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Abstract

Low-light images challenge both human perceptions and
computer vision algorithms. It is crucial to make algorithms
robust to enlighten low-light images for computational pho-
tography and computer vision applications such as real-
time detection and segmentation. This paper proposes a
semantic-guided zero-shot low-light enhancement network
(SGZ) which is trained in the absence of paired images,
unpaired datasets, and segmentation annotation. Firstly,
we design an enhancement factor extraction network using
depthwise separable convolution for an efficient estimate of
the pixel-wise light deficiency of an low-light image. Sec-
ondly, we propose a recurrent image enhancement network
to progressively enhance the low-light image with afford-
able model size. Finally, we introduce an unsupervised
semantic segmentation network for preserving the seman-
tic information during intensive enhancement. Extensive
experiments on benchmark datasets and a low-light video
demonstrate that our model outperforms the previous state-
of-the-art. We further discuss the benefits of the proposed
method for low-light detection and segmentation. Code is
available at https://github.com/ShenZheng2000/Semantic-
Guided-Low-Light-Image-Enhancement.

1. Introduction

! Low-light images degraded due to environmental or
technical restraints suffer from various problems such as
under-exposure and high ISO noise. As a result, those
images are prone to have degraded features and contrast,
which harm the low-level perceptual quality and deteriorate
high-level computer vision tasks relying on accurate seman-
tic information. It is necessary to improve the visual quality
and to enhance the generalizability of the advanced vision
algorithms.
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Figure 1. The enhancement result on a nighttime aerial video
frame. Our proposed model has excellent perceptual quality in
terms of exposure, contrast, color, and edge information. In com-
parison, other models either fail to enhance the dark regions or
generate unpleasant noise, blur or artifacts.

One plausible way to increase brightness at low-light
conditions is to use higher ISO or more extended exposure
time. Nevertheless, those strategies respectively intensify
noises and introduce motion blur [2]. The other reasonable
approach is to use modern software like Photoshop or Light-
room for light adjustment. However, these software requires
artistic skills and are inefficient for large-scale datasets with
diverse illumination conditions.

Traditional low-light image enhancement methods
mostly involves Histogram Equalization [17, 44] and
Retinex theory [24, 47, 8, 9, 13]. Although these meth-
ods can generate encouraging perceptual qualities in some
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Figure 2. The proposed model architecture. Our model consists of a three stage network: EFE for estimating the light enhancement factor,
RIE for progressively lighten the image, and USS for segment the enhanced image. During training, both RIE and USS have frozen
parameters and they output the loss to update EFE. During testing, EFE and RIE are used sequentially to enhance an low-light image.

situations, their performances depend on manually selected
priors and hand-crafted regularization which are difficult to
tune. Furthermore, the long inference time resulting from
the intricate optimization process makes them unfitting for
real-time tasks.

Deep learning based low-light image enhancement meth-
ods have recently received much attention due to their com-
pelling efficiency, accuracy, and robustness [26]. Super-
vised methods [33, 48, 52, 45] have the highest scores at
some benchmark datasets [47, 13, 35, 25] with their excel-
lent image-to-image mapping abilities. However, they re-
quire paired training images (i.e., low/normal light pairs),
which either need expensive retouch or demand unfeasible
image capture with the same scene but different lighting
conditions. On the other hand, Unsupervised methods [20]
require only an unpaired dataset for training. Nonetheless,
the data bias from the manually selected datasets restricts
their generalization ability. Zero-shot learning [11, 27]
methods eliminate the need for both paired images and un-
paired dataset. However, they ignore the semantic informa-
tion, which is shown by [37, 10, 31] to be crucial for high-
level vision tasks. As a result, their enhanced images are in
sub-optimal visual quality. Fig. 1 reveals the limitations of
the previous researches.

