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Abstract

This paper introduces a joint learning architecture (JLA)
for multiple object tracking (MOT) and multiple object fore-
casting (MOF) in which the goal is to predict tracked ob-
jects’ current and future locations simultaneously. MOF is
a recent formulation of trajectory forecasting where the full
object bounding boxes are predicted rather than trajecto-
ries alone. Existing works separate multiple object track-
ing and multiple object forecasting. Such an approach can
propagate errors in tracking to forecasting. We propose a
joint learning architecture for multiple object tracking and
forecasting (MOTF). Our approach reduces the chances of
propagating tracking errors to the forecasting module. In
addition, we show, through a new data association step, that
forecasting predictions can be used for tracking objects dur-
ing occlusion. We adapt an existing MOT method to simul-
taneously predict current and future object locations and
confirm that JLA benefits both the MOT and MOF tasks.

1. Introduction

Tracking and forecasting are two important tasks in com-
puter vision. Tracking aims to estimate the locations of
unique objects in a video [28, 48, 39, 47]. Meanwhile,
forecasting aims to predict future short- and long-term lo-
cations of objects in a video using the objects’ past location
information [36, 32]. Tracking and forecasting are critical
components for several applications, including autonomous
driving [16], video surveillance [18] and smart elderly care
[17]. Researchers have studied tracking and forecasting in-
dependently, and learning-based models exist for these two
tasks. However, the two tasks share similar properties as
both require the objects of interest to be detected and re-
identified across frames.

A recent formulation of trajectory forecasting called
Multiple Object Forecasting (MOF) extends the traditional
MOT to predict objects’ future coordinates and scale in
terms of their bounding boxes [36]. While MOF exploits

Figure 1. JLA: We propose a joint learning architecture for track-
ing multiple objects and forecasting their trajectories. The fore-
casting branch takes the past bounding boxes and velocities, and
an embedding as input to predict the objects’ locations into the
future. JLA performs three tasks: detection, re-ID, and trajectory
forecasting. The network is trained end-to-end. Full bounding
boxes are predicted but are reduced in the image for clarity.

the advantages of an object-based architecture, MOF re-
quires pre-computed trajectories from an object tracker to
estimate future locations. Separating tracking and forecast-
ing poses some challenges in MOF, including high compu-
tational cost, which can limit its real-time application.

In MOT methods, issues such as identity (ID) switches
and incorrect predictions are still dominant. To this end,
motion prediction is used to rectify wrong estimations
caused by similar appearance embeddings or occlusion
[39, 48]. More concretely, a Kalman Filter is typically used
to provide short-term motion estimations, which are used
to refine the bounding box estimations [41, 48]. However,
such a motion prediction method cannot predict non-linear
trajectories. In contrast, MOF can provide non-linear pre-
dictions that can benefit MOT methods.

Motivated by the above observations, we introduce the
multiple object tracking and forecasting (MOTF) task, in
which the aim is to simultaneously detect, track, and pre-
dict objects’ current and future locations. We implement
the MOTF task through a joint learning architecture (JLA)
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that models non-linear trajectories by using trajectory fore-
casts generated by an embedded forecasting network. By
using these forecasts to refine bounding box estimations,
our JLA can predict objects’ locations during occlusion, an
important advantage over previous works that rely on linear
motion predictions. As a result, JLA can reduce ID switches
considerably. Our contributions can be summarized as fol-
lows:

• We introduce MOTF, a new task for multiple object
tracking and forecasting (Section 3).

• We propose a joint learning architecture that pre-
dicts current and future object locations simultane-
ously (Section 4).

• We employ the trajectory forecasts to refine objects’
locations in lieu of the Kalman Filter during data as-
sociation. This reduces ID switches caused by similar
appearance embeddings (Section 6.2).

• We introduce a new step for data association of objects
during occlusion in which the trajectory forecasts are
used to estimate the location of occluded objects in the
current frame (Section 6.2).

• We evaluate our model on the MOTChallange bench-
marks. Our proposed method reduces ID switches on
the MOT20 benchmark by 47% compared to FairMOT
[48] (Section 7.4).

2. Related Work

Tracking and trajectory forecasting methods are vital to
real-world applications such as video surveillance [15, 22,
19]. It is crucial that objects of interest can be accurately
detected and tracked over a period of time. Also, these ap-
plications might predict objects’ movements and intentions
into the future. In this section, we review existing works on
MOT and trajectory forecasting.

