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Abstract

Computer vision technologies are increasingly com-

monly used in daily life, and video super-resolution is grad-

ually drawing more attention in the computer vision com-

munity. In this work, we propose an improved EDVR model

to tackle the robustness and efficiency problems of the orig-

inal EDVR model in video super-resolution. First, to handle

the blurring situations and emphasize the effective features,

we devise a preprocessing module consisting of rigid convo-

lution sub-modules and feature enhancement sub-modules,

which are flexible and effective. Second, we devise a tem-

poral 3D convolutional fusion module, which can extract

information in image frames more accurately and rapidly.

Third, to better utilize the information in feature maps, we

design a new reconstruction block by introducing a new

channel attention approach. Moreover, we use multiple pro-

grammatic methods to accelerate the model training and in-

ference process, making the model useful for practical ap-

plications.

1. Introduction

1.1. Background

Nowadays, computer vision technology plays an impor-

tant role in research and industry communities, but high-

resolution information is usually not easy to obtain, espe-

cially for videos. Hence, video super-resolution is a good

solution. However, video super-resolution algorithms are

facing two challenges. On the one hand, the accuracy is not

so satisfactory. On the other hand, many video applications

require high-speed models, even real-time models. Tradi-

tional algorithms, such as bicubic interpolation and bilinear
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interpolation, cannot gain the ideal output, while machine

learning-based algorithms can get better results than pre-

vious methods, but usually at the cost of time-consuming

training and enormous model parameters.

In the past few years, super-resolution has made remark-

able improvements thanks to deep learning. Early stud-

ies [3, 20] regard video as a temporal sequence of images, so

they cannot exploit the temporal redundancy among neigh-

boring image frames sufficiently. Recent studies [2, 24]

represent videos as a set of movements and solve the

super-resolution problem with a more elaborated pipeline

which usually consists of four parts, namely feature extrac-

tion, frame alignment, fusion, and reconstruction. To ob-

tain high-quality output, the video super-resolution model

should be able to: (1) align neighboring frames accurately

and effectively fuse them, and (2) reconstruct output infor-

mation by effectively combining the fused features. More-

over, the model should be accelerated to fit practical video

super-resolution applications.

1.2. Related Works

Since the pioneering work of SRCNN [5], deep learning-

based methods are playing an increasingly important role

in super-resolution solutions. Super-resolution in a single

image has been extensively studied. Since image super-

resolution is a feature extraction and 2D generation prob-

lem, deep learning models demonstrate great accuracy and

robustness. As for videos, more redundant information is

hidden in the temporal space, so temporal alignment is one

of the most significant procedures. Deep learning-based so-

lutions show remarkable advantages when handling large

motions. Another difficulty is to get information in aligned

frames accurately. VESPCN [2] uses convolutional archi-

tecture to fusion features in neighboring frames to overcome

such difficulty. Moreover, D3DNet [25] uses deformable

convolution and 3D convolution in video super-resolution,

which successfully lift the result to a higher level. In

general, video super-resolution greatly benefits from deep

learning techniques.
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Figure 1. The architecture of the proposed model. This model consists of a feature preprocessing and enhancement module, a PCD

alignment module [22], a temporal 3D convolution module, and a channel attention reconstruction module.

Feature extraction: Feature extraction is the first step of

the model. Most existing models use a simple convolutional

layer to perform feature extraction [2], but such a method

usually produces bad results in blurred and distorted situ-

ations. In the enhanced deformable convolutional network

for video restoration (EDVR) [22], the authors apply a self-

ensemble strategy to solve the problem, but such a large

model reduces the computational efficiency. The way to

balance accuracy and computational efficiency is worth in-

vestigating.

Frame Alignment: Frame alignment is based on motion

estimation. Most existing models explicitly estimate opti-

cal flow fields to align neighboring frames [2, 24]. This

type of methods can estimate slow motions effectively but

has worse results for quick motions. Another way to align

frames is to estimate frames using convolutions [10, 21],

which can enhance the robustness of the model.

Fusion: Fusion is a significant component of the video

super-resolution model. Earlier video super-resolution

models usually adopt convolutions or recurrent architec-

tures to fuse aligned frames. Recent models use tempo-

ral attention mechanism [22] to assign different weights to

aligned frames because frames are not equally informative

to the reconstruction. Such a method greatly improves fu-

sion results but makes the model too complex and inflexible.

