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Abstract

In this paper, we release the Simulated Articulated VE-
hicles Dataset (SAVED) which contains images of synthetic
vehicles with moveable vehicle parts. SAVED consists of
images that are much more relevant for vehicle-related
pattern-recognition tasks than other popular pretraining
datasets such as ImageNet. Compared to a model initialized
with ImageNet weights, we show that a model pretrained us-
ing SAVED leads to much better performance when recog-
nizing vehicle parts and orientation directly from an image.
We also find that a multi-task pretraining approach using
fine-grained geometric signals available in SAVED leads to
significant improvements in performance. By pretraining
on SAVED instead of ImageNet, we reduce the error rate of
one of the state of the art vehicle orientation estimators by
51.2% when tested on real images. We release SAVED and
instructions on its usage here'.

1. Introduction

Access to a large set of images paired with accurate an-
notations is often a prerequisite for successfully training a
visual perception model. In the era where data-driven meth-
ods powered by highly parameterized deep neural networks
dominate the field of visual recognition, the need to acquire
sufficiently large and high quality training data is common
across different applications and problem domains. How-
ever, annotating large scale datasets may be prohibitively
expensive or practically impossible depending on the prob-
lem domain. For example, while annotating a presence of a
common object in an image may be suitable for large scale
data collection with a crowd sourced workforce, collecting
detailed 3D information of object parts from real images
at scale is far more challenging. When access to a large
annotated dataset is limited, practitioners typically rely on
pretraining a deep network model on a large scale, but unre-

Uhttps://taesoo-kim. github.io/

Real vehicles with articulated parts

Figure 1: SAVED is the first large scale dataset of synthetic
vehicles with articulated vehicle parts such as doors and
trunks. Top: vehicles with articulated parts from the DIVA-
Doors dataset, Bottom: simulated instances with domain
randomized RGB examples, depth maps, surface normals
and semantic segmentation labels (from left to right).

lated, dataset and later finetune the poorly initialized model
using a small set of annotated samples from the target do-
main. Our experiments show that this standard practice of-
ten leads to models with sub-optimal performance.

We explore the use of synthetic data to address this chal-
lenge. There is growing evidence that a dataset with both
real and synthetic images can successfully train deep net-
work models for various vision problems [19, 28, 14, 12].
Given the advancements in graphical renderers such as Un-
real Engine 4 and Blender [4] coupled with software de-
velopments such as UnrealCV [20], researchers now have
direct access to a simulation engine that can generate large
scale datasets. Compared to real datasets, the cost of an-
notating a very large dataset is inconsequential. Moreover,
most simulation engines provide various auxiliary informa-
tion regarding the scene in addition to the generated task
label. Often, graphical engines by default provide scene
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level geometric information such as pixel-wise depth val-
ues and object surface normal information as these factors
govern how the scene gets rendered. Many of such render-
ing parameters and other auxiliary information that can be
extracted from the simulator provide a rich set of ‘free’ an-
notations that are difficult to obtain in natural images.

In this paper, we present a synthetic dataset, Simu-
lated Articulated VEhicles Dataset (SAVED), which con-
tains over 500K images of synthetic vehicles with various
labels. Each image comes with a full set of scene-level in-
formation regarding the geometry of the vehicle in the form
of surface normals and depth maps. Moreover, we pro-
vide per-pixel level annotation to localize the vehicle in the
scene. Finally, the most noticeable novelty of SAVED is the
granularity of vehicle part information that it provides. Ve-
hicles in SAVED contain articulated parts with annotations
specifying the exact encoder position of door joints. Us-
ing this information, we can accurately assess the state of a
vehicle part (ie. door or trunk) and how much it is rotated
about its axis. Though there are real [31, 17, 7] and sim-
ulated [6, 25] datasets with vehicle annotations, the gran-
ularity of annotations are insufficient for such fine-grained
analysis of a vehicle’s state.