Multiple Object Tracking. Recent MOT methods lever-
age deep neural networks’ representational power to learn
the identity, appearance and pose of several objects to asso-
ciate targets across several frames. Several of these methods
follow the tracking-by-detection paradigm, in which objects
are first detected as targets and then associated with subse-
quent detections, in the form of the bounding boxes, to form
trajectories [41, 5, 42, 48, 28]. Specifically, these meth-
ods use bounding box estimations from an external detec-
tor and focus on improving the association of these estima-
tions to form trajectories. Clearly, this approach can benefit
from a strong object detector and a re-identification (re-ID)
method. However, the high computational cost of training
an object detector and a re-ID model separately, and their
slow inference time, limit the real-time application of such
an approach. To address this issue, one approach is to train
the object detector and re-ID model simultaneously in an
end-to-end manner. The works in [38, 39, 48] show that

it is possible to design models that can simultaneously de-
tect and predict identity embeddings by adding a re-ID head
to existing object detectors. Our work takes this approach
a step further to simultaneously detect, track, and forecast
objects’ locations by adding a trajectory forecast head to a
tracking method.

An important part of an MOT method is the task of as-
sociation, which can be performed in an online or offline
manner. Online methods [41, 37, 48, 3, 25, 39, 27] asso-
ciate bounding box estimations sequentially up to the cur-
rent frame. In offline methods [7, 13, 29, 44, 6, 12], the
order of association does not apply and future frame es-
timations can be used in data association. Offline meth-
ods can interpolate missing objects’ locations by using the
past, current and future estimations to generate more accu-
rate trajectory predictions than those given by online meth-
ods. However, offline methods cannot be used in real-time
applications [20]. Our method uses trajectory forecasts to
estimate occluded objects’ locations in an online fashion.

Trajectory Forecasting. Trajectory forecasting methods
predict the future location of an object identified in a
video. Datasets for trajectory forecasting typically consist
of footage of pedestrians or vehicles captured from a birds-
eye perspective [33]. Methods use past location informa-
tion in addition to various categories of features such as the
interactions between objects [1, 31] and the estimated fi-
nal destination [23, 9]. A smaller number of works have
also considered trajectory forecasting from an object-level
viewpoint [43, 45, 36, 2], where visual information such as
human pose estimations or optical flow can be incorporated
more easily. All the previous works mentioned before use
either ground truth or pre-computed object tracking results
prior to forecasting.

Joint Tracking and Trajectory Forecasting. A small
number of works have attempted joint tracking and trajec-
tory forecasting [40, 21]. However, these works predict tra-
jectories as 2D positions on the ground from a top-down
view. [35] uses lidar for trajectory forecasting. Our work
predicts trajectories as full bounding boxes from an object-
level viewpoint.

3. Multiple Object Tracking and Forecasting
MOTF draws from MOT and MOF and follows a similar

formulation to these two tasks. In this section, we formalize
the problem and explain the evaluation metrics.

3.1. Problem Formulation

Consider a video with n frames f0, f1, . . . , fn−1. Given
frame fs at timestep s,

• let I be a set of identifiable objects in the frame such
that object i ∈ I , and

• let bs = {bis}Ii=1 be the set of bounding boxes for all
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identifiable objects in frame fs. Each bounding box
bis = (x, y, w, h) is represented by the location of its
centroid, (x, y), and its width and height, (w, h).

The aim of MOT is to associate all the frame-wise bounding
boxes, {bi0}, {bi1}, . . . , {bin−1} for all i ∈ I , to a unique
identifier, k ∈ 1, 2 . . .K, where K is the total number of
unique objects across all the frames, such that a set of tracks,
T = {tk}Kk=1, is computed for the entire video sequence,
where tk represents the kth unique track. This association
task can be formulated as a bipartite or linear assignment
problem where only one bounding box is linked to another
bounding box in a subsequent frame. Therefore, an object
in frame fs is not associated with any other object in the
same frame.

Similarly, given a sequence of frames
fs−p, fs−p+1, . . . , fs, with their respective set of tracks
{tks−p}, {tks−p+1}, . . . , {tks} for all k ∈ K, the task
of MOF is to predict the future set of bounding boxes
{bks+1}, {bks+2}, . . . , {bks+q} for all k ∈ K, for future
frames fs+1, fs+2, . . . , fs+q , where p is the number of
past frames used as input and q is the length of predictions
into the future [36]. Note that in MOF, the tracks are
pre-determined before forecasting.