A good way to fuse aligned frames will bring significant im-

provement.

Computational Efficiency: Computational efficiency is

an important factor that limits the applications of the model.

Recent models based on deep learning gain good results at

the cost of huge computational time and GPU memory con-

sumption so that they are not ideal solutions. Auto mixed

precision (AMP) [18] is a novel solution, which uses scal-

ing and resizing to store 32-bit floating-point numbers to

a smaller type so as to save both computational time and

GPU memory consumption. Another good way to accel-

erate the deep learning model is applying the just-in-time

(JIT) compilation technique. Under the PyTorch frame-

work, dynamic code can be represented using type-specific

TorchScript representation [4], and the route tracing tech-

nique is used to reorganize layers to make JIT more effec-

tive.

1.3. Our Contributions

Based on the EDVR model [22], we design an innovative

model, which is more robust and efficient. Compared to the

EDVR model, this work concentrates more on video super-

resolution tasks. The contributions of this work are listed in

the following.

First, we introduce a novel feature preprocessing and en-

hancement module, which (1) uses multi-scale extraction to

process early feature extraction result in order to improve

robustness, (2) uses cascade well-designed rigid convolu-

tion block to improve the robustness and training stability,

and (3) uses feature enhancement block to improve the re-

sults in some bad but regular situations (e.g., too dark, dis-

torted, etc.).

Secondly, we introduce a temporal 3D fusion module

to fuse information in neighboring frames. Compared to

EDVR’s temporal and spatial attention (TSA) module [22],

our module uses 3D convolution to extract attention infor-

mation more robustly. Furthermore, our model reduces 10%

parameters using the weight-sharing technique.

Thirdly, we design a channel attention reconstruction

module by adopting the theory in SENet [7], so as to re-

place the cascade residual blocks in EDVR. As a result, our

model can use the information in different channels more

selectively and accurately.

Finally, our model also focuses on execution efficiency.

We apply the mixed-precision training [18], JIT compila-
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Figure 2. The structure of the feature preprocessing and enhancement module.

tion, ATEN library, new CUDA programming approach,

and cosine annealing with restart strategy [8] to the model.

All of these measures can accelerate the model without los-

ing accuracy.

2. The Proposed Model

2.1. Overview

The overall framework of the proposed model is shown

in Fig. 1. The model takes (2N + 1) low-resolution frames

as inputs and generates a high-resolution estimation of the

center frame (which is also called the reference frame).

First, the low-resolution frames are processed by the feature

preprocessing and enhancement module to generate feature

maps. Second, these feature maps are passed to the PCD

Alignment module. This module is originally proposed in

the EDVR model [22], and we rewrite it in a new approach

to support execution acceleration measures as described in

Section 2.5. Then aligned feature maps are sent to the tem-

poral 3D fusion module. By using 3D convolution, the mod-

ule can fuse the feature robustly. The last part is a recon-

struction module, which can get a high-resolution estima-

tion from the fused feature map. By using the channel at-

tention mechanism properly, the reconstruction module per-

forms well.

In addition, we adopt Charbonnier loss [12] as the loss

function in the proposed model. This new type of loss func-

tion is a good replacement of L1 loss function. Its math

representation is F (x) =
√
x2 + ϵ2. This function avoids

vanishing gradient phenomenon when x = 0, and makes

the training process more stable.

2.2. Feature Preprocessing and Enhancement

The feature preprocessing and enhancement module is

a combination of feature extraction and optimization. The

module consists of two key components: rigid convolution

(RigidConv) group and feature enhancement group. The

structure of the whole module is shown in Fig. 2. Many

models use simple cascade convolutional groups to gener-

ate feature maps, which is too rough to get useful feature

maps. So we propose a feature preprocessing and enhance-
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Figure 3. Top: The structure of Rigid Convolution (RigidConv)

Block; Bottom: The structure of Feature Enhancement Block.

ment module which solves this weakness and improves the

results, generating better feature maps to improve the per-

formance of the whole model.

