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Abstract

Estimating the correct number of objects in a given nat-
ural scene is a common challenge in computer vision. Nat-
ural scenes usually contain multiple object categories and
varying object densities. Detection-based algorithms are
well suited for class-aware object counting and low object
counts. However, they underperform with high or varying
numbers of objects. To address this challenge, we propose
an end-to-end approach to enhance an existing detection-
based method with a multi-class density estimation branch.
The results of both branches are fed into a successive count-
estimation network, which estimates object counts for each
category. Although these numbers do not contain any lo-
calization information, they can be used as a valuable in-
dicator for verifying the exactness of the object detector re-
sults and improving its counting performance. In order to
demonstrate the effectiveness, we evaluate our method on
common object detection datasets.

1. Introduction
Tasks, which are usually easy for a human, can be hard

for a machine [21]. Counting objects and persons is such
a task. In real-world scenes, the challenges are diverse, in-
cluding but not limited to occlusions, the presence of multi-
ple object categories, and varying object densities [10]. Fig-
ure 2 shows examples of natural scenes. In particular, for
the coast guard, not only the number of ships is relevant but
also the vessel type. Furthermore, counting has many valu-
able applications, such as traffic monitoring, surveillance,
public safety, and urban planning [27]. Since manual ob-
ject counting is a time-consuming task, it is not feasible on
a large scale and with time-critical applications. In order to
address this issue, crowd counting presents a solution as it
can be generalized to object counting. Commonly, crowd
counting approaches are based on detection, regression, or

Figure 1: Class-aware object counting. The basic idea
behind our approach is to detect relevant objects while si-
multaneously creating multi-class density maps. Results
from both branches are fused to create a more precise object
count for each class.

density estimation [6].
Object detection-based approaches are usually divided

into one- and two-stage detectors. One-stage detectors [24,
17, 14, 1] only utilize a dense prediction head and are
usually more time-efficient. In contrast, two-stage detec-
tors [7, 22] are generally more accurate by utilizing an ad-
ditional sparse prediction head. Recent object detection
methods are usually class-aware and deliver localization in-
formation of the objects on top of their estimated number.
Furthermore, object detection can be fused with segmen-
tation techniques to extract even more information from a
scene [8, 11]. Object detection methods excel in low den-
sity counts with low to moderate occlusion. However, ob-
ject detection-based methods underperform in scenes with
high and diverse object counts.
In contrast, direct regression methods [2, 26] are better
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Figure 2: Overview of real-world scenes. We study the
problem of class-aware counting in natural scenes. Count-
ing in natural scenes is a real-world application with many
challenges. Leading counting approaches are usually fo-
cused on single-class counting, but realistic scenarios do not
only vary strongly in object density and scale but usually in-
clude multiple relevant categories.

suited for these conditions, yet any information about the
spatial distribution is lost. Therefore, density estimation
methods have become popular in recent years [33, 27, 12,
18, 19]. Instead of predicting a global count or localizing
objects precisely, a density map of the relevant targets is
estimated. The global count can be acquired by summa-
tion over the density map. Density estimation methods fa-
vor overestimating the number of sparse scenes and, con-
sequently, underachieve in low object counts. Furthermore,
nearly all recent density estimation methods are unfit for
a current class-aware approach. In a real-world applica-
tion, this is a big disadvantage in comparison to a detection-
based method. Only a few methods drive research towards
multi-class density maps [4, 31]. Object counting in the
context of a real-world application often requires predicting
the number of objects in different categories, e.g., in traffic
monitoring. In this scenario, it can be important to count
all road users and simultaneously differentiate between cars
and trucks. One of the main obstacles in this scenario is the
strongly varying object density. Urban regions will usually
contain more vehicles compared to rural areas. Detection-
based methods will likely be contested on urban scenes, and
density estimation-based methods will underperform on ru-
ral scenes with a sparse object density. Furthermore, diverse
object densities are a common condition in air- and space-
borne images, e.g., iSaid Dataset [29]. This can lead to a
decrease in the reliability of the counting accuracy. One
way to improve the counting accuracy is to combine dif-
ferent counting models. Liu et al. [16] proposed a fusion
of detection-based and regression-based methods for crowd
counting. Although DecideNet [16] achieves great perfor-
mance, it is only developed for the single-class problem.