To address the limitations discussed above, we present
a semantic-guided zero-shot framework for low-light im-
age enhancement (Fig. 2). As we focus on low-light im-
age/video enhancement, we first design a light-weight en-
hancement factor extraction (EFE) network with depthwise
separable convolution [15] and symmetric skip connections.
The EFE is highly adaptive and can leverage the spatial
information of the low-light images to monitor the subse-
quent image enhancement. To perform image enhancement
with affordable model size, we then introduce a recurrent
image enhancement (RIE) network which utilizes both the

low-light image and the enhancement factor from EFE as
its input. The RIE is able to progressively enhance the im-
ages, using the previous stage’s output as the input for the
subsequent recurrent stage. Aiming to preserve the seman-
tic information during the enhancement process, we finally
propose an unsupervised semantic segmentation (USS) net-
work requiring no expensive segmentation annotation. The
USS receives the enhanced image from RIE and utilizes
feature pyramid network [29] to calculate the segmenta-
tion loss. The segmentation loss merges with other non-
reference loss functions as the total loss, which updates the
parameters of EFE during training.

The contributions of the proposed work are summarized
as follows:

* We propose a new semantic-guided zero-shot low-light
image enhancement network. To the best of our knowl-
edge, we are the first to fuse high-level semantic in-
formation into low-level image enhancement with the
absence of paired images, unpaired datasets, or seg-
mentation labels.

e We develop a light-weight convolutional neural net-
work to automatically extract the enhancement factor
which record the pixel-wise light deficiency of an low-
light image.

e We design an recurrent image enhancement strategy
with five non-reference loss functions to boost our
model’s generalization ability to images of diverse
lighting conditions.

* We conduct extensive experiments to demonstrate the
superiority of our model in both qualitative and quanti-
tative metrics. Our model is ideal for low-light video
enhancement because it can process 1000 images of
size 1200 x 900 within 1 second on a single GPU.
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Figure 3. Enhancement factor visualization. Left column: Low-
Light Images. Right column: Corresponding Enhancement Factor.
Darker region indicates lower values for the enhancement factor.

2. Related Work

Traditional Low-Light Image Enhancement Traditional
low-light Image Enhancement mainly consists of histogram
equalization (HE-based) methods and Retinex-based meth-
ods. HE-based image enhancement methods have been
widely applied in the early years. BPDHE [17] proposes
a brightness preserving dynamic histogram equalization
method that can maintain the mean intensity of the low-light
image in its enhanced version. WTHE [44] introduces a
contrast enhancement method that performs weighting and
thresholding on the histogram of an image before the his-
togram equalization operation.

Recently, many Retinex-based methods have been de-
signed for low-light image enhancement. NPE [47] pro-
poses a non-uniform, naturalness-preserving enhancement
method to balance image details and naturalness. PIE
[8] presents a probabilistic enhance approach which ex-
ploits concurrent estimation of illumination and reflectance.
LIME [13] estimate a coarse illumination map finding the
maximum value in the R, G, B channel and then improve
that coarse map using a structure prior.

Unlike conventional methods, our model uses a light-
weight convolutional neural network to automatically ex-
tract the enhancement factor that learns the enlightenment
requirement from the low-light images. That design allows
the recurrent image enhancement network to run in linear
complexity yet still achieving compelling results.

Deep Low-Light Image Enhancement Deep learning
based low-light image enhancement methods can be mainly
classified into supervised learning, unsupervised learning,
and zero-shot learning. The pioneering supervised low-light
enhancement method LLNet [33] presents a noise-robust
autoencoder-based way to enlighten images with minimum
pixel-level saturation. Retinex [48] considers Retinex the-
ory, integrating a decomposition network and an illumina-
tion adjustment network that learns from paired low/normal
light pictures. The similar work KinD [52] additionally in-
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Figure 4. Recurrent image enhancement illustration with different
enhancement factor x,» and different Order. The horizontal axis
x¢—1 refers to a pixel’s value in the (¢ — 1) stage, whereas the
vertical axis x; refers to that pixel’s value in the ¢ stage. All pixel
value is scaled to [0, 1]. Greater |z,| indicates a more intense
enhancement.
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troduce degradation removal in the reflectance.