Our goal is to create a JLA that jointly tracks and
forecasts objects’ locations. Thus, we formulate the
MOTF task as a joint problem of MOT and MOF. Given
frame fs and a sequence of p past bounding boxes
{bks−p}, {bks−p+1}, . . . , {bks−1} for all k ∈ K, MOTF aims
to compute tracks {tks} for all k ∈ K at frame fs and fore-
cast each track’s current and future bounding boxes, i.e.,
{bks}, {bks+1}, {bks+2}, . . . , {bks+q} for all k ∈ K. Unlike
MOF, the current frame bounding boxes, i.e., {bks} for all
k ∈ K, are also predicted to evaluate the accuracy of the
jointly trained forecasting model in predicting the location
of the detected objects. In this work, we set p = 10 and
q = 60, which correspond to less than 1 second in the past
and predicting 2 seconds into the future, respectively, at a
frame rate of 30Hz.

3.2. Evaluation Metrics

MOTF is a joint task of tracking and forecasting. We
employ the evaluation metrics of both tracking and fore-
casting. We use the CLEAR metrics [4], and IDF1 values
[30] to evaluate the trajectory tracking performance. We
use ADE/FDE [1], and AIOU/FIOU [36] metrics to evalu-
ate the trajectory forecasting performance.

4. Proposed JLA

In this section, we present JLA, a joint learning architec-
ture for MOTF. JLA draws from existing architectures for
tracking and forecasting [48, 36, 2]. We use the FairMOT
model [48] as our base model because this architecture al-

ready performs detection and tracking. We add a forecast-
ing branch to the network as shown in Figure 1 and train the
resulting architecture end-to-end. FairMOT consists of a
backbone network called DLA-34 [50], an object detection
head, and a re-ID head. More details about the FairMOT
architecture can be found in [48].

The design of the trajectory forecasting branch is shown
in Figure 2. The goal of this branch is to predict future
bounding boxes of objects using the past bounding box in-
formation. The trajectory forecasting network consists of
recurrent neural networks (RNN) used to encode and de-
code the past bounding boxes and predict future bounding
boxes. The components of the network are listed below:

(i) An RNN to encode past bounding boxes and veloci-
ties, which are denoted by {Bk

s−p}, . . . , {Bk
s−1}, for

all k ∈ K.

(ii) A fully-connected layer to encode DLA-34 feature em-
beddings retrieved from the tracking network.

(iii) An RNN to decode past bounding boxes and velocities.

(iv) An RNN to decode future velocities, which are de-
noted by {V̂ k

s }, . . . , {V̂ k
s+q}, for all k ∈ K.

(v) A trajectory concatenation layer to convert future ve-
locities to bounding boxes.

4.1. Past Bounding Box and Velocity Encoder

An RNN (PastEncoder in Figure 2) is used to extract fea-
tures from past bounding boxes. This encoder captures the
velocity of each object by iterating over historical informa-
tion.

Given frame fs and past bounding boxes
{bks−p}, {bks−p+1}, . . . , {bks−1} for all k ∈ K, we
construct a sequence of p sets of 8-dimensional
vectors B ∈ Rp×8. This sequence of 8-
dimensional vectors can be written as B ≡
{{Bk

j }Kk=1}
s−1
j=s−p ≡ {{Bk

s−p}, {Bk
s−p+1}, . . . , {Bk

s−1}},
where for each object k in frame fj , Bk

j =

(xk
j , y

k
j , w

k
j , h

k
j ,∆xk

j ,∆ykj ,∆wk
j ,∆hk

j ) and (xk
j , y

k
j )

represents the location of the centroid of the corresponding
bounding box, (wk

j , h
k
j ) represents the width and height of

the bounding box, V k
j = (∆xk

j ,∆ykj ,∆wk
j ,∆hk

j ) repre-
sents the velocity, and ∆ represents the change between
consecutive timesteps computed as:

∆uk
j = uk

j − uk
j−1 ∀u ∈ {x, y, w, h}. (1)

As shown in Figure 2, an RNN (PastEncoder) takes the
sequence of past bounding boxes and velocities, B, and
generates a final hidden state vector he

p, that summarizes
the sequence. The final hidden state vector is achieved by
repeatedly updating the previous hidden state vector with
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Figure 2. Trajectory Forecast Architecture: The trajectory forecasting branch of JLA takes past bounding boxes, velocities, and DLA-34
feature embeddings (image embeddings) as input. It uses a Recurrent Neural Network (RNN) and a fully connected (FC) ReLU layer
to encode the past bounding boxes, and an FC ReLU layer to encode the image embeddings. Two different decoders are used to decode
past bounding boxes and velocities, and predict future velocities. Finally, a trajectory concatenation layer transforms the predicted future
velocities into future bounding boxes.

the input {Bk
j } for p timesteps. The hidden state vector is

initialized to zero. The resulting final hidden state vector is
then passed through a fully connected layer with ReLU ac-
tivations to generate a 256-dimensional feature vector ϕe

B .