Aimed at generating feature maps more accurately, in-

spired by Inception architecture [13], Rigid Convolution

Block is proposed. It contains a depth-wise convolutional

layer to improve the robustness of the model. Also, we

adopt a multi-scale strategy, where the Rigid Convolu-

tion uses multi-layers to gradually enlarge the feature map,

which can make the model faster and more robust. The

structure is shown in Fig. 3 (Top). Like the structure shown

in the figure, we set up two different configurations for the

block, each has an independent group of parameters. “Con-

fig 1” enables the block to deepen the feature maps step

by step, while “Config 2” keeps the depth of feature maps

unchanged. When cascading RigidConv Block, RigidConv

Blocks of “Config 1” is first used to get the feature maps

of target channels, and then a proper number of RigidConv

Blocks of “Config 2” is used to conduct operations such

as deblurring and denoising. Compared to the cascading
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Figure 4. The structure of temporal 3D fusion module.

convolutional feature extraction groups in EDVR, we use

Leaky Relu rather than Relu to avoid vanishing gradient

problems, and we use a smaller convolution core and more

layers rather than large convolution cores to avoid informa-

tion loss and extract more accurate features.

Feature enhancement is another vital sub-module to op-

timize the feature map. This sub-module is designed based

on inspiration from ResNet and SRResnet. We use the

structure similar to the basic block in ResNet [6] to con-

struct the feature enhancement sub-module, as interpreted

in Fig. 3 (Bottom). Like SRResNet [14], Batch Norm lay-

ers are removed to keep the absolute difference in feature

maps. We also adopt Leaky Relu activation to avoid losing

gradients in some blocks. The block enhances the feature

maps from the feature extraction stage and uses the resid-

ual structure to fine-tune the feature maps. Moreover, it is

possible to cascade this sub-module to get a better result, so

this structure is very flexible.

2.3. Temporal 3D Fusion

The temporal 3D fusion is a novel fusion module using

3D convolution. The most important structure of this mod-

ule is temporal 3D convolution. The idea is to regard the

consecutive frames as a multi-channel feature map and re-

organize the frames through the temporal sequence to form

the depth of the feature map to extract both temporal and

spatial redundancy. The structure of the temporal 3D fusion

module is shown in Fig. 4.

The Temporal 3D Fusion Block is the core functional

block in the temporal 3D fusion module. The block uses

3D convolution to extract temporal and spatial attention

weights rather than using independent weight maps, which

is more robust. In the original EDVR[22] model, a TSA

model is used for fusion frames by applying attention mech-

anisms in both temporal and spatial areas. However, the

limitation of 2D convolution makes this module only assign

one temporal attention value on each frame, and the spatial

attention value in each frame is completely independent. 3D

convolution can greatly improve this weakness.

Moreover, the block adopts a weight-sharing strategy to

reduce the number of parameters because it is common that

the motion in the front part is the same as the motion in the

rear part in consecutive frames. Inside the block, the feature

map of the reference frame appears three times because it is

the majority of the result. A depth-wise 3D convolutional

layer is used to combine the center, the front, and the rear.

The structure is shown in Fig. 5. Compared to using only

one convolution core, the weight-sharing technique can also

make it easier to adopt other accelerate methods like AMP

and parallel computing.

Using the temporal 3D fusion module, we improve

model performance and significantly reduce the number of

parameters. Taking a temporal 3D fusion module with three

blocks as an example, it saves about 10% parameters than

the TSA fusion module in EDVR [22].

2.4. Channel Attention Reconstruction

Traditional models, like SRResNet [14], usually give all

the channels in feature maps completely the same attention,

which is very simple to realize while usually getting good

enough results. Therefore, many super-resolution models

such as EDVR [22] use them to perform the reconstruction.

However, the reconstruction problem is ill-conditioned, so

this simple way will greatly limit reconstruction accuracy.

Inspired by SENet [7] architecture, we design a new atten-

tion mechanism on channel dimension. Like the structure of

SRResNet [14], the proposed reconstruction module is also

based on residual block. The proposed channel attention

is calculated from the maximum value and average value

of each channel and uses linear layer and activation layer

to calculate. The new basic block is called Reconstruction

Block, whose structure is shown in Fig. 6.