In addition to the dataset, we present a simple yet an
effective approach for training with synthetic images. We
show that we can obtain a stronger model trained using syn-
thetic images by requiring a model to predict scene level
geometric information (ie. per-pixel depth and normal val-
ues) in addition to the main prediction task. In our experi-
ments, we show that a model pretrained using our synthetic
images with the presented multi-task training strategy out-
performs other models pretrained using other popular large
scale datasets such as [5, 31, 7]. Moreover, we show that
by pretraining on a large scale synthetic training dataset, we
can reduce the number of real training images with labels
to finetune the model. Using SAVED, we present the first
approach to recognize parts of vehicles and their states (i.e.
opened-doors and closed-trunks) from natural images. We
demonstrate that we can not only obtain a model to per-
form the novel task of articualted vehicle recognition but
also improve existing state of the art methods on standard
tasks such as vehicle pose estimation. In summary, the fol-
lowing are contributions of this paper:

1. The Simulated Articulated VEhicles Dataset
(SAVED): A large scale dataset of rendered syn-
thetic vehicle images with fine-grained vehicle part
annotations, 3D geometry annotations and move-able
vehicle parts.

2. The first model trained using simulated data to recog-
nize vehicle parts and orientation from natural images.

3. Experimental evidence that multi-task training with
geometric signals (i.e. surface normals and depth

maps) is critical when pretraining a model using a sim-
ulated dataset.

2. Related Work

Learning from simulation. Researchers have success-

fully trained various visual perception models using simu-
lated data for applications in stereo-vision [32], semantic
segmentation [22, 26] and 3D pose estimation [14, 2, 23,
12]. For such tasks, groundtruth annotations on real im-
ages are insufficient to train deep neural networks. Using a
simulation engine with a software such as UnrealCV [20],
groundtruth data that is otherwise difficult to obtain can be
generated in large amounts with significantly less effort. To
the best of our knowledge, there is no dataset, synthetic or
real, that has annotations at the vehicle part level which in-
cludes how much the part is rotated about its connection
point to the vehicle frame.
Related simulated vehicle datasets. Compared to datasets
with only natural images of vehicles such as KITTI [7],
PASCAL 3D+ [31] and EPFL [17], the SAVED dataset
leverages the power of simulation to generate significantly
more samples with larger diversity. In our experiments, we
show that by pretraining on SAVED then later finetuning
to the target dataset using the available real samples, we
achieve much better results on articulated vehicle recogni-
tion and vehicle orientation estimation tasks.

The most notable simulated datasets with vehicle annota-
tions are SYNTHIA [25] and V-KITTI [6]. The biggest mo-
tivating application for these datasets is in the domain of au-
tonomous vehicles. Hence, viewpoints are limited in these
datasets because samples are captured from the point of
view of a driver. Hence, the virtual vehicles found in the two
datasets are not well suited for training fine-grained models
for reasoning about vehicle parts. With more diverse cam-
era viewpoints and articulated vehicle parts, SAVED is a
better dataset to train models for problems such as 3D pose
estimation and recognizing parts of vehicles.

Vehicle orientation estimation. Estimation of object ori-
entation can be cast a camera viewpoint estimation problem
and has been active fields of research, including methods
for estimating the pose of human heads [15], pedestrians
[21], vehicles [12, 13, 9] and common objects [27, 12, 9].
Following the observation that training with a classification
loss consistently outperforms a regression loss setup for
pose estimation in previous approaches, our method mod-
els vehicle orientation estimation as classification problem
by converting continuous angular values to a one-hot vec-
tor label using evenly sized discrete bins. Our approach
builds upon the state-of-the-art methods for orientation es-
timation using conservative labels [13] and intermediate su-
pervision [12] to enable the first approach for articulated
vehicle recognition using simulated data.

Simulation to real transfer. Several studies have shown

501



Figure 2: The custom Blender plugin for annotating vehicle
parts such as doors and trunks.

that classifiers trained using simulated images often require
methods for simulation-to-real transfer to perform well on
real images [30]. We show in our experiments that the use
of geometric signals during pretraining with simulation data
helps mitigate the issue of domain shift. When there are
small number of labeled real instances, we show that a sim-
ple approach of pretraining using simulated instances and
then later finetuning with real examples leads to best re-
sults. We also show that domain randomization techniques
[29] as well as intermediate supervision [12] are important
when training with synthetic datasets.