Class-aware object counting in varying object densi-

ties is a real-world problem, but common object detec-
tion datasets like COCO [15] have a strong bias towards
one-digit object counts per image [3]. In contrast, com-
mon crowd counting datasets like ShanghaiTech [33] usu-
ally have diverse object densities yet include only one class.
Yet single class solutions are for many real-world applica-
tions not sufficient. As a result, research in the field of
class-aware object counting is still needed. Therefore, in-
spired by DecideNet, we propose a fusion of a modern ob-
ject detector with a multi-class density estimation network.
We integrate our multi-class density estimation branch in
the common object detection backbone, the feature pyramid
network FPN [13]. Furthermore, we utilize detection and
density estimation results to predict accurate object counts
for different categories. We see for our approach two use
cases: The first use case is class-aware object counting. The
second use case is to utilize it as a support structure for ob-
ject detection. From the deviation between the predicted
object count and the detection count, the presence of false
positive or false negative detections can be inferred.
Contributions: (1) We propose a novel way to combine
class-aware density estimation with object detection. Our
approach is well-suited to be integrated into the most com-
mon object detection and instance segmentation models and
is end-to-end trainable. (2) Our approach includes a count
estimation network optimized to predict object counts with
different categories in scenes with diverse object densities.
The predicted object counts can be used as an indicator to
verify the detection results and, therefore, increase its relia-
bility. (3) To display our approach’s effectiveness, we eval-
uate our method on the common object detection datasets.

2. Related Work
R-CNN. Faster R-CNN [7] is one of the most popular

two-stage object detectors. Its major components consist
of a backbone, a class-agnostic region proposal network
(RPN), and a sparse prediction head. The backbone, e.g.,
a ResNet [9] extracts features from the input data. A pure
ResNet has only a bottom-up pathway for semantic features.
It allows features only to flow from low- to high-level se-
mantics. By expanding the feature extractor with an FPN
[13], semantics can flow in both ways. This is a direct con-
sequence of implementing a top-down pathway and lateral
connections in addition to the previous bottom-up pathway.
This extended feature extractor increases the performance
of the subsequent detection steps, especially its scale aware-
ness. After extracting the features, the feature maps are
passed to the RPN. The RPN proposes class-agnostic re-
gion proposals, which are filtered by a non-maximum sup-
pression module. Finally, the detection head classifies the
filtered region proposals according to their class category
and improves their bounding box coordinates. In addition,
faster R-CNN can be easily upgraded to Mask R-CNN [8]
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Figure 3: Network architecture. A general overview of
our proposed method. Features extracted from the back-
bone are processed in the RPN and in the MCDEN. Subse-
quently, detection results and density maps are sent to the
CEN to refine counting results.

by using a mask head.
Context-aware crowd counting. Liu et al. [18] propose

a context-aware crowd counting network (CAN) that com-
bines features extracted from multiple receptive field sizes
in order to estimate precise density maps. This is done by
utilizing VGG [28] to create feature maps that are average
pooled with different sizes to generate scale-aware features.
In order to determine the local scale of each image region,
the scale-aware features are used to generate contrast fea-
tures. Eventually, former features are processed into con-
textual features and are decoded into density maps.

Crowd FPN. In [20], an FPN is extended by a density
estimation network. In addition to feature maps, it provides
class-agnostic density maps for a given image. Similar to
CAN, scale-aware features are generated. However, instead
of using average pooling for creating feature maps with
multiple receptive field sizes, the different spatial features
from the FPN are utilized. Crowd FPN can be integrated
into an R-CNN algorithm such as Faster R-CNN or Mask-
R-CNN and in combination with an alternating region pro-
posal scheme, increase the average recall of the detection
results.
In contrast to Crowd FPN, we expand the class-agnostic ap-
proach by a class-aware density estimation network, remov-
ing any influence of the density branch on the region pro-
posal process and add a different fusion approach between
both branches.

3. Approach

Our proposed approach consists of the multi-class den-
sity estimation Network (MCDEN) and the detection
pipeline, which are combined to form the input of the count
estimation network (CEN).
As described above, natural scenes usually include multiple
objects, which vary strongly in object density and consist
of multiple categories. Therefore, we propose a combined
approach between object detection and class-aware density

Figure 4: Count estimation network. Model architecture
of the CEN.

maps to improve the counting performance. Figure 3 shows
an overview of the general architecture. First, we utilize
an FPN as our backbone to extract feature maps in indif-
ferent receptive sizes and semantic levels. The flow of the
feature maps is split into the detection and the density esti-
mation branch. The detection pipeline consists of an RPN, a
non-maximum filter, a boxhead, and an optional maskhead.
Meanwhile, the density estimation branch consists of the
MCDEN, which outputs class-aware density maps. The re-
sults of both methods serve as input for the CEN. The CEN
aims to predict precise counts for each object category for a
given scene.