Unsupervised methods avoid the tedious work for
preparing paired training images. EnlightenGAN [20] is the
first low-light image enhancement method trained without
paired data. It utilizes an attention-based multi-scale dis-
criminator with self-regularized loss functions. Zero-shot
learning eliminates the need for both paired images and un-
paired datasets. Zero-DCE [11, 27] designs a lightweight
network for light-enhancement curves approximation and
use non-reference loss functions to enhance the low-light
images.

Unlike other deep low-light image enhancement meth-
ods, our model exploits the high-level semantic informa-
tion with a pretrained segmentation network requiring no
segmentation label. That design allows us to preserve an
essential amount of semantic information without signifi-
cantly increasing the computational complexity.

3. Proposed Method
3.1. Enhancement Factor Extraction Network

The enhancement factor extraction (EFE) aims to learns
the pixel-wise light deficiency of a low-light image and
records that information in a enhancement factor. Inspired
by the architecture of U-Net [42], EFE is a fully convo-
lutonal neural network with symmetric skips connections,
which means that it can address input images of arbi-
trary size. No batch normalization or up/downsampling is
adopted since they will damage the spatial coherence of the
enhanced image [43, 21, 18]. Each convolution block in
EFE consists of a 3 x 3 depthwise separable convolution
layer and a subsequent ReL.U [38] activation layer. The last
convolution block reduces the channel numbers from 32 to
3 and output the enhancement factor z,- via the Tanh acti-
vation. Fig. 3 visualizes the enhancement factor extracted
from 2 low-light images. It is evident that brighter regions
in the low-light image corresponds to lower values in the
enhancement factor, and vice verse.
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Figure 5. Illustration of spatial consistency loss Lsp,, assuming
the pixel value of the input image is scaled to [0, 1]. Lspq encour-
ages the connection between neighboring local regions when the
enhancement is increasing all pixel values.

3.2. Recurrent Image Enhancement Network

Inspired by the success of recurrence [41, 55, 28] and
light enhancement curve [50, 11] in low-light image en-
hancement, we build a recurrent image enhancement (RIE)
network to enhance the low-light image according to the en-
hancement factor and then output the enhanced image. Each
recurrence considers the previous stage’s output and the en-
hancement factor as its input. The recurrent enhancement
process is:

Ty = Ty + Ty x (20T — 2p1) M
where z is the output, x, is the enhancement factor and ¢
is the recurrence step. The next step is to decide the opti-
mal Order to enlight the image. Since the recurrent network
should be simple for differentiation and should be effective
for progressive lightening, we only consider positive inte-
gers for Order. With this in mind, we plot the recurrent im-
age enhancement with respect to different x,. and Order in
Fig. 4. When Order is 1, the pixel value is insensitive to
and is the same as the previous stage. When Order equals 3
or 4, the pixel value approaches or even exceed 1.0, making
a image looks too bright. In comparison, Order of 2 grants
the most robust enhancement in recurrence.

3.3. Unsupervised Semantic Segmentation Network

The Unsupervised Semantic Segmentation (USS) Net-
work aims at accurate pixel-wise segmentation of the en-
hanced image which preserve the semantic information dur-
ing progressive image enhancement. Similar to [7, 32, 46,
12], we freeze all the layers for segmentation network dur-
ing training. Here, we use two pathways, including the
bottom-up pathway which uses ResNet-50 [14] with Ima-
geNet [5] weights, and the top-down pathway which uses
Gaussian initialization with a mean of 0 and a standard devi-
ation of 0.01. Both pathways have four convolution blocks
which is connected to each other through lateral connec-
tions. The choice of weight initialization will be explained
in the ablation study.

The enhanced image from RIE will first enter the
bottom-up pathway for feature extraction. The top-down
pathway then transforms the high-semantic layers into high-
resolution ones for spatial-aware semantic segmentation.
Each convolution block in the top-down approach performs
bi-linear upsampling on the image and concatenates it with
the lateral outcome. Two smooth layers with 3 x 3 convolu-
tion are applied after the concatenation for better perceptual
quality. Finally, we concatenate the result of each block in
the top-down pathway and calculate the segmentation.