In this Reconstruction Block, we design an innovative

channel attention sub-module. Like SENet [7], we use a

two-stage activation strategy. In stage one, we first calcu-

late the average value and maximum of each channel, then

we use the linear layer to squeeze the result into a smaller

feature map and use Leaky Relu to eliminate the linear de-

pendency of attention on each channel. In stage two, we

use the linear layer to restore the feature map’s size and use

the Sigmoid function to map the attention values to (0,1) to

avoid gradient explosion and eliminate linear dependency.

This sub-module is the core component of Reconstruction

Block, and the experiment results prove the effectiveness of

the combination of maximum and average values.

2.5. Computational Efficiency Improvements

The improvement in computational efficiency is also

concerned in this work. We use four major programmatic

measures to accelerate the model. First, auto-mixed- pre-

cision(AMP) [18] technology is added to the model, and

an innovative CUDA compiling technique is used to sup-
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port this technology. This novel CUDA compiling tech-

nique uses “ATEN” and “C10” libraries to replace legacy

floating-point identifiers, and we use this technique to re-

construct the PCD alignment module [22]. Besides, we use

Ninja compiler to enable the PCD alignment module to ben-

efit from the AMP technique. The Ninja compiler can select

a proper type for CUDA extension modules to generate suit-

able linked libraries. Moreover, we applied the latest just-

in-time (JIT) compilation technique, including converting

and tracing. These techniques enable the module to pre-

compile in whether simple or complex situations.

In addition, we use cosine annealing learning rate sched-

uler [8] to replace the fixed learning rate. This strategy is

proved to be effective and can improve training accuracy

and reduce time consumption. When applying this method,

we discover an effective way to make it work better. We also

apply an automatic restart strategy, which automatically re-

sets the learning rate scheduler to the initial state after pro-

cessing the whole training dataset. This approach demon-

strates its improvement in computational performance.

3. Experiment Results and Discussions

3.1. Experimental Details

In the experiments, we set up a experiment environment

with CUDA, and its information is shown in Table 1. In

the training stage, we set the depth of feature maps (after

feature extraction module) to 64, and use 10 Reconstruction

Blocks to form the reconstruction module. We use Adam

optimizer [11] to train the model with β1 = 0.9, β2 = 0.99,

and set the initial learning rate as 5× 10−5.

The realistic and dynamic scenes (REDS) dataset [17]

and Vimeo90k [26] / Vid4 [15] dataset are used for the ex-

periments. The super-resolution results will be compared

qualitatively and quantitatively.
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Figure 7. The qualitative super-resolution results.

Item Value

CPU AMD Ryzen 3600x

GPU NVIDIA Geforce RTX2060 Super

Memory 32G,dual channels

Operating System Microsoft Windows 10,64 bits

Running Environment Python 3.9.2, PyTorch 1.8.1

Table 1. Experiment Environment Information

Method PSNR SSIM

Bicubic 26.2355 0.7319

MFCNN 27.6014 0.7857

RCAN* [27] 28.78 0.8200

TOFlow* [24] 27.98 0.7990

DUF* [9] 28.63 0.8251

EDVR (M) 28.7416 0.8245

EDVR (L)* [22] 31.09 0.8800

Ours 29.7801 0.8552

Table 2. Quantitative Experiment Results on REDS Dataset. ’*’

indicates that the result is taken from the experiment in EDVR

paper [22].

3.2. SuperResolution Results on REDS Dataset

The REDS dataset contains 30000 frames with

720×1280 resolution, and the scenes in the dataset are di-

verse and complex. In the experiments, we compare our

model with Bicubic Interpolation, MFCNN [1], and EDVR

(M, 64 feat version) [22] models in the qualitative study.

The qualitative experiment results are shown in Fig. 7. In

Fig. 7, the large picture is the ground truth, and we crop the

representative area of the super-resolution results of each

model to carry on the comparative analysis. As seen from

Fig. 7, our model exhibits better super-resolution results,

making the representative area clearer and sharper.

On the other hand, in the quantitative experiments, each

experiment repeats 4 times, and the mean result is calcu-

lated as the final result. The overall final result is shown

Model Parameter Count

EDVR (M, 64 channels) 3300131

EDVR (L, 128 channels) 20633827

Ours 3468295

Table 3. Model Parameter Comparison

in Table 2. The evaluation metrics include peak signal to

noise ratio (PSNR) and structural similarity (SSIM) [23].