3.1. Multi-class density estimation network

We consider a set of N training images {Ii}1≤i≤N with
related ground-truth density maps {Dgt

i,j}1≤j≤c, for c dif-
ferent object categories.

We aim to learn a non-linear mapping Fj for each object
category parametrized by θ to estimate c different density
maps approximating Dgt

i,j by minimizing the the L2 norm
of the groundtruth and the predictions.

Dest
i,j(Ii) = Fj(Ii, θ), (1)

where θ are the learned parameters. Without loss of gener-
ality, we describe the proposed method for a single image I
to facilitate the notation.
To start with, the FPN outputs four relevant feature maps
fs, one for each of the scaling factors s ∈ { 14 ,

1
8 ,

1
16 ,

1
32}.
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Figure 5: Multi-class density estimation network. We aim to predict multiple density maps for each object category.
Feature maps, which are generated in an FPN [13], are processed in an encoder network followed by multiple decoder
networks. The encoder network exploits contrast features between the different feature maps to increase the scale-awareness
of the encoder network.

The first feature map fs1 with the lowest semantic level and
the highest resolution is used as the base feature. The down-
sampling process to our base resolution of 1

8 -th of a given
original image I is learned by applying a dilated convo-
lutional layer with a stride of 2. This process leads to a
slightly better density estimation performance. The remain-
ing feature maps are upsampled to the base resolution by
bilinear interpolation, which is denoted by Ibi. Due to the
various perspective field sizes of the different feature maps,
scale aware features are created according to

fs =


Ibi(FFPN,s4(I))

Ibi(FFPN,s3(I))

FFPN,s2(I)

Fd(FFPN,s1(I))

, (2)

where FFPN,sk for k = 1, . . . , 4 are the feature maps pro-
duced by the FPN and Fd is the learned downsampling op-
erator. In order to increase scale awareness, contrast fea-
tures δ are calculated

δl = sl − s1 l ∈ {2, 3, 4}. (3)

Subsequently, the individual contrast features are calculated
by

wl = F l
sa(δl, θ

l
sa), (4)

whereF l
sa is the output of a 1×1 convolution layer followed

by a sigmoid activation function and a scale-aware operator.
Finally, we multiply the former learned features element-
wise with the scale aware features and concatenate them
channel-wise with the base feature map

fI =
[
fs1 |

∑4

l=2
ωl � sl

]
. (5)

After encoding the relevant information, in particular scale-
information of the original image I , into the feature block
we begin with the decoding process. Instead of using only
one decoder as in [20], we utilize a specific decoder network
Fdc for every category c

Dest
c =



Fdc,1(fI)
...
Fdc,j(fI)

...
Fdc,c(fI)

. (6)

The decoder consists of multiple sequences of dilated
convolutional layers followed by batch normalizations and
ReLU activation functions. In contrast to Crowd FPN we
reduce the number of weights significantly in the decoder
block, as each additional category increases the number of
required parameters to be learned.

3.2. Detection pipeline

The detection pipeline is derived from Mask R-CNN.
The essential parts of the detection pipeline are the RPN,
and the boxhead. Furthermore, we add a maskhead, which
is an optional step for our approach. The first step is the pro-
cessing of the feature maps from the backbone in the RPN.
The RPN proposes regions in which objects can be found.
Then, the NMS filters the output region proposals. After-
wards, the filtered region proposals are sent to the boxhead,
where the classification of the objects in the region are per-
formed. The boxhead also refines the spatial properties of
the region proposals. In an optional step, a maskhead esti-
mates the segmentation masks of the potential objects.
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Figure 6: Sample of the vidsrone dataset(test-dev) [34]. For each target category, a pair of density map and detection
overlays are shown. It is easily possible to distinguish between the given density maps and their corresponding density level.
The top-left image pair represents the category ’pedestrians’ and its right neighbor represents the category ’people’. While
the detection (DET) and density branch (MDS) underachieve in differentiating between both types, the count estimation
network (CEN) performed well in this case.