4.2. Embedding Encoder

The embedding encoder is used to capture features from
the DLA-34 backbone network. The DLA-34 network pro-
vides visual context for the predicted objects’ bounding
boxes in the current frame. The use of visual features in the
trajectory forecasting module improves the accuracy of the
bounding box estimations. The DLA-34 features are shared
across the detection, re-ID, and forecast branches.

Given an input frame with dimension Hs ×Ws, we ap-
pend a forecast head to the DLA-34 network to generate
a feature map D ∈ R256×H×W where H = Hs/4 and
W = Ws/4. The top N features of D are selected resulting
in a 256 × N embedding, where N is the maximum num-
ber of objects for multi-scale learning and set to a default
value N = 500. This allows us to learn a high-dimensional
vector representation of the input frame in the forecasting
network.

We then pass the feature map D to a fully connected
layer to generate a 256-dimensional vector ϕe

E . The re-
sulting encoding is concatenated to the past bounding box
and velocity encoding ϕe

B , similar to STED [36]. However,
STED uses optical flow to pass visual information to the
forecasting network instead of the DLA-34 feature embed-
dings. The ablation study (Table 4) shows that using DLA-
34 features embeddings in the forecasting model helps to
improve the performance of the entire JLA.

4.3. Past Bounding Box and Velocity Decoder

Another RNN (PastDecoder in Figure 2) is used to repro-
duce the past bounding boxes and velocities. The purpose

of using the decoder to reproduce the input is to ensure that
the model learns the correct input representation [2]. Thus,
we can define an objective function to penalize the decoder
when it deviates from the input.

At each timestep, the decoder first uses the encoding ϕe
B

to update a previous hidden state vector and then passes the
updated hidden state vector through a fully connected layer
to generate an 8-dimensional vector. The hidden state vec-
tor is initialized to the final hidden state vector he

p of the
encoder. The output of the decoder is a set of predicted past
bounding boxes and velocities. Similar to the ground truth
bounding boxes and velocities, B, the predicted past bound-
ing boxes and velocities can be represented as a sequence of
p sets of 8-dimensional vectors B̂ ∈ Rp×8 where B̂ ≡
{{B̂k

j }Kk=1}
s−1
j=s−p ≡ {{B̂k

s−p}, {B̂k
s−p+1}, . . . , {B̂k

s−1}}
and B̂k

j = (x̂k
j , ŷ

k
j , ŵ

k
j , ĥ

k
j ,∆x̂k

j ,∆ŷkj ,∆ŵk
j ,∆ĥk

j ). We use
an L1 loss to penalize the decoder as follows:

Lpast =
1

(K × p× 8)

K∑
k=1

s−1∑
j=s−p

∥Bk
j − B̂k

j ∥1. (2)

4.4. Future Velocity Decoder

A third RNN (FutureDecoder in Figure 2) is used
to predict q future velocities for the identified K ob-
jects. The past bounding boxes encoding ϕe

B is con-
catenated with the embedding ϕe

E , resulting in a 512-
dimensional vector ϕC . As shown in Figure 2, ϕC is
passed through a fully connected ReLU layer q times
while updating the previous hidden state vector at each
timestep. The hidden state vector is initialized to the fi-
nal hidden state vector he

p of the encoder. The decoder
generates predicted future velocities V̂ ∈ Rq×4 where
V̂ ≡ {{V̂ k

j }Kk=1}
s+q
j=s ≡ {{V̂ k

s }, {V̂ k
s+1}, . . . , {V̂ k

s+q}} and
V̂ k
j = (∆x̂k

j ,∆ŷkj ,∆ŵk
j ,∆ĥk

j ). We do not penalize this de-
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coder directly based on recommendations in [2]. The trajec-
tory concatenation layer, discussed next, is used to penalize
the future bounding boxes instead.