The larger the PSNR and SSIM values, the better the video

super-resolution results. The quantitative results demon-

strate that our model has better performance than most of

the compared models and achieves nearly 4% SSIM im-

provement when compared to the baseline model EDVR

(M). When compared to EDVR (L) which has 128 channels,

although our model performs slightly worse, but the num-

ber of parameters in our model is 16.8% of that in EDVR

(L) (The parameter comparison is shown in Table 3). Ta-

ble 3 also shows that our model has a similar number of pa-

rameters compared to EDVR (M). In summary, our model

greatly reduces the timing cost and memory consumption

while also has extraordinary performance.

3.3. SuperResolution Results on Vimeo90k/Vid4
Dataset

We also conduct quantitative experiments on the

Vimeo90k/Vid4 dataset. Vimeo90k is a large dataset based

on video clips, so it is suitable to be used as a training

dataset. Vid4 is a commonly known test dataset, which is

very widely used in video-related tasks. This experiment

uses Vimeo90k dataset to train our model and test the model

in Vid4 dataset, and we will compare the PSNR, SSIM and

VMAF [19] metrics with widely-used models. VMAF is

a machine learning-based video quality metric, which can

evaluate video quality much closer to human vision. The

results are shown in Table 4. Because Vimeo90k and Vid4

datasets only include limited motions, which enable optical-
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Input Image Ground Truth DUF Result Our Model Result

Figure 8. The qualitative results on ultrasonic dataset. From left to right: input, ground truth, DUF model result, and our model result.

Method PSNR SSIM VMAF

Bicubic 22.37 0.6098 45.45

RCAN* [27] 24.02 0.7192 -

MFCNN 22.98 0.6358 36.01

TOFlow* [24] 24.41 0.7428 -

DUF* [9] 25.79 0.8136 -

EDVR (M) 25.38 0.7795 77.08

EDVR (L)* [22] 25.83 0.8077 -

Ours 25.61 0.7956 83.39

Table 4. Quantitative Experiment Results on Vid4 Dataset. ’*’

indicates that the result is taken from the experiment in EDVR

paper [22].

flow-based algorithms and deep models to get good results

without sufficient robustness. So in the results, our model

performs slightly better than EDVR (M) and worse than

DUF [9] and EDVR (L) [22] in PSNR and SSIM. How-

ever, in the VMAF metric, Our model shows superior per-

formance than the original EDVR(M), which can show the

satisfactory performance of our model.

3.4. Application on Ultrasonic Images and Videos

Super-resolution is a widely discussed topic in process-

ing medical images and videos, helping clinical doctors to

make more accurate diagnoses. Nowadays, ultrasonic imag-

ing is a fundamental technology to assist clinicians in diag-

noses and treatments. However, ultrasonic devices cannot

get high-resolution images or videos due to physical limi-

tations while ensuring deep enough penetration. There are

some previous research works about applying image super-

resolution technology to improve the quality of ultrasonic

images [28, 16]. However, these works ignore the infor-

mation hidden in the motions. In our research, we use our

model to retrieve information behind frames in ultrasonic

videos and use continuous motion information to get bet-

ter super-resolution results than previous image-based al-

gorithms.

We set up experiments on the ultrasonic medical dataset.

The quantitative results are shown in Table 5. The results

Model PSNR SSIM

Bicubic 28.6992 0.7587

DUF 30.3025 0.7795

Ours 30.3337 0.7820

Table 5. Super-Resolution Quantitative Results on Ultrasonic

Dataset

Whole Model Without Preprocessing and Enhancement

PSNR 29.7801 28.8824

SSIM 0.8552 0.8197

Table 6. Ablation Study Results of Preprocessing and Enhance-

ment Module

show that the video super-resolution technique can still get

a better result than traditional interpolation measures. Be-

cause of the limited motion, these videos seldom contain

very complex motion. As a result, both DUF and our model

can obtain satisfactory outputs, but our model performs

slightly better. The qualitative results are shown in Fig. 8,

and we can see that the result of our model is very satisfac-

tory.

3.5. Ablation Studies

We conduct ablation studies to validate the effectiveness

of each module in our model. All experiments in ablation

studies are performed on REDS dataset.