3.3. Count estimation network

Figure 4 shows an overview of the CEN. The CEN for a
single object category j can be formulated as follows

CENj = Fstage2(B
est
j + λres · Ibi(Fstage1(D

est
j ))). (7)

Here, Fstage1 and Fstage2 are the operators describing the
corresponding parts from Figure 4. Fstage1 is a sequence of
convolutional layers, Fstage2 consists of multiple fully con-
nected layers, and Ibi is a bilinear interpolation function
with a fixed output of the size c × ε. The constant ε is a
hyperparameter, which has to be tuned while training and c
is the number of object categories. Best andDest are the re-
sults from the detection and the density estimation pipeline.
λres ∈ [0, 1] is the rescaling factor, which can be calculated
by

λres,j =

X∑
x=1

Y∑
y=1

(Fstage1(D
est
j (x, y))

X∑
x=1

Y∑
y=1
Ibi(Fstage1(D

est
j (x, y)))

, (8)

where x, y are the pixel coordinates of the given image with
dimension X × Y . The multi-class density maps Dest

j and
the results Best

j of the detection pipeline are fed forward to
the CEN. In the first step of the CEN, the multi-class den-
sity maps are processed in a 2D-convolutional layer with
a filter size of 32. The convolutional layer is followed by
a batch normalization and a ReLu activation function. Af-
ter a repetition of this sequence of operations, the resulting
features are further processed by a 2D-convolutional layer
with filter size c. After applying another set of batch nor-
malizations and ReLU activation functions, the results are

interpolated to a matrix with the dimensions c × ε. Due to
different sizes of the input density maps, resizing the fea-
ture map can lead to wrong assumptions about the number
of objects. Density maps are trained to approximate a nor-
malized Gaussian distribution in which the sum of all pixels
corresponds to the number of objects in a given scene. Ap-
plying a simple resize operation to a fixed value can skew
the distribution. Therefore, a resizing function has to be
followed by a rescaling factor λres.

Furthermore, for each class j, the quantity of the de-
tected objects from the detection pipeline is calculated and
saved in the vector v ∈ Nc. This vector and the previously
predicted number of detections Best

j are concatenated and
fed into a sequence of two dense layers with a batch nor-
malization layer, which are activated by ReLu functions. Fi-
nally, an additional dense layer outputs the estimated count
result for each class.

3.4. Loss functions

We employ a multi-loss function consisting of the detec-
tion loss Ldet, the density loss Lds, and the CEN loss Lcen.
The overall loss function can be formulated as follows

L = Ldet +
1
c

∑c

j=1
Lds,j + Lcen, (9)

where Ldet is implemented according to [8]. Furthermore,
Lds,j is aggregated over all c object categories and calculated
by the L2-norm with a batch size N ′ < N of the training
images I ′ ⊂ I

Lds =
1

2N ′

∑N ′

i=1

∥∥Dgt
i −D

est
i

∥∥2 (10)
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Table 1: Counting results on the Visdrone dataset
Visdrone [0-1000] [0-10] [11-50] [51-100] [101-1000]

Faster R-CNN
(standalone)

MAE 4.93 2.6 11.31 17.87 29.21
RMSE 13.45 3.98 13.56 33.34 64.88

Faster R-CNN
(det-branch)

MAE 4.71 2.4 11.25 17.86 29.43
RMSE 13.17 3.91 13.82 32.39 64.18

DetectorRS
(standalone)

MAE 4.77 2.35 14.71 18.35 22.86
RMSE 9.58 3.13 16.85 34.13 51.59

CenterNet
(standalone) )

MAE 5.79 3.07 15.69 18.35 22.86
RMSE 10.92 4.19 18.23 36.65 54.25

OURS-MCDEN MAE 6.53 4.29 14.39 14.81 26.92
RMSE 11.5 5.74 16 25.78 53.88

OURS-CEN MAE 3.76 2.07 10.49 13.84 23.55
RMSE 9.56 3.25 12.52 25.07 51.11

. Finally, Lcen can be defined as

Lcen =
λcen

2N ′

∑N ′

i=1

∥∥Dgt
i −Dest

i

∥∥2
Dgt

i

(11)

. The Lcen also utilizes the L2-norm. In order to reduce the
effect of the Lcen on the weight update process, we apply an
additional constant λcen ∈ [0, 1] to Lcen. Additionally, we
divide the loss term by the number of objects per category to
create a relative loss function for balancing the loss between
high- and low-density object counts.

4. Experiments and Discussion

In this section, we evaluate the effectiveness of our pro-
posed approach. First, we present details of our implemen-
tation. Then, we introduce the evaluation metrics and the
benchmark datasets. After that, we discuss the counting re-
sults and compare them to state-of-the-art object detection
methods. Finally, we conduct an ablation study.

