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Abstract

This paper proposes a new approach to integrating im-
age features for unsupervised depth completion. Instead
of resorting to the image as input like existing works, we
propose to employ the image to guide the learning process.
Specifically, we regard dense depth as a reconstructed result
of the sparse input, and formulate our model as an auto-
encoder. To reduce structure inconsistency resulting from
sparse depth, we employ the image to guide latent features
by penalizing their difference in the training process. The
image guidance loss enables our model to acquire more
dense and structural cues that are beneficial for producing
more accurate and consistent depth values. For inference,
our model only takes sparse depth as input and no image
is required. Our paradigm is new and pushes unsupervised
depth completion further than existing works that require
the image at test time. On the KITTI Depth Completion
Benchmark, we validate its effectiveness through extensive
experiments and achieve promising performance compared
with other unsupervised works. The proposed method is also
applicable to indoor scenes such as NYUv2.

1. Introduction

Unsupervised depth completion aims to recover dense
depth from the sparse input without the supervision of dense
ground truth. Compared with the supervised setting, unsuper-
vised models do not involve expensive manual annotation.

In the depth completion community, a commonly ac-
knowledged challenge is structure inconsistency, i.e., ob-
ject structures cannot be correctly identified and recovered
[30, 35, 9]. Essentially, this problem is caused by the sparse
nature of the input, e.g., we can hardly tell where the car
boundary is in Fig. 1(b) due to too many missing depth val-
ues. Fully-supervised models can reduce structure inconsis-
tency by making use of dense ground truth, which provides
pixel-wise supervision and covers most object structures.
Many supervised works also address this problem by taking
the RGB image as an extra input and fusing image-inspired
structural features with sparse depth either through early or
late fusion [35, 46, 7, 22].

For unsupervised depth completion, structure inconsis-
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(a) RGB image (b) Sparse depth

(c) S2D (image and depth as input)

(d) Ours (only depth as input)
Figure 1. Unsupervised depth completion from sparse depth. Com-
pared with (a) the RGB image, (b) sparse depth presents high
structure inconsistency around object boundaries. (c) Existing un-
supervised model S2D [32] takes the RGB image as an additional
input. (d) Our model only inputs sparse depth. We achieve com-
parable performance to S2D [32] in producing consistent depth
values, especially around object boundaries, even without access to
the image at test time.

tency becomes even harder to overcome because there is
no dense ground truth available. Among the few works
in the unsupervised setting, traditional non-learning meth-
ods' [24, 40, 3, 12] use hand-crafted matrix interpolation
operations to fill in missing values, but lack effective image
guidance. Recently, an alternative practice is to make use
of network training, and take the RGB image as an addi-
tional input and calculate the image warping loss either from
stereo [55] or adjacent video frames [32, 52, 51]. Clearly,
compared with supervised methods where plain early and
late fusion strategies are readily available, there are far fewer
options for integration of image features in the unsupervised
community.

In this paper, we propose a new approach to integrating
image features in unsupervised depth completion. In a nut-
shell, our method is formulated as an auto-encoder [16, 15],
where sparse depth is first transformed into latent features
and then recovered into dense depth. The sparse input serves
as a supervision signal for the network. Besides the lack of
structural cues, a vanilla auto-encoder will not give good
performance on depth completion due to its trivial nature,
i.e., generating a trivial mapping from input to output as the

! Although these methods do not rely on ground truth data and seem to
be unsupervised, they are not in the same category with ours because our
model involves network learning. In the following, “unsupervised” refers
to learning-based depth completion without ground truth.
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Figure 2. Unsupervised depth completion models. (a) Existing models, e.g., S2D [32] and DDP [55], take the image as an additional input in
both training and test phases. A second stereo image constructs the image warping loss, which gives implicit supervision for dense depth. (b)
Our model only uses a single image for training. At test time, we recover dense depth from the sparse input only.

input is also used for supervision. To improve performance,
we employ an image to guide latent features during training,
as illustrated in Fig. 2(b). In addition to providing dense
structural cues, the image guidance constrains latent features
to reduce the trivial solution. We show that this practice
yields a large improvement over the vanilla baseline and
allows our method to be competitive on public benchmarks.