4.5. Trajectory Concatenation Layer

The trajectory concatenation layer is used to transform
the future velocities to bounding boxes [2]. This layer adds
the last frame bounding boxes {bks−1}Kk=1, to the cumula-
tive sum of the velocities to generate the predicted future
bounding boxes F̂ ∈ Rq×4, where F̂ ≡ {{b̂kj }Kk=1}

s+q
j=s ≡

{{b̂ks}, {b̂ks+1}, {b̂ks+2}, . . . , {b̂ks+q}}. The cumulative sum
of the velocities is computed using Eq. 3. The cumulative
sum of the velocities is used to compute the predicted future
bounding boxes (Eq. 4).

Ẑk
i =

V̂ k
i if i = 1

V̂ k
i + Ẑk

i−1 for i = 2 . . . q
(3)

b̂ks+i−1 = bks−1 + (i× Ẑk
i ) for i = 1 . . . q. (4)

Hence, we can define an objective function to penalize the
predicted future locations. We use an L1 loss function de-
fined as:

Lfuture =
1

(K × q × 4)

K∑
k=1

s+q∑
j=s

∥b̂kj − b̂kj ∥1. (5)

We compute the forecast loss as:

Lfor = Lpast + Lfuture. (6)

5. Training JLA
The entire network is trained end-to-end using a multi-

task uncertainty loss [8]. The multi-task uncertainty loss
performs a weighted linear sum of the losses for each task
and the weights are learned automatically from the data [8].
Given the detection loss Ldet, re-ID loss Lid, and forecast
loss Lfor, the total loss function is defined as:

Ltotal =
1
2
(e−sdetLdet + e−sidLid + e−sforLfor

+ sdet + sid + sfor),
(7)

where sdet, sid and sfor are the weights for detection, re-
ID, and forecast, respectively. We initialize the weights to
values between -2.0 to 5.0 [8], which are then updated au-
tomatically by the model. The equations for Ldet and Lid

are defined in FairMOT [48].
The input to the model is the current frame and the past

bounding boxes for the observed objects in previous frames.
We use a Gated Recurrent Unit (GRU) for the PastEncoder,
PastDecoder, and FutureDecoder implementation. How-
ever, any other type of RNN can be used for the imple-
mentation of the encoder and decoders. Although the past
bounding boxes are supplied for the trajectory forecasting
branch, we observe that the performance of the two other

branches, i.e., the detection and re-ID branches, improve
greatly due to the shared image embedding (Section 7).

Different from existing trajectory forecasting methods,
we propose using a variable length of past and future bound-
ing boxes during training and a fixed length for evaluation.
This implies that each object can have any number of past
and future bounding boxes, less than or equal to the fixed
values of p and q, respectively. This allows the network to
learn the objects’ historical information early during train-
ing without waiting for a complete set of past or future
bounding boxes. Based on this idea, we re-formalize the
past and future losses as:

Lpast =
1

(
∑K

k=1 p
k
s × 8)

K∑
k=1

s−1∑
j=s−pks

∥Bk
j − B̂k

j ∥1, (8)

Lfuture =
1

(
∑K

k=1 q
k
s × 4)

K∑
k=1

s+qks∑
j=s

∥bkj − b̂kj ∥1. (9)

where pks ≤ p and qks ≤ q represents the number of ground
truth past and future bounding boxes available at frame fs
for each tracked object k, respectively. During training, we
only use pks past and qks future bounding boxes for comput-
ing the loss despite predicting p past and q future bounding
boxes.

6. Online Inference
In this section, we present the network inference and data

association for JLA. The online association is similar to that
used by FairMOT [48], however, we replace the Kalman
Filter estimations with trajectory forecasts and add an extra
step for estimating objects’ location during occlusion. The
algorithm for this step is explained in Section 6.2.

6.1. Network Inference

Our complete JLA network predicts trajectory forecasts
in addition to the heatmap, bounding box offset, and bound-
ing box size generated by the base model [48]. The size
of the input frame is 1088 × 608, as in previous literature
[39, 48]. We initialize the past bounding box and velocity
information to zero in the first three frames. As new objects
are detected and tracked, we store their previous locations.
We require at least two previous locations to predict future
locations for an object.