3.4. Loss Functions

We adopt five non-reference loss functions, including

Lgpa> Lrgvs Liri, Lty ;and Lgey,. We do not consider con-
tent loss or perceptual loss [35] due to the unavailability of
paired training images.
Spatial Consistency Loss This Spatial Consistency loss
helps to maintain the spatial consistency between the low-
light image and the enhanced image by conserving the
neighbor pixels’ differences during enhancement. Unlike
[11, 27] that only consider adjacent cells, we also include
the spatial coherence with non-adjacent neighbors (See Fig.
5). The spatial consistency loss is:

A
Lo =5 S0 (10 =Yl ~ (T~ 1)) +
i=1 je¢(i) (2)
ax 3 (06— Yi)| ~ (5~ )]
ke (i)

where Y and [ are the mean pixel value in a A x A local
region in an enhanced image and the low-light image, re-
spectively. A is the side of the local regions which we set
to 4 according to the ablation study. ¢(7) is the four adja-
cent neighbors (top, down, left, right), and (i) is the four
non-adjacent neighbors (top left, top right, lower left, and
lower right). « is 0.5 since the weight of the non-adjacent
neighbors is less important.

RGB Loss The color loss [45, 52, 11] reduces color incor-
rectness in the enhanced picture by bridging different color
channels. We adopt Charbonnier loss which helps high-
quality image reconstruction [23, 19]. The RGB loss is:

Ligy= > \/((Y")*(Yj))%rsz,
V(i,j)eC 3)

¢= {(R7 G)v (R’ B)7 (G>B)}

where ¢ is a penalty term that is empirically set to 10~ for
training stability.

Brightness Loss Inspired by [34, 45, 11], we design a
brightness loss to constrains the under/over-exposure in an
image. The loss measures the L1 difference between the
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average pixel value of a specific region to a predefined ex-
posure level E. The brightness loss is:

A
1
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where F is the ideal image exposure level which is set to
0.60 according to the ablation study.

Total Variation Loss The total variation loss [3] measures
the difference between the neighboring pixels in an image.
We use total variation loss here to reduce noise and to in-
crease image smoothness. Unlike prior low-light image en-
hancement works [48, 52, 45, 11], we additionally consider
inter-channel (R, G, and B) relations in the loss to improve
the color brightness. Our total variation loss is:

¢ H W

I ;W DD (VaYenw)® + (VyYonw)]

c=1h=1w=1
4)

Lt’u =

where C', H and W represents channel, height and width
of a image, respectively. V, and V is the horizontal and
vertical gradient operations, respectively.

Semantic Loss The semantic loss helps to maintain the se-
mantic information of an image during enhancement. We
refer to the focal loss [30] for writing our cost function.
Recommended by the ablation study, our semantic loss
require no segmentation label and only a pre-initialized
model. The semantic loss is:

1
Lsem = W Z

1<i<H,1<j<W

—B (1 —ps;) logpi; (6)

where p is the segmentation network’s estimated class prob-
ability for a pixel. Inspired by [7], we chose the focal coef-
ficient 8 and y as 1 and 2, respectively.

Total Loss The total loss function can be summarized as:

Ltotal = )\spa * Lspa + )\rgb * Lrgb + Abri * Lbri+

@)
Atv * Ltv + )\sem * Lsem

Here, we set Aspa = Argp = Apri = Ao = 1 and Agep, =
0.1.

Name Number Format Type Metric
NPE[47] 10 RGB Real U,B
LIME[13] 84 RGB Real U,B
MEF[35] 17 RGB Real U,B
DICM[25] 64 RGB Real U,B
\AY 24 RGB Real U,B
LOL[48] 15 RGB Real P,S,M
DarkBDD 100 RGB Real U,B
DarkCityScape | 150 RGB Synthetic P, S,M

Table 1. Dataset description. Where U, B stands for UNIQUE and
BRISQUE, and P, S, M stands for PSNR, SSIM, MSE, respec-
tively.