3. The Simulated Articulated Vehicles Dataset
(SAVED)

We describe the details of the Simulated Articulated
VEhicles Dataset (SAVED). In contrast to existing real or
synthetic datasets of vehicles, the simulated instances in
SAVED have moveable parts such as doors, trunks and
hoods with ground truth annotations on how much the ve-
hicle part is rotated around its axis. As illustrated in Figure
1, SAVED provides per-pixel depth, surface normal and se-
mantic part labels.

We use Unreal Engine 4 as our renderer of choice and use
UnrealCV [20] to interact with the virtual environment to
simulate and capture data. We simulate vehicles by render-
ing the 3D CAD models provided by the ShapeNet dataset
[1]. The synthetic vehicles found in ShapeNet do not pro-
vide vehicle part annotations as standard. Thus, we manu-
ally annotated doors, trunks and hoods of vehicles in order
to articulate them as needed using the simulator.

For this purpose, we built a custom Blender plugin (de-
picted in Fig. 2) to label the sections of the mesh as its cor-
responding part. To maximize diversity of simulated vehi-
cle appearance in the dataset, we search for similar vehicles
via hierarchical clustering over features extracted from rota-
tion invariant 3D shape descriptors using spherical harmon-
ics [11]. We annotated 103 vehicle meshes corresponding
to the center of the largest clusters. Given the knowledge
of corresponding vehicle parts, we implemented a mech-
anism through UnrealCV which manipulates each vehicle
part individually. Figure 3 illustrates sample data points

from SAVED generated using our approach.

Table 1 compares SAVED to other vehicle datasets. Our
dataset contains the most number of images captured from a
diverse set of camera viewpoints. SAVED is the first dataset
with annotations on vehicle parts: we provide the extent to
which each door is rotated in degrees. Next, we describe
our approach for training with simulated data.

4. Learning from synthetic vehicles

In this section, we discuss our general strategy for train-
ing deep neural network based image classifiers using syn-
thetic images. We use extra geometric information about
the scene such as depth maps and surface normals as auxil-
iary tasks in addition to the main task for the model to opti-
mize for during pretraining with synthetic data. We observe
in our experiments that a model initialized using simulation
data with this simple multi-task training approach leads to
much better classification performance when tested on real
images.

Multi-task approach with geometric signals. We de-
scribe our approach for a general classification scenario
but our method can be generalized trivially to other prob-
lems such as detection and pose estimation. Let X =
{(z1,91), (x2,y2), ..., (xn,yn)} be a synthetic training
dataset with pairs of a rendered image of a vehicle z,, €
RHXWXC and some corresponding ground truth task label
yn € {1,...,M}. The objective is to learn a classifier
9 = F(z) such that the following classification loss L
is minimized:

Las ==Y yrlog(yi) (1)

We use a deep neural network for F'. This is a standard
formulation for optimizing a deep neural network using a
cross-entropy loss.

One of the biggest benefits of synthetic data is that a
simulation engine has a representation for the 3D geome-
try of the virtual scene that is readily available. Let Z =
{z1, 22, ..., 2N } be a set of some geometric representations
such as surface normals or depth maps extracted from the
simulator. The intuition behind this approach is that various
tasks regarding a vehicle such as vehicle part detection and
pose estimation are fundamentally related to its geometry.
We use an encoder-decoder framework to jointly predict the
task label y,, and the geometry Z,, from x,,. We refactor the
classifier F' such that:

g = F(z) = softmax(fus(f(z))) 2)

where f(r) € RP is an output of an encoder that maps an
image to a feature representation of some dimension D and
fels 1s a linear classification layer that maps feature vectors
with D dimension to the output space with M outputs. The
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SAVED (Ours)  KITTI[7] V-KITTI[6] SYNTHIA [25] Pascal 3D+ [31] EPFL [17]

Real/Simulated Sim Real Sim Sim Real Real

# annotated samples 586,340 80,000 80,000 200,000 6704 2137
Background Random Texture =~ Outdoor  Sim. Outdoor  Sim. Outdoor  Indoor+Outdoor Indoor
Orientation label yes no yes yes yes yes
Azimuth label yes no yes yes yes no
Depth and normal labels D+N D D D no no
Vehicle part Label yes no no no no no