4.1. Implementation details

We use a ResNet50 [9] pretrained on ImageNet [25] as
our backbone. For the detection pipeline of our network, we
use Faster R-CNN for object detection and Mask R-CNN
as a baseline for instance segmentation. We apply the de-
fault anchor configuration following [8], but we increase the
number of proposals to keep before and after applying the
NMS filter to 2000 proposals. Furthermore, we modify the
number of possible detections per image to 1000. With this,
we want to ensure that our detection pipeline is not limited
by hyperparameters in scenes with high object densities.
During training, we usually reduce the loss of the density
estimation branch by a factor of ten and steadily increase it
per epoch. This results in an overall faster training time. In
our count estimation network, we set the constant loss re-
duction factor λcen to 0.2 and set the interpolation constant
to ε = 128. During training, we start with a learning rate of
α = 3 · 10−3 and uniformly reduce α to 10−3 steadily over
50 epochs. We choose a batch size of four and utilize the
AdamW optimizer [32] with a weight decay of 10−4. For

Table 2: Counting results on the iSaid dataset.

iSaid Mean Ship Truck Car Plane
Mask R-CNN
(standalone)

MAE 8.52 3.84 3.82 24.32 1.20
RMSE 50.68 11.11 9.94 99.15 3.73

Mask R-CNN
(det-branch)

MAE 8.32 3.73 3.87 24.49 1.21
RMSE 50.58 10.25 9.43 100.13 3.53

OURS-MCDEN MAE 10.97 5.16 3.94 30.95 3.83
RMSE 37.3 9.48 9.97 73.03 6.65

OURS-CEN MAE 7.85 5.65 4.31 20.02 1.41
RMSE 31.64 15.01 9.73 60.59 3.7

training, ground truth density maps are created by a geom-
etry adaptive Gaussian kernel [33] from the bounding box
coordinates.

4.2. Evaluation metrics

Similar to previous works in object counting [4] and
crowd counting [18, 33], the mean absolute error (MAE)
and the root mean squared error (RMSE) are used as evalu-
ation metrics. MAEc per category for all N test images in
the dataset can be defined as follows:

MAEj =
1
N

∑N

i=1
|Qest

i,j −Q
gt
i,j |, (12)

and RMSEc can be calculated by:

RMSEj =

√
1
N

∑N

i=1
(Qest

i,j −Q
gt
i,j)

2, (13)

where N is the number of test images, Qest
i,j is the estimated

number of relevant targets in the i-th image for an object
category j and Qgt

i,j the coresponding ground truth. Fur-
thermore, we define the mMAE as follows:

mMAE =
1

c

c∑
j=1

MAEj (14)

and the mRMSE as:

mRMSE =
1

c

c∑
j=1

RMSEj (15)

Qest is calculated for each branch individually. In the
detection pipeline, Qest,det is calculated by counting the
number of detections. Meanwhile, Qest,ds is derived by in-
tegrating over the pixels of the estimated density map in
the density branch. Finally, the CEN outputs Qest,cen =
CENest directly.

4.3. Datasets

To our knowledge, there exists no publicly available
dataset for multi-class object counting with high and vary-
ing object counts. Therefore, we utilized the following
common object detection datasets.
Visdrone-Det [34]. This dataset consists of 10,209 images
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Figure 7: Visualization results on the iSaid dataset [29]. From left to right column: ships, trucks, cars, and planes. DET
are the numbers of detections, MDS is the sum over the density map and CEN displays the number of the count estimation
network, which combines the former results.

with ten categories. Object categories include classes such
as ’person’, ’car’, and ’bicycle’ from different viewing an-
gles. In our experiment, we do not reduce the number of
classes. We train on the training dataset, which contains
only 6,471 images. The validation dataset contains 548 im-
ages and we evaluate the training process on the test-dev
dataset, consisting of 1,610 images.

iSaid [29]. This dataset is derived from the DOTA [30]
dataset and contains object shape information. It includes
2,806 high-resolution images collected from multiple sen-
sors and platforms. It consists of 655,451 object instances

of 15 categories. The images are cropped into patches with
a resolution of 800×800 for training and evaluation pur-
poses. This paper only uses a subset of the dataset and
utilizes object instances of the movable object categories:
’ship’, ’car’, ’truck’, and ’plane’.