4. Experiments
4.1. Implementation Details

We select 2002 images of different exposure levels and
resize them to 512 x 512 (See Fig. 6) for our model training.
The proposed model is trained with Pytorch [39] on a single
NVIDIA 2080 Ti GPU for 100 epochs using the Adam [22]
optimizer with an initial learning rate of 0.0001. The batch
size is 6, which takes around 3 hours to converge. Besides,
we clip gradient norm to be within 0.1. For initialization
of the EFE, we use a normally distributed weight with zero
mean and a standard deviation of 0.02.

4.2. Evaluation Dataset

We consider two traditional methods PIE [8] and LIME
[13], three supervised deep learning methods Retinex [48],
MBLLEN [34] and KinD [52], one unsupervised method
EnlightenGAN [20], and one zero-shot learning method
Zero-DCE[11] for model comparison.

Our datasets for comparison includes NPE [47], LIME
[13], MEF [35], DICM [25], VV? and LOL [48]. Since
this paper aims at enhancement of low-light RGB images,
we do not include raw datasets such as MIT-Adobe FiveK
[1] or SID [2]. Instead, moving towards task-driven low-
light image enhancement, we additionally select 100 low-
light images from BDD10K [49] and name it DarkBDD.
Besides, we use gamma correction on 150 images from the
CityScape [4] dataset to synthesize a new dataset called
DarkCityScape.

For evaluating the model performance, we use refer-
ence metrics including Peak Signal-to-Noise Ratio (PSNR),
Structure Similarity Index (SSIM) and Mean Square Er-
ror (MSE), and non-reference metric including Unified
No-reference Image Quality and Uncertainty Evaluator
(UNIQUE) [51] and Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) [36]. The overall descrip-
tion is in Table 1.
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Figure 7. Visual comparison on loss function ablations. Top row: original enhanced images. Bottom row: cropped enhanced images

Method PSNR SSIM MSE
w/0 Lgp 8.840 0.523 0.233
w/0 Lpy; 13.06 0473 0.108
w/0 Ly, 16.05 0.678 0.045
w/0 Lgpq 20.53 0.785 0.023
w/0 Lgem, 20.15 0.786  0.025
w/0 Lepg Lgern, | 19.86  0.785  0.026
Ours 20.60 0.793 0.023

Table 2. Ablations of loss function on LOL dataset in terms of
PSNR 1, SSIM 1 and MSE |.

Method | PSNR SSIM  MSE
A=3 2044  0.789  0.023
A=5 20.26  0.787 0.024
E=05|1725 0.694 0.054
E=07|2054 0762 0.024
Ours 20.60 0.793 0.023

Table 3. Ablations of loss function hyperparameters A and E on
LOL dataset in terms of PSNR 1, SSIM 1 and MSE |. The pro-
posed method uses A =4 and E = 0.6.

4.3. Ablation Study

We conduct ablation studies to investigate individual loss
functions, loss function hyperparameters A and F, and
weight initialization for USS.

Table 2 displays the loss function ablation. It shows that
Lyyi, Lygp and Ly, has large influences on image enhance-
ment results, whereas Ly, and L.y, have smaller im-
pacts. An additional visual comparison is made on the VV
dataset in Fig. 7. We find that Model without L, gp/Liyi/ Ly,
have severe color deviation, poor low-light region enhance-
ment, and unnatural artifacts, respectively. We also note
that Model without L, or L., generates noise-corrupted
facial details. Model without L, and L., additionally
result in poor regional contrast and deficient dark area illu-
mination.

The ablation of loss function hyperparameters is in Ta-
ble. 3. It can be seen that the proposed value for A and F
generates the best result. In short, all loss functions with

Zhttps://sites.google.com/site/vonikakis/datasets

Weight LOL DarkCityScape
Gaussian | 20.60/0.79 25.97/0.97
VOC [6] | 20.63/0.81 24.86/0.95

Table 4. Ablations of USS top-down pathway weight initialization
on LOL and DarkCityScape dataset in terms of PSNR 1/SSIM 1.

concurrent settings are essential to reach a promising per-
formance.