3.5.1 Preprocessing and Enhancement Module

In our model, the preprocessing and enhancement module

can eliminate bad features in feature maps and emphasize

important features, in order to get more accurate features.

We set up an ablation experiment by replacing this module

with an identity module. Table 6 depicts the results of this

ablation study.
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3 Temporal 3D 1 Temporal 3D
TSA Fusion

Fusion Blocks Fusion Block

PSNR 29.7801 29.5439 29.3191

SSIM 0.8552 0.8508 0.8427

Table 7. Ablation Study Result of Temporal 3D Fusion Module

Our Module 10 Residual Blocks 15 Residual Blocks

PSNR 29.7801 28.2620 28.6276

SSIM 0.8552 0.8065 0.8192

Table 8. Ablation Study Results of Channel Attention Reconstruc-

tion Module

3.5.2 Temporal 3D Fusion Module

In this experiment, we compare the results of the proposed

temporal 3D fusion module and the TSA fusion module

from EDVR [22]. Meanwhile, we also compare the results

with different numbers of Temporal 3D Fusion Blocks. The

results are shown in Table 7. It is observed that the tempo-

ral 3D fusion module produces better results than the TSA

fusion module. This is due to the superior performance

of 3D convolution and our strategy of parameters sharing,

which enable us to use more blocks. Furthermore, the re-

sults also show that using more blocks can improve the re-

sults to some extent.

3.5.3 Channel Attention Reconstruction Module

In our model, the channel attention mechanism assigns a

floating-type weight value to each channel and multiplies

it with the original value in the corresponding channel in

the feature map, which makes the reconstruction more se-

lective and accurate. In this ablation experiment, to prove

the effectiveness of channel attention in reconstruction, we

use the reconstruction module in EDVR [22] with two dif-

ferent configurations (10 Residual Blocks and 15 Resid-

ual Blocks) for comparison because they have the same

depth and similar amount of parameters as compared with

our module, respectively. We construct our reconstruction

module by cascading 10 Channel Attention Reconstruction

Blocks. The comparison results are shown in Table 8.

The results indicate that Channel Attention Reconstruc-

tion Block has significant advantages, which obtains better

performance than the module consisting of residual blocks

with similar or fewer parameters.

3.6. Computing Performance Optimization

To accelerate our model to make it more useful and

practical, optimization techniques have been applied to our

model. Firstly, the AMP technique is used to enlarge the

batch size, such that in our experiment, the batch size is

increased from 4 to 6. Secondly, the JIT compilation and

Configuration Frame Rate

Original EDVR (M) 2.703 frames/sec (batch size=4)

Our model without optimization 3.030 frames/sec (batch size=4)

Our model with AMP only 3.722 frames/sec (batch size=6)

Our model with all optimizations 4.286 frames/sec (batch size=6)

Table 9. Computing Performance Comparison on REDS Test

Cases with Maximum Batch Size

route tracing also boost the efficiency of our model. In

our experiments, we compare our model with the original

EDVR (M) model and our model with different accelera-

tion techniques. The result is shown in Table 9. Each case

is examined three times, and the average value is calculated

as the final result. The results are shown in Table 9, we

can see the superb speed of our model. Moreover, by ap-

plying the complete optimization technique, the time cost

of each frame is reduced by 29.3%, which is a remarkable

optimization.

The results indicate that using performance optimization

measures can greatly accelerate the model. As video super-

resolution is always used in a time-limited situation, our

performance optimization measures are meaningful in prac-

tical applications.

4. Conclusion

We propose an innovative model based on the EDVR

model for robust and efficient video super-resolution tasks.

In order to improve the super-resolution performance of

the original EDVR model, we focus on feature extraction,

frame fusion, and reconstruction improvements. We design

an innovative two-stage feature preprocessing and enhance-

ment module and use 3D convolutions and channel attention

to form the video super-resolution model. Besides, the tem-

poral 3D convolution method is proposed for fusion, which

can fuse aligned frames by learned attention values on both

temporal and spatial space. In addition, we use a channel at-

tention mechanism like that in the SENet model, calculating

attention weights based on each channel’s maximum value

and mean value. Moreover, we use the latest technique to

accelerate the model, obtaining a faster model with better

super-resolution performance.
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