6.2. Data Association

We use the detections and trajectory forecasts for data
association. The trajectory forecasts serve two purposes at
inference time: (i) to generate short-term estimations used
in lieu of a Kalman Filter to prevent associating detections
with large motion and (ii) to generate bounding box estima-
tion when an object is occluded.
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Algorithm 1 SHORT-TERM FORECAST FOR MOTION
FUSION

procedure FUSEMOTION(reidDist, tracks, detections, λ, l)
for i← 0 to length(tracks) do

track← tracks[i]
d← IOUDistance(track, detections)
if hasForecasts(track) then

forecasts← getForecasts(track, l)
dists← IOUDistance(forecasts, detections)
m← minimum(dists, axis = 0)
d← d ∗m

end if
reidDist[i, d ≥ 1]← reidDist[i, d ≥ 1] ∗ 2
costs[i]← λ ∗ reidDist[i] + (1− λ) ∗ d

end for
return costs

end procedure

Algorithm 2 FORECAST FOR OCCLUSION
procedure FORECAST(track, frameCenter, λ,maxTime, thresh)

if hasForecasts(track) then
cost← track.lostTime/maxTime
forecast← getForecastAtLostTime(track)
dist← frameDistance(forecast, frameCenter)
cost← λ ∗ dist + (1− λ) ∗ cost
if cost < thresh then

return forecast
end if

end if
return none

end procedure

In the first frame, all detections above the confidence
threshold are initialized as new tracks. Detections in sub-
sequent frames are linked using three key steps discussed
next. We set the state of tracks that are unmatched after the
three steps to lost. If a track is lost a predetermined number
of times, we remove the track. We set the maximum lost
time to 30 frames.

Re-ID Features and Motion Fusion. The purpose of this
step is to match tracked objects with new detections using
re-ID features and bounding box overlap. A cosine distance
matrix between tracks and detections computed on re-ID
features is fused with short-term motion distance computed
on trajectory forecasts. The motion distance is estimated
using the IOU distance between a subset of the predicted
trajectory forecasts and the detections. The trajectory fore-
cast with the minimum IOU distance is selected and used
to refine the re-ID distance matrix (Algorithm 1). If the
minimum IOU distance between each detection and the pre-
dicted trajectory forecasts is too large, we increase its re-ID
cosine distance by a factor of two. This helps to mitigate
identity switches caused by incorrect re-ID features. A cost
matrix is computed by calculating a weighted sum of the re-

ID cosine distance and the minimum IOU distance (Algo-
rithm 1). In Algorithm 1, λ is a weight to regularize the re-
ID and IOU distances and l is the number of trajectory fore-
casts used to compute the IOU distance. We set λ = 0.75
and l = 10. Matches are found by passing the cost ma-
trix to a Hungarian method [14] for linear assignment. The
ablation study in Section 7.3 shows that the trajectory fore-
casts are more accurate than a Kalman Filter for short-term
motion predictions.
IOU Association. In this step, we use the IOU distance
to associate unmatched tracks and unmatched detections in
situations where the re-ID features and short-term forecasts
are not sufficient for data association. Matches are found by
using a Hungarian method for linear assignment [14] on the
IOU distance.
Forecast Association. We introduce a new step for data as-
sociation in which trajectory forecasts are used to estimate
objects’ location during occlusion. At this stage, the un-
matched tracks are either false positives or occluded. When
an object is occluded, visual information to re-identify the
object is not available. Trajectory forecasts can provide
spatio-temporal information to estimate an object’s location
during occlusion. We compute a cost using the distance
of the trajectory forecast to the centre of the frame and the
lost time of the track (Algorithm 2). We assume that an
unmatched track at the centre of the frame is likely to be
occluded. The lost time of the track is incremented when a
track is not associated with a new detection. The lost time
avoids keeping an undetected object alive infinitely. We set
λ = 0.5, maxTime = 20, and thresh = 0.55 in Algorithm 2.

7. Experiments
7.1. Datasets

We evaluate the performance of JLA using different
amounts of training data. For the ablation studies (Section
7.3), we train JLA on 50% of the MOT17 training set and
evaluate the model on the remaining 50%. For evaluation
on the MOTChallenge server, we use the same training data
as FairMOT [48]. The training data is described below:

• We use ETH [11] and CityPersons [46] to train the
detection branch because these datasets provide only
bounding box annotations.

• We use PRW [49], MOT17 [24], and CalTech [10]
to train the detection, re-ID, and trajectory forecast
branches because these datasets provide both bound-
ing box and identity annotations.

• We use CUHK-SYS [42] to train the detection and re-
ID branches. CUHK-SYS provides both bounding box
and identity annotations but the frames are not sequen-
tial and are therefore not suitable for forecasting.

