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Abstract

This work presents a No-Reference model to detect au-
dio artifacts in video. The model, based upon a Pretrained
Audio Neural Network, classifies a 1 second audio segment
as either: No Defect, Audio Hum, Audio Hiss, Audio Dis-
tortion or Audio Clicks. The model achieves a balanced
accuracy of 0.986 on our proprietary simulated dataset.

1. Introduction

Audio artifacts can have a negative impact on the Quality
of Experience for a watcher of a video streaming service.
In this work we present a No-Reference model to detect 4
different manifestations of audio artifacts:

• Audio Hum - the addition of a constant frequency to
the original waveform.

• Audio Hiss - the addition of white noise to the original
waveform.

• Audio Distortion - the clipping of the original wave-
form.

• Audio Clicks - abrupt large transitions in the amplitude
of the original waveform.

The model, based upon a Pretrained Audio Neural Net-
work (PANN) [13], classifies a 1 second audio waveform as
one of the 4 defective classes or a 5th ‘No Defect’ class.

The main contributions of this paper are:

1. An audio artifact dataset, created by simulating audio
artifacts on a diverse dataset of defect free videos.

2. A model for detecting audio artifacts. The model
achieves a balanced accuracy of 0.986 on the audio ar-
tifacts dataset.

2. Related work
2.1. Audio defect detectors

The majority of work in audio defect detection has been
performed using classical signal processing techniques.
[2, 3] identify Audio Hum using the Power Spectral Den-
sity over a 10-30 second window. This large analysis win-
dow means predictions are temporally coarse. Our model is
applied to only 1 second of audio allowing a much higher
temporal granularity of prediction.

[1, 17, 18] identify Audio Hiss and Audio Clicks by
modeling the audio signal using autoregressive techniques.
They assume that a future audio sample can be approxi-
mated using a linear combination of past samples. They
predict a sample as defective if the prediction error, the dif-
ference between the actual and predicted sample, is greater
than a threshold.

Recently, [19] detected degradations in audio signals by
applying a Convolutional Neural Network to the log-mel
spectrogram of the audio waveform. The authors demon-
strated that a shallow model, trained using simulated data,
could accurately identify noise, distortion and reverbera-
tion.

2.2. Neural networks for audio classification

Inspired by the success of Deep Learning in other do-
mains such as Computer Vision [10, 15] and Natural Lan-
guage Processing [5, 21], Convolutional Neural Networks
(CNN) have become widely applied for audio classification
[6, 11]. [11] utilize Youtube-100M to show that using the
log-mel spectrogram as input to a CNN model can outper-
form fully connected baseline models. [6] explored using
the raw waveforms directly with a ResNet [10] model. [14]
investigate adapting a variety of different models for audio
tagging. They demonstrate that their CNN14, a VGG [20]
inspired network, can outperform previous systems on Au-
dioSet [7]. Furthermore, they show that extending this net-
work to utilize both log-mel spectrograms and wavegrams,
a learnt representation of the original waveform, can lead to
further improvement.
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Figure 1. Waveforms and Spectrograms for each of the defects: (a) No Defect (b) Audio Hum. Defective interval between 2 and 8 seconds
indicated by non-grayed area. Frequency = 50 Hz. Amplitude = 10000. (c) Audio Hiss. Defective interval between 2 and 8 seconds
indicated by non-grayed area. Amplitude = 10000. (d) Audio Distortion. Defective interval between 2 and 8 seconds indicated by non-
grayed area. Clipping Value = 0.2. (e) Audio Clicks - Additive. Clicks simulated at 2.5, 5 and 7.5 seconds indicated by non-grayed area. (f)
Audio Clicks - Reductive. Clicks simulated at 2.5 and 7.5 seconds indicated by non-grayed area. Note that the waveform has a shortened
duration because of the removal of samples. (g-l) The mel-spectrogram for each of the corresponding waveforms. The non-grayed area
interval indicates the defective periods.

Recently, [9] explore various training techniques such as
ImageNet pretraining, checkpoint averaging and improving
the quality of AudioSet labels. [14, 16] investigated tech-

niques to combine a Transformer model with a CNN, while
[8] propose a convolution-free Transformer model, which
achieves state-of-the-art results on AudioSet.
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Figure 2. Network architecture used in this work. The architecture
is a modified version of PANN-CNN6 first presented in [13]

3. Model
We formulate defect prediction as a multi-class classifi-

cation:

ŷ = argmax
y

p(y|x; θ) = argmax
y

f(x) (1)

where there are 5 classes: No Defect, Audio Hum, Au-
dio Hiss, Audio Distortion and Audio Click. f(x) is a Pre-
trained Audio Neural Network (PANN) [13], a framework
of neural networks designed for multi-label audio classifica-
tion [7]. Instances of the framework ingest an audio clip’s
waveform and output the probability that the clip exhibits
each of the classes. Internally the model is a Convolution
Neural Network applied to a log-mel spectrogram. A log-
mel spectrogram is a time frequency representation of the
clip’s waveform.

We use transfer learning to fine-tune a PANN-CNN6 in-
stantiation (Figure 2). The PANN framework includes a
selection of high performing models. We chose PANN-
CNN6, a light weight model, to meet our latency targets.
We replace the final fully connected layer with a fully con-
nected layer with a 5 element output. The output of this
layer is passed to a Softmax function.

4. Audio artifacts dataset
Due to the low prevalence of audio defects within

streaming video, we do not have a dataset of real samples
to develop the model. Instead, we create a dataset by sim-
ulating the four defects of interest on defect free videos.
The defect free content comprised of 127 hours from 162
videos. The videos were selected to be representative of
typical streaming content. The selection criteria considered
the genre and language of the videos. The videos were

partitioned into train (103 videos), validation (28 videos)
and test (31 videos) sets; ensuring that genre and languages
were represented across partitions. The audio was demuxed
from the videos, downmixed to stereo, resampled to 48 kHz
and converted to 16-bit integer PCM. These clips provided
the base audio and are used for the No Defect class.

