32 0.55 0.33
1280× 1280 YOLOv4-p6 5 0.48 0.79 0.52 − 0.35 0.59 0.56 0.26 0.42 0.28 0.03 0.29 0.61 0.29

960× 544
RetinaNet PVT v1 Medium 9 0.45 0.74 0.50 − 0.30 0.59 0.52 0.17 0.30 0.17 0.00 0.16 0.51 0.19
RetinaNet PVT v2 b0 19 0.47 0.74 0.50 − 0.30 0.59 0.56 0.17 0.33 0.17 0.00 0.17 0.52 0.20
RetinaNet PVT v2 b1 14 0.49 0.79 0.54 − 0.34 0.61 0.55 0.19 0.35 0.19 0.00 0.20 0.55 0.22

Table 1: Quantitative results on the public PRW Dataset and the private RWS-CPE Dataset. Models are trained on COCO
Dataset [28], with exception of YOLOv4-Panda which is fine-tuned on Panda [42]. Pre-trained RetinaNet [27] models are
taken from MMDetection [4]. Average Precision (AP) and Average Recall (AR) follow the COCO evaluation. The FPS is
measured for the models only, not the complete detection module.

Figure 5: Anonymized results of a central station scene. Re-identification shows stable track results in the foreground.
Background tracks appear more unstable due to smaller boxes and increased occlusion. Temporal consistency partially
stabilized background tracks.

probable predictions and less outliers than its counterpart.

5.5. Discussion

Our results with HPE show promising results for real-
world surveillance scenarios. However, since the models
are trained on other domains than surveillance, several chal-
lenges remain. The YOLOv4-Panda detector, which was
trained on a domain similar to the target domain, provides
overall better results in a quantitative matter. Nevertheless,
its performance is particularly limited for larger persons
(APL) whose poses are required for action recognition sys-
tems. Furthermore, such systems are required to detect vio-
lent situations with associated movements and poses. How-
ever, poses such as punching, fighting, or lying are poorly

represented in training datasets and either missed by the de-
tector or too ambiguous for pose estimation. Consequently,
in order to improve HPE in real-world surveillance, a large
annotated dataset representative of the target domains and
scenarios is required.

6. Conclusions
In this work, we have presented the current state-of-

research on HPE in real-world surveillance. After pointing
out the challenges posed by uncontrollable environments
and data acquisition and annotation, we proposed a pro-
cessing pipeline consisting of person detection, tracking,
and subsequent pose estimation. Extensive evaluation elu-
cidates the huge domain gap between scientific and real-
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Input size Method FPS
Posetrack18 RWS-CPE

AP gtbbox AP AP AP 50 AP 75 APM APL AR

384× 288
MobileNetv2 [34] 5 0.78 0.34 0.32 0.58 0.33 0.28 0.42 0.37

HRNet-W48 [39] 1 0.86 0.57 0.53 0.73 0.60 0.49 0.64 0.57

256× 192
ResNet-50 [16] 7 0.81 0.43 0.41 0.62 0.45 0.36 0.53 0.46

HRNet-W32 [39] 3 0.83 0.56 0.52 0.72 0.58 0.48 0.62 0.61

256× 192
Transpose-R [46] 5 0.83 0.60 0.49 0.68 0.55 0.44 0.66 0.59

Transpose-H [46] 1 0.82 0.59 0.44 0.69 0.54 0.44 0.65 0.58

Table 2: Comparisons on the RWS-CPE dataset provided with the same detected human boxes. Pre-training is done on the
COCO Human Pose Estimation task with GT boxes. The training is done on the Posetrack18 dataset [1] with GT boxes.
The transformer models TransPose [46] report competitive results with HRNet and ResNet listed for comparison for better
runtimes and seems to better generalize. The versions of HRNet and ResNet are taken from MMPose [8].

Figure 6: A street fight containing multiple examples of complex human interactions for pose estimation: occlusion by
interacting person, compact and entangled pose, crawling, self-occlusion and lying on the ground. The first row shows the
input, second row and the last row contains poses from Transpose-H and Transpose-R respectively.

world data and problems with the generalization of state-
of-the-art methods. To mitigate this, annotated data from
real-world surveillance systems is currently inevitable but
costly. Nevertheless, we achieve promising results with our
system that runs with 7-10 FPS and leverages a lightweight
tracking component to enhance the temporal consistency of
poses. Further research should focus on interactive methods
to annotate real-world data and on semi-supervised learn-
ing methods to reduce the effort required. In addition, the
temporal consistency may be improved by keypoint outlier
detection. Within a track, a keypoint is expected to be de-
tected near a certain region near which is consistent in time
along the track for this keypoints. A prediction outside this

region would therefore be defined as an outlier and could be
removed or corrected using temporal information.
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