The ablation of weight initialization is in Table 4. Al-
though USS pretrained on VOC has slightly better result at
LOL, it’s performance at the large-scale DarkCityScape is
much worse than USS with Gaussian initialization. This
phenomenon could result from data bias. Based on this evi-
dence, we conclude that Gaussian initialization is sufficient
for a promising outcome.

4.4. Model Comparisons

Quantitative Comparison We conduct quantitative com-
parisons for different models. Traditional methods PIE [8]
and LIME [13] were excluded for efficiency comparison be-
cause they unfit GPU acceleration. For all tables, we use
bold for the best score and blue for the second-best score.
‘-’ indicates that a result is unavailable due to excessive im-
age size for a particular model.

Table 5 shows the comparison on NPE, LIME, MEF,
DICM, and VV datasets. Our model has the best average
UNIQUE and the second best average BRISQUE. Table 6
shows the model comparison on LOL and DarkCityScape
dataset. Our method is the second best in LOL and is
the best in the more challenging extreme low-light dataset
DarkCityScape.

Table 7 shows that the proposed model is computation-
ally the most efficient. The proposed model’s run time is
0.001 second for a single image (i.e., 1000 images can be
processed within 1 second). Besides, the significantly fewer
FLOPs indicates our model fits low-light video enhance-
ment. Furthermore, the proposed method is ideal for mobile
devices due to the small parameters.

Quantitative Comparison We present the visual compari-
son of different models at Fig. 8. It can be seen that the pro-
posed model significantly enhances the dark regions, main-
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Method NPE[47] LIME[13] MEF[35] DICM[25] vV DarkBDD Average

Dark 0.793/19.81  0.826/21.81 0.738/23.56  0.795/21.57 0.826/23.62 0.799/61.62 | 0.796/28.67
PIE[8] 0.801/21.72 0.791/22.72  0.752/11.02 0.791/21.72  0.832/26.54 0.796/53.22 | 0.794/26.16
LIME[13] 0.786/18.24  0.774/20.44  0.722/1525 0.758/23.48 0.820/27.14 -/- -/-

Retinex[48] 0.828/16.04 0.794/31.47 0.755/20.08 0.770/29.53  0.824/29.58 0.792/50.77 | 0.794/29.57
MBLLEN([34] | 0.793/34.46 0.768/30.26  0.717/37.44  0.787/32.44 0.719/26.13  0.772/51.40 | 0.759/35.35

KinD[52] 0.792/19.65 0.766/39.29  0.747/31.36  0.776/32.71  0.814/29.34 0.778/49.38 | 0.779/33.62
Zero-DCE[11] | 0.814/17.06  0.811/21.40  0.762/16.84  0.777/27.35 0.835/24.26 0.800/59.37 | 0.800/27.71
Ours 0.786/13.25 0.807/19.99 0.785/1392 0.801/26.12 0.836/31.72 0.815/57.06 | 0.805/27.01

Table 5. UNIQUE 1/ BRISQUE | Comparison on NPE, LIME, MEF, DICM, VV and DarkBDD

Dataset|Dark PIE[8] Retinex[48] MBLLEN[34] KinD[52] Zero-DCE[11] |Ours

LOL |13.20/0.48/0.106 20.18/0.77/0.025 17.59/0.54/0.044 21.21/0.84/0.016 19.29/0.76/0.040 20.38/0.78/0.023|20.60/0.79/0.023

DCS |16.22/0.77/0.026 17.49/0.83/0.020 10.54/0.65/0.091 22.52/0.88/0.007 12.28/0.73/0.062 22.59/0.94/0.006|25.97/0.97/0.004
Table 6. PSNR 1/ SSIM 1/ MSE | Comparison on LOL and DarkCityScape (DCS)

; = e il U e o ol i*
Figure 8. Visual Comparison on LIME [13] (top two rows) and VV dataset (bottom two rows). For each two rows, from left to right, and

from top to bottom: Dark, PIE[8], LIME[13], Retinex[48], MBLLEN[34], KinD[52], Zero-DCE[11], Ours