To create the defective content we simulated defective
intervals on the base audio. For each base audio we sim-
ulated each of the defects following Algorithm 1. There
were two different simulation methods for the Audio Click
defect, therefore we ended up with 6 versions (1 No Defect
and 5 defective) of each base audio. The following subsec-
tions present the method of simulation for each of the de-
fective classes, however first we discuss the post-processing
performed once the defects have been simulated.

Algorithm 1: Simulation of defective intervals

Input: audio - defect free audio;
Input: defectParams - parameters required to apply

the defect;
Input: minIntervalDuration - the minimum

defective interval duration. Default: 0.5;
Output: defectiveAudio - audio with simulated

defective intervals
defectiveAudio = copy(audio);
clean = random bool;
intervalStart = 0;
do

intervalDuration = minIntervalDuration +
Gamma(1, 10);

intervalEnd = max(intervalStart +
intervalDuration, len(audio));

if not clean then
for channel in channels do

defectiveAudio =
applyDefect(defectiveAudio,
defectParams, intervalStart,
intervalEnd);

end
end
intervalStart = intervalEnd;
clean = not clean

while intervalStart != len(audio);

We split each of the No Defect audio and defective audio
into individual channels and then 1 second chunks. All No
Defect chunks were added to the dataset. A defective chunk
was added to the dataset if it’s waveform was different to
the corresponding No Defect chunk. The class label was set
to that of the parent audio. Table 1 outlines the number of
samples in each dataset.
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Table 1. The number of samples in each class in each dataset.
Name No Defect Hum Hiss Distortion Click Total
Train 447168 241990 241870 174711 147742 1253481
Validation 146282 78976 80160 56423 49300 411141
Test 288702 146301 147672 104359 89210 776244

4.1. Audio Hum

Audio Hum is the addition of a single frequency tone
to the original waveform. We simulated Audio Hum by
adding a sine wave to the original waveform. The fre-
quency of the sine wave was uniformly sampled from
{x ∈ Z|20 > x > 1220}. The amplitude of the sine
wave was uniformly sampled from {x ∈ Z|60 > x >
32768−max(originalWaveform)}.

4.2. Audio Hiss

Audio Hiss is the addition of white noise to the origi-
nal waveform. We simulated Audio Hiss by adding ran-
dom noise to the original audio waveform. The amplitude
of the noise was uniformly sampled from {x ∈ Z|60 > x >
32768−max(originalWaveform)}.

4.3. Audio Distortion

Audio Distortion is the clipping of the original wave-
form. We simulated Audio Distortion by bounding the orig-
inal waveform between −value and value. Where value =
ratio×max(abs(originalWaveform)) and ratio was uni-
formly sampled from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.

4.4. Audio Click

Audio Clicks are abrupt large transitions in the ampli-
tude of the waveform. We applied two different simulation
methods for Audio Clicks: Additive and Reductive.

4.4.1 Additive

An additive Audio Click was simulated by adding a Butter-
worth filtered unit impulse to the signal [4]. Prior to filter-
ing the amplitude of the impulse was 32768. We used a 3rd
order Butterworth filter with a cut-off frequency uniformly
sampled from {x ∈ R|0.05 > x > 0.45)}.

4.5. Audio Distortion

4.5.1 Reductive

A reductive Audio Click was simulated by removing a seg-
ment of the waveform. To ensure the removal results in an
Audio Click we check that: 1) the segment’s waveform has
a zero crossing; and 2) the removal of the segment would
result in a sample to sample amplitude difference of at least
3277.

Figure 3. Normalised Confusion Matrix for the evaluation over the
test set.

5. Training
The model was optimised over the train set using a neg-

ative log-likelihood loss. The loss was optimsied using
Adam [12], with a learning rate of 0.0001, β1 of 0.9 and β2

of 0.999. The batch-size was 512 and the model was trained
for 98000 iterations on a AWS EC2 p3.2xlarge instance.

Every 100 iterations the model was evaluated using the
balanced accuracy over a 1% subset of the validation set. At
completion of training, the parameters that gave the largest
validation balanced accuracy were returned.

6. Results
The model achieves a balanced accuracy of 0.986 over

the test set. Figure 3 displays the confusion matrix for
the test set. We observe that the Audio Hum and Audio
Hiss classes achieve a recall of over 0.99. Of the defective
classes, recall is lowest for the Audio Distortion class; 1.7%
of the time Audio Distortion is predicted as No Defect. Dis-
tortion has a sparse effect on the waveform; it only effects
a fraction of the samples in the chunk. We hypothesize that
the chunks that are incorrectly predicted as No Defect may
have a very small fraction of distorted samples.

We have identified the following future work:

• While our defect simulation methods are derived from
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literature, we have not validated they are aligned with a
watcher’s perception of a defect. Through a perception
study, we will refine our simulation algorithms to more
accurately reflect common audio defects observed in
streaming video.

• The model was developed using simulated data due
to insufficient real defective data being available. The
simulation algorithm makes a set of assumptions that
may not hold in the production environment. We will
create a dataset of real audio defects so we can validate
the classifier’s performance on real streaming video.

7. Discussion
This work presented a No-Reference model for the iden-

tification of audio artifacts in video. The model based on a
Pretrained Audio Neural Network identifies 4 common au-
dio defects. To train, validate and test the model we created
an audio artifacts dataset by simulating defects on streaming
videos. Experimentation suggests that our method, which
requires only 1 second of audio, achieves a balanced accu-
racy of 0.986.
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