Table 1: Compared to existing datasets with vehicle annotations, SAVED provides vehicle part information and the most

comprehensive set of 3D geometry information.
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Figure 3: Sample images from SAVED. We use the original texture associated with the 3D CAD models provided by
ShapeNet. SAVED captures a vehicle with randomized door/trunk states from various azimuth and elevation angles. We

randomize the texture of the background.

output of the encoder f(x) then becomes the input to the
decoder g to predict the geometric signal 2:

2=yg(f(x)) 3)
Then, we define the geometric loss £, over all samples
in the synthetic training set as:

Ly=" d(zn, %) 4)

where d is a distance function which produces a large scalar
when differences between z, and Z, are large. L1 or L2

norms are suitable functions for d and we use the L2 norm
in our experiments. The final objective L ¢;nq; to minimize
is then:

Efinal = /\clsﬁcls + /\g['g (5)

where A\, and A\, are weighting coefficients. During pre-
training, we optimize the entire encoder-decoder to mini-
mize Lfinq. During finetuning with real images, we dis-
card the decoder g and only use the encoder f initialized
using synthetic training examples. We set Ac5, Ag t0 0.5 in
our experiments.
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Figure 4: Top: A multi-task formulation to train a model
with synthetic images where a decoder predicts geometric
signals Z in addition to the task labels . Bottom: The en-
coder trained using synthetic images is then finetuned using
real images and the decoder is discarded.

5. Experiments

In Section 5.1, we show that the fine-grained vehicle
part information contained in the SAVED dataset enables
a model to recognize articulated vehicle parts from natural
images. Then in Section 5.2, we show that we can improve
existing state of the art vehicle pose estimation models by
simply pretraining them on the SAVED dataset. For both
tasks, we show that using synthetic data with our training
strategy leads to much better results for both tasks.

5.1. Recognizing Vehicle Parts

Using the vehicle part ground truth from SAVED, we
train a model for recognizing opened vehicle doors di-
rectly from an image. The ability to understand an image
of a vehicle at such granularity benefits a wide array of
domains ranging from autonomous vehicle applications to
video surveillance.

Dataset with real vehicles with opened doors. There are
no datasets with real images that have ground truth annota-
tions on vehicle door states. To test the ability to train an
‘opened-door’ detector using simulated images, we man-

ually annotate a small set of real images from the DIVA
dataset?, visualized in Figure 1.

The DIVA dataset is an activity detection benchmark
adapted from the VIRAT [16] dataset with annotations re-
garding human actions in surveillance videos. We sam-
ple frames with action labels ‘person-opens-vehicle’ and
‘person-closes-vehicle’ and manually annotate frames with
closed and opened vehicle doors. A vehicle door is ‘open’
when at least one door of the vehicle is opened and the de-
formation is clearly visible.

The DIVA dataset consists of videos captured from five
independent sites with large differences in capture condi-
tions such as viewpoint, scale of objects and levels of oc-
clusion. The training set contains images from four scenes
and the validation set consists of instances from the held-
out fifth scene. There are 2144 training examples of vehi-
cles with all doors closed and 1803 samples with at least
one door opened. In the validation set, there are 309 images
with ‘closed’ labels and 420 images with ‘opened’ labels.
implementation details: We adopt a U-Net [24] architec-
ture to implement our encoder-decoder architecture. For
the encoder, we use the ResNet-101 [10] model with a
convolutional stem C' followed by four residual blocks,
R1,R2,R3,R4. Let a convolutional layer with 256 filters
with spatial filter dimensions of 3 and a stride 1 be denoted
as: (C-256-3-1). The decoder consists of three identical
convolutional layers specified by (C-256-3-1). A geometry
prediction module is appended to the decoder and it consists
of two convolutional layers: (C-64-3-1)-(C-N-3-1) where
N is the number of required output channels for the prob-
lem (N=3 for predicting normals, N=1 for predicting depth).
There are lateral connections between the first decoder conv
layer and R4, the second decoder conv layer and R3 and the
third decoder conv layer with R2. Finally, the task predic-
tion layer is a linear layer with 2048 nodes attached to the
output of R4.