We evaluate the tracking result of JLA on the tests sets of the
MOT15, MOT16, MOT17, and MOT20 benchmarks (Sec-
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IDF1 ↑ MT ↑ IDs ↓ MOTA ↑
FairMOT 70.9 140 441 67.1
FairMOT CV 72.8 156 357 67.5
FairMOT KF 72.5 149 279 68.1
JLA 75.3 169 262 69.1

Table 1. Results of multiple object tracking (MOT) on the MOT17
dataset.

AIOU ↑ FIOU ↑ ADE ↓ FDE ↓
FairMOT - - - -
FairMOT CV 33.7 14.9 112.3 205.1
FairMOT KF 38.1 18.9 104.9 195.3
JLA 39.1 22.1 97.0 177.5

Table 2. Results of multiple object forecasting (MOF) evaluation
on the MOT17 dataset. We set the number of past bounding boxes
used for prediction to p = 10 and the number of predictions to
q = 60.

App +
Forecast

Box
IOU

Occlusion
Forecast

IDF1
↑

MT
↑

IDs
↓

MOTA
↑

✓ ✗ ✗ 72.7 139 381 67.7
✓ ✓ ✗ 72.8 139 366 67.8
✗ ✓ ✗ 60.4 145 1185 64.3
✗ ✓ ✓ 65.0 145 976 64.8
✓ ✗ ✓ 74.7 168 301 68.9
✓ ✓ ✓ 75.3 169 262 69.1

Table 3. Evaluation of the data association components in JLA on
the MOT17 dataset. We set the number of past bounding boxes
used for prediction to p = 10 and the number of predictions to
q = 60.

tion 7.4).

7.2. Implementation Details

We finetune JLA on a model pre-trained on the Crowd-
Human dataset [34]. The pre-training process uses a self-
supervised approach in which a unique identity label is as-
signed to each bounding box and the model is trained with-
out any tracking information [48].

We train JLA on six datasets (Section 7.1) with Adam
optimizer for 30 epochs with a starting learning rate of
10−4, which decays to 10−5 after 20 epochs. The train-
ing takes about 60 hours on two GeForce RTX 2080 GPUs
with a batch size of 8. We use the standard data augmen-
tation techniques used in the literature [48] including color
jittering, rotation, and scaling. Finally, we finetune JLA for
20 epochs on the training datasets of MOT20 and MOT15
to evaluate their respective test datasets. The results on the
MOTChallenge benchmarks are discussed in Section 7.4.

7.3. Ablation Studies

We first compare the performance of JLA with a con-
stant velocity and the Kalman Filter baseline methods. We

DLA34 Embedding IDF1 ↑ MT ↑ IDs ↓ MOTA ↑
✗ 72.8 150 262 65.8
✓ 75.3 169 262 69.1

Table 4. Evaluation of the DLA34 feature embedding in JLA on
the MOT17 dataset. We set the number of past bounding boxes
used for prediction to p = 10 and the number of predictions to
q = 60.

Figure 3. Example tracking results during occlusion (best
viewed in color). The same color represents the same tracked
person across the sample frames. Mixed colors represent iden-
tity switches. The first row is the ground truth which shows an
occluded person in frame 340 and frame 385. The second row
contains results from the base model without forecasts trained on
half the MOT17 train dataset and validated on the other half. The
occluded target is re-identified as another person in frame 340 and
lost in frame 385. The third row contains sample frames from our
JLA model with forecasts trained on half the MOT17 dataset and
validated on the other half. The occluded target is tracked up to
frame 385.

also perform ablation studies to evaluate the impact of the
various components of JLA. We discuss these evaluations
next.

Comparison with Baselines. A constant velocity model
and the Kalman Filter are often used as baseline methods
in trajectory forecasting. For a fair comparison of the JLA
with the baseline methods, we modify the data association
step in FairMOT [48] to be the same as in JLA. Then, for
each detected object, we generate q trajectory forecasts us-
ing a constant velocity method (FairMOT CV in Table 1)
and a Kalman Filter (FairMOT KF in Table 1). We set
q = 60. We evaluate the tracking and trajectory forecast-
ing performance using the metrics mentioned in Section 3.2.
We do not compare our work with STED because STED
requires an external detector to precompute object trajecto-
ries, which will result in an unfair comparison.