4.4. Counting Results

Figure 6 presents a sample of the Visdrone test-dev
dataset. The complete results are shown in Table 1, which
displays the MAE and RMSE for all categories. In or-
der to verify the effectiveness of our approach, we compare
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Figure 8: Comparison between multi-decoder and
single-decoder approach. This Figure illustrates the den-
sity maps created from a single-decoder and a multi-
decoder approach. Part a shows the single-decoder method
with crosstalk between the density maps. In contrast, the
density maps from the multi-decoder approach of Part b are
almost crosstalk-free.

our method to the state-of-the-art object detectors Detec-
torRS [23], and CenterNet [5]. Both methods are trained
for 50 epochs with hyperparameters similar to the stan-
dard settings described in [23] and [5]. Even though they
usually predict more precise bounding boxes, their count-
ing results are similar or worse in comparison to Faster R-
CNN. The detection branch outperforms the density branch
in brackets with low object counts and vice versa for high
object densities. This follows the expected performance dis-
cussed in the state-of-the-art chapter. Both branches are
outperformed in all brackets by our proposed CEN. Fur-
thermore, the Faster R-CNN of our detection pipeline has
a similar counting performance as the detection pipeline.
Therefore, the multi-branch approach does not influence its
detection part negatively in counting performance. Multiple
images of the iSaid dataset are visualized in Figure 7 along
with the corresponding CEN output. Similar to the Visdrone
dataset, the density branch predicts fewer outliers than the
detection branch, but it performed worse in the MAE for all
categories (Table 2).

4.5. Ablation Study

Finally, we perform an ablation study to confirm our ar-
chitecture decisions.
Multi-class decoder. Our goal for the MCDEN is to esti-
mate a density map for each category. The first approaches
were challenged by crosstalk between each unique density
map. In this case, the high-density level in one category
influenced the density estimation of other categories. Fig-
ure 8 shows the qualitative results of our progress. At first,
only a joint decoder for all categories is used. The num-

Table 3: Results of multiple CEN variations on the iSaid.
iSaid [0-10000] [0-10] [11-50] [51-100] [101-10000]

CEN
(simple resize)

MAE 9.82 3.02 9.8 25.29 66.9
RMSE 35.29 11.34 22.38 34.71 112.02

CEN
(simple loss)

MAE 8.4 2.56 8.49 18.41 57.28
RMSE 34.73 10.46 20.133 28.19 109.31

CEN
(base)

MAE 7.85 2.5 6.51 17.86 50.31
RMSE 31.64 10.26 12.18 26.38 95.57

ber of trainable parameters is roughly the same as in the
multi-decoder structure. Note that objects from the category
ship are the most numerous category in this example. This
leads to strong crosstalk between the density map, and the
traces of the ship density map can be seen in the other ones
Figure 8a). Therefore, theMCDEN systematically overesti-
mated the predicted numbers of the other categories. By
adding an additional decoder part for each category and
simultaneously reducing the number of trainable parame-
ters in each backbone, the crosstalk decreased dramatically.
Figure 8b displays the results after applying these improve-
ments. Simultaneously to the reductions in crosstalk the
number of predicted objects in the scene became more pre-
cise.
CEN variants. The proposed CEN stands out for its ef-
ficient and versatile design. Table 3 shows the counting
results of the CEN on the iSaid dataset over multiple in-
tervals. The first row of Table 3 shows the CEN without
the rescaling factor λres. A performance loss can be seen
in comparison to the base implementation of the CEN. This
effect becomes more substantial with the increasing variety
of the input image resolution. The second row shows the
counting results without dividing the L2-loss by the num-
ber of objects. We expected a performance increase in the
most common interval and a decrease in the performance of
the remaining brackets. But surprisingly, by applying a rel-
ative loss term instead of the original L2-term, the counting
performance improved in all intervals.

5. Conclusion and Future Perspectives
In this paper, we propose a combined approach between

density estimation and object detection for multi-aware ob-
ject counting. We have shown that the density branch out-
performs the detection branch in high object densities and
vice versa in low object counts. Furthermore, we show how
to fuse both branches in our proposed count estimation net-
work to improve the prediction accuracy compared to utiliz-
ing only a single branch. In order to demonstrate the effec-
tiveness of our approach, we evaluate our method on two
common object datasets and compare them with R-CNN
algorithms. As discussed above, a proper benchmark for
multi-class object counting in strongly varying densities is
mandatory to progress research in this field.
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