We implement the models using the PyTorch [18] frame-
work. All models are initialized from ImageNet [5] pre-
trained weights. We optimize using stochastic gradient de-
scent with 0.9 as the momentum term. For pretraining with
simulation data, we use an initial learning rate of 0.001 with
learning rate decrease with gamma of 0.9 every 10000 iter-
ations. For finetunining, we use an initial learning rate of
0.0001 and a learning rate decrease with gamma of 0.9 ev-
ery 2 epochs. For both settings, we use a small batch size
of 8 due to hardware restrictions. We resize RGB inputs
to square crops of 224 pixels. For the auxiliary prediction
tasks, the geometric signals are resized to square crops of
56 pixels and the auxiliary predictions from the model are
of same dimensions.

Results. Table 2a shows the performance of a ResNet-101
[10] model pretrained on ImageNet finetuned to our task

Zhttps://actev.nist.gov/
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Trained without SAVED

Trained with SAVED

Figure 5: We visualize the attention values of the model trained using only real iamges (left) and the model pretrained using

SAVED.
‘ Pretrain Train Acc (%)
R101-E | ImgNet (R) DIVA-Doors (R) 75.0
R101-E | ImgNet (R) Joint (R+S) 75.3
R101-E | SAVED (S) - 51.8
R101-E | SAVED (S) DIVA-Doors (R) 80.5

(a) Results from an encoder only model (Res101-E) trained
with only classification loss. R: real images. S: simulated im-
ages.

Pretrain Train Acc (%)
R101-E ImgNet (R) DIVA-Doors (R) 75.0
R101-ED-N | SAVED (S) - 52.8
R101-ED-N | SAVED (S) DIVA-Doors (R) 85.6
R101-ED-D | SAVED (S) - 52.3
R101-ED-D | SAVED (S) DIVA-Doors (R) 83.7

(b) Results comparing encoder-decoder models that trained
with auxiliary geometric signals using surface normals
(Res101-ED-N) or depth maps (Res101-ED-D).

Table 2: Results on articulated vehicle recognition. We
show that pretraining with synthetic auxiliary geometric
signals greatly improves model performance on real images.

on DIVA-Doors. A naive approach for training with sim-
ulation data is to simply augment the existing real training
set with additional synthetic data points. This naive joint
training approach only leads to a minor improvements of
0.3 points over the train-on-real-test-on-real baseline. In-
stead, we observe a much more substantial performance
gain of 5.5 points when we follow the pretrain-on-sim-then-
finetune-on-real paradigm achieving an accuracy of 80.5%.

When the model uses geometric signals during pretrain-
ing, we observe significantly improved classification re-
sults in Table 2b. The model, which uses surface normals
(R101-ED-N) to compute the geometric loss during pre-
training, has an accuracy of 85.6%, a significant improve-
ment (+10.6%) over the model trained without any simu-
lation data. A model pretrained using surface normals as
the multi-task signal outperforms the model that uses depth

maps (R101-ED-D) for this application by a small margin.
We suspect that the knowledge of surface normals of ob-
jects is more predictive than the knowledge of relative depth
of objects in the scene. More in-depth study on the causal
relation between the auxiliary geometric signal and the per-
formance on the downstream task is an interesting topic for
further investigation which we reserve for future work.

To provide qualitative assessment of the model, we addi-
tionally train models to compute simple attention masks [3].
In Figure 5, we visualize the attention mask values super-
imposed on vehicle images and compare the model trained
using only real images to the model pretrained using syn-
thetic images from SAVED. We observe that the attention
mask of the model trained using only real images attends
to regions of the image that contain noise. In comparison,
the model pretrained using synthetic images produces much
sharper attention masks where most of high attention values
are placed on doors and trunks of the image.

In Figure 6, we visualize the auxiliary surface normal
predictions, 2. The model has not been trained with a single
instance of a real image with surface normal annotations.
However, the model can still predict reasonable surface nor-
mal values for a vehicle in the natural image. Interestingly,
we observe that the model learns to ignore the humans inter-
acting with the vehicle. Combined with the attention values
visualized in Figure 5, we believe the model’s ability reason
about the geometry of the vehicle leads to a model that can
accurately reason about states of vehicle parts.