The results in Table 1 and Figure 3 show that using our
proposed data association steps improves the performance
of the base method, FairMOT [48]. The number of ID
switches (IDs) is reduced considerably compared to both
cases, constant velocity and the Kalman Filter. Also, the

566



Dataset Tracker MOTA ↑ IDF1 ↑ MT ↑ ML ↓ IDs ↓ FPS ↑
MOT15 TubeTK [26] 58.4 53.1 39.3 18.0 854 5.8

FairMOT [48] 60.6 64.7 47.6 11.0 591 30.5
JLA (Ours) 55.8 63.2 42.7 16.1 644 22.4

MOT16 TubeTK [26] 64.0 59.4 33.5 19.4 1117 1.0
JDE [39] 64.4 55.8 35.4 20.0 1544 18.5
CTrackerV1 [27] 67.6 57.2 32.9 23.1 1897 6.8
FairMOT [48] 74.9 72.8 44.7 15.9 1074 25.9
JLA (Ours) 73.8 75.0 44.9 22.8 719 19.7

MOT17 TubeTK [26] 63.0 58.6 31.2 19.9 4137 3.0
CTrackerV1 [27] 66.6 57.4 32.2 24.2 5529 6.8
FairMOT [48] 73.7 72.3 43.2 17.3 3303 25.9
JLA (Ours) 74.0 74.0 45.1 20.5 2292 19.0

MOT20 FairMOT [48] 61.8 67.3 68.8 7.6 5243 25.9
JLA (Ours) 60.2 68.7 59.8 10.5 2780 14.3

Table 5. Comparison of state-of-the-art methods under the “private” category on the MOTChallenge benchmarks. These methods are
categorized under the private detections because they use more datasets for training.

number of mostly tracked objects and accuracy increases.
This shows that we can detect some occluded objects using
trajectory forecasts.

In addition, Table 2 shows that the trajectory forecasting
branch in JLA performs better than the constant velocity
and Kalman Filter predictions with an increase in AIOU and
FIOU, and a decrease in ADE and FDE.
Analysis of Data Association Components in JLA. As
discussed in Section 6.2, JLA uses three components for
data association: appearance embedding fused with short-
term forecasts, bounding box IOU, and forecasts during oc-
clusion. We study the impact of these individual compo-
nents on the performance of the model. Where applica-
ble, one or more components are turned off and the model
is evaluated without the component(s). The results of the
study are shown in Table 3.

The best performance is achieved when all the compo-
nents are turned on. When trajectory forecast during occlu-
sion is turned off, the number of ID switches (IDs) increases
from 262 to 366; the number of mostly tracked decreases
from 169 to 139; IDF1 and MOTA decrease from 75.3%
to 72.8% and from 69.1% to 67.7% respectively. Associat-
ing data based on bounding box IOU alone gives the worst
performance.
Image Embedding in Trajectory Forecasting. As ex-
plained in Section 4.2, the image embedding from the
DLA34 network provides visual features for the trajectory
forecasting network. Previous literature concatenates opti-
cal flow encoding to the previous bounding box encoding
[36] to provide visual information to the trajectory forecast-
ing network. Optical flow is computationally expensive and
requires to be computed separately [36]. In our work, we
concatenate the DLA34 output features with the previous
bounding box encoding. This approach is less expensive
and provides high-dimensional features for the trajectory

forecasting network. We train JLA without this image em-
bedding and compare its performance against the case of
JLA trained with the embedding.

The result in Table 4 shows that including DLA34 fea-
tures in the trajectory forecasting network improves the per-
formance of JLA. MOTA increases from 65.8% to 69.1%,
IDF1 increases from 72.8% to 75.3%, and the number of
mostly tracked increases from 150 to 169.

7.4. Results on MOTChallenge Benchmarks

We compare our method with the top methods in the
MOTChallenge benchmarks under the private category. The
private category uses an external detector or datasets for
training. As shown in Table 5, JLA reduces the ID switches
(IDs) compared to FairMOT by 33%, 31%, and 47% for
MOT16, MOT17, and MOT20, respectively. JLA does not
perform as well on MOT15 because the performance of the
trajectory forecast is dependent on the availability of ground
truth information. MOT15 has missing tracking informa-
tion during occlusion, which can result in a high number of
false positives.

8. Conclusion
We have introduced a joint learning architecture for mul-

tiple object tracking and forecasting. We have shown that
trajectory forecasts can be used in lieu of Kalman Filters to
model non-linear trajectories. Also, we have shown that
future predictions can be used to estimate objects’ loca-
tions during occlusion. Our evaluations on the MOTChal-
lenge benchmarks show that our architecture reduces the ID
switches within an MOT context considerably. Our work
shows promises for future research to develop more sophis-
ticated architectures that improve multiple object tracking
and forecasting.
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