We emphasize two distinctive characteristics of our de-
sign which make it novel and insightful. First, our method
introduces a new setting in unsupervised depth completion,
i.e., only using sparse depth as the network input at test
time. In comparison, previous unsupervised works adopt
the image and sparse depth in both training and test phases,
as shown in Fig. 2(a). We demonstrate the feasibility of
the new setting with satisfying depth completion accuracy,
which benefits the scientific body of literature in this area.
Second, we provide insights on the appropriate use of image
guidance through various studies, such as the position where
image guidance is imposed, impact of feature resolution and
the number of channels.

The main points of this paper are summarized below.

1. We propose a new paradigm for unsupervised depth
completion that recovers dense depth only from the
sparse input at test time. We push this task further be-
yond existing works that take the image as an additional
input and employ a second image for training.

2. Our method is formulated as an auto-encoder and uses
the image to directly guide latent features in training.
This enables our model to acquire more dense and struc-
tural cues, which improve the depth accuracy and main-
tain structure consistency without the image input.

3. We validate the effectiveness of the proposed image
guidance and achieve promising performance on the
KITTI Depth Completion Benchmark compared with
other unsupervised methods. Our model is also applica-
ble to indoor scenes, e.g., NYUv2.

2. Related Work

Depth completion. Depth completion aims to fill in miss-
ing values in the sparse input. Traditional non-learning based
methods [24, 40, 3, 12] rely on hand-crafted features such
as gradients for completion. More recently, deep learning
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methods have improved performance substantially. Uhrig et
al. [45] design sparsity invariant CNNs which generate and
update a binary mask (1 for pixels with depth values and 0
for missing ones) to handle sparse data. This binary mask is
improved and facilitated with sparsity-invariant properties
for more competitive performance [19]. Chodosh et al. [8]
alternatively utilize compressed sensing to handle sparse
data. Eldesokey et al. [9, 11] generate a confidence map
to measure the reliability of predicted depth values. S2D
[32] refines the depth maps iteratively from sparse to dense
combined with the image input.

Learning from other features to facilitate depth comple-
tion has become a new trend recently. These features nor-
mally supply complementary geometric or structural cues
to depth and come from various sources, such as RGB
images [26, 54], surface normal [35, 53, 1], and point
clouds [5, 2]. Some useful techniques are also applied to bet-
ter aggregate features, e.g., spatial affinity [7, 33, 38], depth
coefficients [21], global and local context [46, 6, 7], auxiliary
image reconstruction [30], pseudo depth [14], plane/surface
extrapolation [25, 20], uncertainty [10, 46], and domain
adaptation [29]. However, these always come with compli-
cated networks and a large number of parameters.

Auto-encoders. Auto-encoders aim to generate a com-
pressed feature representation by learning an identity map-
ping from the input to the output [15, 47]. The input itself
is used as a supervision signal for the training process. Re-
cently, deep auto-encoders have been widely employed as
an unsupervised learning technique in image denoising [48],
super-resolution [37, 57], multi-view learning [50], etc.

To improve the discriminative ability of latent features
and prevent only learning a trivial mapping from input
to output, some constraints are imposed on the latent fea-
tures. For example, Sundermeyer et al. [43] introduce the
augmented auto-encoder that controls the encoding of la-
tent features by adding random augmentations to the in-
put. Other useful constraints include graph embeddings [56],
non-negativity [17, 44], label consistency [18], and so on.
Additionally, latent features can be constrained by being
guided/supervised by a certain signal, such as label informa-
tion [42, 4], pose estimation [27], and feature selection [49].
Our model uses the image to guide latent features, which
improves performance by supplying more structural cues to
depth and reducing the trivial solution.
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Figure 3. Proposed auto-encoder framework for training unsupervised depth completion. The encoder transforms sparse depth input into
latent features, which are then fed into the decoder to produce dense depth. The sparse input itself is used as the supervision signal for depth.
By penalizing the difference between the image and latent features during training, the latent features are guided to encode more dense
structural cues that are beneficial for producing more accurate and consistent depth values. The latent feature map is obtained from our
default model (see Section 5.1) and visualized by normalizing the values into O-1.