5.2. Vehicle Orientation Estimation

In the previous section, we demonstrated that the fine-
grained vehicle part annotations provided by SAVED en-
ables a model to recognize the state of vehicle parts which
has not been possible before. In this section, we demon-
strate that SAVED benefits existing state of the art models
and improve their performance on the task of vehicle orien-
tation estimation.

Dataset. We use the EPFL [17] dataset which is a small
dataset with 20 real image sequences of 20 car types at
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rgh input

pred normal

Figure 6: We visualize the surface normal predictions of the
model. Though the model has never seen an example of a
natural image paired with annotated surface normal values,
it still outputs consistent and accurate surface normal pre-
dictions.

Pretrain  Train MeanAE (])
[8] | ImgNet EPFL 23.8
Our Impl. of [8] | ImgNet EPFL 244
Our Impl. of [8§] + N | SAVED - 234
Our Impl. of [8] + N | SAVED EPFL 11.9
[9] | ImgNet EPFL 9.86
Our Impl. of [9] | ImgNet EPFL 10.1
Our Impl. of [9] + N | SAVED - 12.3
Our Impl. of [9]+ N | SAVED EPFL 6.46
[13]* | ImgNet EPFL 6.04

Table 3: Results on the EPFL dataset. We improve the ex-
isting state-of-the-art models using our approach and pre-
training on SAVED. + N indicates that the model is pre-
trained with surface normals as the geometric auxiliary sig-
nal. Lower is better. * We were unable to replicate [13]

a show. We follow the settings in [9, 13] and report the
mean-absolute-error (MeanAE) for evaluated models. We

follow the settings presented in [9]: we use the ResNet-101
backbone pretrained on Imagenet and we take the output of
the 22-nd residual layer as our visual feature for all experi-
ments. All simulation pretraining settings are similar to the
DIVA-Doors experiment. For finetuning, we follow all set-
tings consistent with [9] and use the PyTorch framework to
run experiments.

Results. We implement existing state-of-the-art methods
reported for this dataset and report our replication results in
Table 3. We then show that we can improve these models
by attaching a decoder to predict geometric signals as the
auxiliary output. We choose surface normals as our source
for the geometric signal during pretraining.

In the DIVA-Door experiments shown in the previous
section, a model trained only using synthetic images failed
to transfer to real natural images as shown in Table 2. Inter-
estingly, for the task of vehicle orientation estimation, we
observe that a direct simulation-to-real transfer is possible
meaning that a model trained without a single instance of
a real natural image performs well when tested on real im-
ages. In Table 3, we show that models trained using only
synthetic images from SAVED without finetuning on any
real images from the target dataset perform on par with
the model trained using real images from the target EPFL
dataset.

When both existing state of the art models ([8] and [9])
are pretrained using SAVED and then finetuned using real
images from the target dataset, we see significant relative
improvements of 51.2% and 36.0% respectively. Just by
changing the dataset used for pretraining the models with-
out altering anything else about them, we improve the accu-
racy of the models by significant margins. This shows the
importance of good model initialization for visual percep-
tion tasks using neural networks.

6. Conclusion and Discussion

The presented SAVED dataset is the first dataset of syn-
thetic vehicles with articulated vehicles parts with 3D ge-
ometry annotations. Using SAVED to pretrain deep neural
networks, we showed that we can recognize vehicle parts
such as opened doors directly from real images. Using our
multi-task formulation with geometric auxiliary signals, we
obtained models that generalize to real images much more
effectively. In the case of vehicle orientation estimation, a
model trained using only synthetic images transferred di-
rectly to real images. Moreover, we showed that by simply
pretraining existing state of the art models for vehicle ori-
entation estimation on SAVED, we dramatically reduce the
error rate.

We showed empirical evidence that pretraining with syn-
thetic images using a multi-task learning formulation with
auxiliary geometric signals improved model’s performance
on downstream tasks. We also showed that a model that
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predicted surface normals as the auxiliary output performed
better than the model that learned to predict depth values.
We believe studying the effect of different geometric signals
on various downstream tasks is an interesting and a promis-
ing direction for future work. We wish SAVED contributes
to development of new methods for training with synthetic
images and approaches for more fine-grained analysis of ve-
hicles.

Acknowledgements. Omitted during the review process.
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