Figure 9. Object Detection Results on DarkBDD. From left to right, and from top to bottom: Dark, PIE[8], Retinex[48], MBLLEN[34],
KinD[52], EnlightenGAN[20], Zero-DCE[11], Ours
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Figure 10. Semantic Segmentation Results on DarkCityScape. From left to right, and from top to bottom: Dark, PIE[8], Retinex[48],

MBLLEN][34], KinD[52], Zero-DCE[11], Ours, GroundTruth

Method RT| Params| FLOPs| Scoref Metric|Dark PIE Retinex MBLLEN KinD Zero-DCE|Ours
Retinex[48] 0.121  0.555 587.5 2.30 mIOU (54.49 61.97 57.96 51.98 63.42 64.36 65.87
MBLLEN[34] 0.526  0.450 301.1 3.05 mPA [70.76 68.89 66.76  59.06 71.69 74.20 74.50
KinD[52] 0.147  8.160 575.0 3.36 Table 8. mIOU (%) 1 and mPA (%) 1 Comparison on DarkCi-
EnlightenGAN[20] | 0.008  8.637 273.2 2.94 tyScape

Zero-DCE[11] 0.003  0.079 84.99 2.60

Ours 0.001 0.011 0.120 4.04

Table 7. Model Efficiency and User Study Score Comparison. Im-
ages of size 1200 x 900 are selected for experiments. ‘RT’ is the
inference time in seconds per image. ‘Params’ are the numbers
of trainable parameters in millions per image, and ‘FLOPs’ are
the numbers of floating-point operations in billions per image. All
model inference is conducted with a single Nvidia GeForce RTX
2080 Ti GPU.

tains color balance and image contrast, and presents natural
exposure with sufficient facial detail.

4.5. Low-Light Detection and Segmentation

We utilize the object detection model Yolov3 [40] and
the semantic segmentation model PSPNet [53] to investi-
gate how different low-light image enhancement methods
are beneficial to the high-level tasks.

We show the perceptual comparison of object detection
in Fig. 9. PIE, Retinex, and Zero-DCE improve the image’s
brightness but meanwhile introduce blur and noise. KinD
and EnlightenGAN, though somewhat aids detection, pro-
duces unnatural background artifacts. In comparison, our
model helps detect the greatest numbers of cars.

We display the perceptual comparison of semantic seg-
mentation in Fig. 10. Retinex and MBLLEN leave large ar-
eas of incorrect segmentation. PIE, Zero-DCE and KinD’s
enhancement leads to accurate pedestrians segmentation but
undesirable holes in the left sidewalk and background trees.
In comparison, the proposed method is the closest to the
groundtruth. Finally, we show a quantitative comparison on
semantic segmentation using mean Intersection Over Union
(mIOU) and mean Pixel Accuracy (mPA) in Table 8. Our
model has the best score for both mIOU and mPA.

4.6. Low-Light Video Enhancement

Unlike prior researches that have been pivotal to single
low-light image enhancement, we also examine the per-
formance on a nighttime aerial video. The video is cap-
tured using a drone camera with 24 FPS and a resolution of
960 x 540. The video is 41 seconds long and is saved as
MP4. We conduct a user study to quantitatively assess the
enhancement performance. Specifically, we ask 50 adult
participants to rate the enhancement result (video) of five
models, including EnlightenGAN [20], KinD [52], Retinex
[48], Zero-DCE [11] and our model, and we report the re-
sult in Table 7. More video enhancement results are in the
supplementary material.

Figure 11. The failure cases of the proposed model. Left two: low-
light images. Right two: our enhanced results. Our model cannot
address strong motion blurs or mirror reflection.

5. Conclusion

This paper introduced a novel semantic-guided zero-shot
low-light image enhancement network. The proposed net-
work is trainable without paired images, unpaired datasets,
or segmentation labels. That is achieved by enhancement
factor extraction, recurrent image enhancement, and un-
supervised semantic segmentation. Extensive experiments
demonstrated the excellence of the proposed method in
terms of perceptual quality, model efficiency, and the bene-
fits for high-level vision tasks. Our future plan is to inves-
tigate motion blur removal with low-light image/video en-
hancement [16]. We also intend to explore detection-driven
enhancement algorithms [54].
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