3. Unsupervised Depth Completion Revisited on the Virtual KITTI dataset [13]. [32, 52] compute feature
correspondences from adjacent images for pose estimation.
All of these operations heavily rely on RGB images and other
image related information, further indicating the difficulty
in integrating image features in this area.

Unsupervised depth completion models assume there is
no dense ground truth or any other manual annotations avail-
able. To reduce structure inconsistency resulting from the
sparse input d € R¥*W (H and W represent the height and
width respectively), existing studies [32, 55, 52, 51] further 4. Our Method
assume an associated RGB image r € R7*W*C s avail-

able (C is the number of channels, e.g., 3 for an RGB image Section 3 motivates us to reflect on an easier but still
and 1 for its grayscale), and take it as an additional input effective usage of RGB images. To this end, we formulate
(also see Fig. 2(a)), i.e., our model as an auto-encoder and propose to guide latent
- features with the image. The general framework is illustrated
d= f(d,r), (nH in Fig. 3. This approach generally has two distinctions: (1)
- ) It enables our model to recover dense depth only from the
where d € R”*™ is dense depth output. In this formulation, sparse input, which is a normal setting in supervised works
the sparse input is used as a supervision signal for depth, i.e., [30, 45, 11] but has not been well studied in the unsupervised
1 i area; (2) It is effective in better keeping structure consistency

Ly = N HM ®(d-d) H , 2 than using an auto-encoder without image guidance.

4.1. Depth Completion as an Auto-Encoder
where M is a binary mask that indicates validness of input P P

depth (1 for points with depth values and 0 for none), and Ny We aim to construct a model g that recovers dense depth
is the total number of valid points. 7 is the norm of the loss, only from the sparse input, i.e.,

i.e., 1 for 1 (MAE) and 2 for {5 (MSE). ® denotes element- ~

wise multiplication. Additionally, a second image, either d = g(d). “)
from stereo or adjacent frames, is employed to construct
the disparity loss [55] or photometric loss [32, 52, 51] (see
Fig. 2(a)). This loss is essentially implicit supervision to

depth since it does pot directly penah'ze depth reconstrycﬂon g into an encoder g; and a decoder g». g1 transforms the
but the results derived from depth, i.e., the warped image. sparse input d into latent features ¥ € RF1*W1XC1 where

Without loss of generality, we denote the additional loss as H, and W, represent the height and width, and C} is the
{., and thus the entire training loss ¢; becomes

To achieve this, we regard the dense output as a reconstructed
result of the sparse input, and formulate g as an auto-encoder
to realize this reconstruction. More specifically, we divide

number of feature channels. g, recovers dense depth from r.
The entire process is described as:

by =Ly +w; - gc: 3)
where w,. controls the impact of /.. At test time, the second d=9(d) = d =gF=q(d). ©)
image is not required, but the image associated with sparse The model can be trained with the identity mapping loss de-
depth is still taken as input. fined in Eq. 2. We name this model the vanilla auto-encoder
In addition, [55, 51] have to learn prior information, e.g., because it does not incorporate any extra information. Below,
dense depth prior or topology prior, with another network we list two major problems with the vanilla auto-encoder.
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(a) RGB image

