Semantic Segmentation Guided Real-World
Super-Resolution: Supplementary Material

1 Mean Opinion Ranking

This section elaborates on the mean opinion ranking (MOR) evaluation con-
ducted on the super-resolved images from five different methods included in
our comparison. To simplify the ranking process, we have excluded images up-
sampled with bicubic interpolation and the pre-trained ESRGAN. The MOR
provides a direct measure of the image quality as perceived by humans. We
compute the MOR by asking the participants in the study to rank the super-
resolved images in terms of overall image quality, where 1 and 5 corresponds to
best and worst image quality, respectively. For easier judgement of the image
quality, we use cropped patches from each image, as the fine details of the im-
ages would otherwise be lost due to re-scaling in the survey framework. The
survey consists of 10 questions, where the participants are shown the results of
all methods for a given image at a time. To avoid bias, we randomly shuffle the
order of the presented images. We include 5 real low-resolution images from
both the Cityscapes [1] and IDD [10] datasets in our survey. All images must be
given a unique rank by the participant. We compute the final MOR by averag-
ing the assigned ranks for each method over all images and participants for the
two datasets. In total 20 persons participated in the survey. The MOR results
can be seen in Table 1. The images used for each question in the survey can be
seen below.

Method Cityscapes MOR | IDD MOR |

MZSR [9] 3.33 2.96
DPSR [13] 4.41 3.16
RealSR [2] 2.75 4.88
DAN [5) 3.47 2.48
Ours 1.21 1.45

Table 1: Results of the MOR of super-resolved real low-resolution images from
the Cityscapes and IDD datasets. Lower values are better.
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Figure 1: Question 1: Image patch from the CityScapes dataset.
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Figure 2: Question 2: Image patch from the CityScapes dataset.
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Figure 3: Question 3: Image patch from the CityScapes dataset.
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Figure 4: Question 4: Image patch from the CityScapes dataset.
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Figure 5: Question 5: Image patch from the CityScapes dataset.
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Figure 6: Question 6: Image patch from the IDD dataset.
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Figure 7: Question 7: Image patch from the IDD dataset.
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Figure 8: Question 8: Image patch from the IDD dataset.
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Figure 9: Question 9: Image patch from the IDD dataset.
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Figure 10: Question 10: Image patch from the IDD dataset.



2 Additional quantitative results

For completeness, we also evaluate our method on additional no-reference image-
quality assessment (NR-IQA) metrics including: NIQE [8], BRISQUE [7], PIQE
[11], NRQM [6], and PL PI is a weighted score computed as 3((10 - NQRM ) +
NIQE). However, as NR-IQA is a challenging problem, the aforementioned
methods are known to correlate poorly with human ratings [4]. Hence, in our
work rely on the mean opinion ranking results as an accurate measure of the
quality of the reconstructed images.

Cityscapes (Real)

Method NIQE| BRISQUE| PIQE] NRQM+ PI| NIMA+ MetaIQA 1 MOR |
Bicubic [3] 5.62 45.14 75.75  6.60 451  4.62 0.245 -
ESRGAN [12] 2.94 22.13 18.82  9.94 1.50 4.95 0.247 -
MZSR [9] 6.09 56.17 7274 737 436 4.88 0.231 3.33
DPSR [13] 5.97 53.33 87.00  9.32 3.33  4.83 0.240 4.41
RealSR [2] 2.95 29.67 2450  9.13 1,901 487 0.236 2.75
DAN [5] 4.77 58.17 76.38  6.90 3,93 4.65 0.246 3.47
Ours 3.44 35.16 36.99  9.54 1.95 5.04 0.254 1.21

IDD (Real)

Method NIQE| BRISQUE] PIQE| NRQM{ PI| NIMA4 MetaIQA1 MOR |
Bicubic [3] 5.30 43.74 7148  11.98 166  4.73 0.330 -
ESRGAN [12] 5.30 33.44 39.88  21.13 292 4.94 0.325 -
MZSR [9] 5.12 54.36 81.15  11.76 1.68  5.00 0.330 2.96
DPSR [13] 5.42 58.45 88.70  8.81 331 4.92 0.330 3.16
RealSR [2] 4.63 39.52 31.00  23.75 -4.56 483 0.296 488
DAN [5] 4.61 57.40 86.32  10.75 268 4.7 0.330 2.48
Ours 3.69 37.48 32.63  14.88 -0.595 5.03 0.323 1.45

Table 2: Quantitative results on the Cityscapes and IDD validation sets. 1 and
J indicate whether higher or lower values are desired, respectively. As seen, the
traditional metrics (NIQE-PI) correlates poorly with MOR. However, the more
recent NIMA metric shows good correlation with MOR. Our method achieves
superior NIMA and MOR results on both datasets.
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