(b) Sparse input

(c) Vanilla latent features

(d) Our latent features

ly =147.428
RMSE=1483.21

lg =162.119
RMSE=1003.20

14 =230.052
RMSE=1935.92

(e) Vanilla depth

Iy =242.711
RMSE=1174.43

(f) Our depth

Figure 4. Depth completion results based on vanilla auto-encoder and our guided latent features. (a) and (b) are the RGB image (not used as
input) and the sparse input. (c) Vanilla latent features directly from sparse depth are also highly sparse, and they cannot indicate any clear or
useful structural information. (d) Our image-guided latent features, by contrast, are able to acquire more dense and structural cues, e.g., the
general shapes of the car and tree are clearer than (c). (¢) Dense depth from the vanilla auto-encoder fails to complete object boundaries
properly. It has a smaller difference ¢4 with the input, but larger errors, e.g., RMSE, compared with the ground truth. (f) Our depth with
guided latent features presents more visually consistent boundaries. It also produces more correct depth values, indicating the reduced
impact of the trivial solution as £ is slightly larger, but the RMSE is much smaller. The latent feature map is obtained from our default
model (see Section 5.1) and visualized by normalizing the values into 0-1.

Insufficient structural cues. Without additional guid-
ance, e.g., the image, both the sparse input and its latent
features cannot provide sufficient structural cues for accu-
rate depth completion, particularly around object boundaries.
For example, in Fig. 4(c), the latent features of the sparse
input are still highly sparse, and we can hardly find any clear
and useful structural information of the car and tree from
them. The completed results based on these features present
inconsistent depth values around boundaries (see Fig. 4(e)).
Hence, it is difficult to recover consistent and accurate dense
depth only from the sparse input.

Trivial solution. g takes the sparse input d as both input
and supervision, which may produce a trivial solution that d
is infinitely close to d in valid positions that contain input
values. The accuracy of other missing values to be completed
is largely sacrificed. As shown in Fig. 4(e) and (f), even
though the difference between the output and the sparse input
is smaller with the vanilla model, the errors, i.e., RMSE, are
larger. This can also be reflected by visual results, where
stripe artifacts with similar patterns to horizontally scanned
LiDAR points, exist around object boundaries. The negative
impact of the trivial solution should be reduced.

4.2. Image Guidance to Latent Features

To deal with above issues, we propose to use the image
to guide latent features in the training process (see Fig. 3). It
aims to regularize latent features to obtain more structural
cues from the image and prevent the trivial solution. We
define a function ¢ that converts the image r € R *Wx*¢
into the image feature representation ¢(r) € R71xWixC1
that shares identical feature dimensions with latent features
F. ¢ is either (1) a self mapping, i.e., ¢(r) = r, or (2) a CNN
to extract convolutional features. The guidance works by
penalizing the difference between the two features, i.e.,
lp(r) — &I,

b, = (6)

HWC'

where 7y determines the norm of the loss. Combined with the
sparse depth loss defined in Eq. 2, the total training loss of
the proposed model is

Etotal = gd + wy - fr» (7)
where w, weighs the impact of the image guidance loss /,.
The encoder and decoder share the same network architec-
ture, i.e., they follow the standard U-shaped structure. More
details on the network configuration can be found in the
supplementary material.

4.3. Discussion

Why can dense depth be directly constructed from
sparse input only? For a specific position in sparse depth,
convolving with a squared kernel is like performing a
weighted sum within the local region. If that position has no
depth value, it will be updated based on nearby points with
values. This is the underlying reason that dense depth can
be directly constructed from the sparse input. Supervised by
valid points in the input, the weights are learnable.

The role of image guidance. Image guidance enables
latent features to better acquire dense and structural cues
that can facilitate depth completion. In Fig. 4(d), the guided
latent features of the car and tree reveal their general shapes
more clearly than vanilla (unguided) ones that only have
sparse representations. As illustrated in Fig. 4(f), both exam-
ples have a larger ¢; but lower RMSE than vanilla results,
also indicating the reduced impact of the trivial solution.

The proposed image guidance is inspired by [30], a fully-
supervised model that acquires image features by recon-
structing the image from sparse depth. The similarity with
ours is that both works add the image loss as part of the train-
ing loss. However, the underlying insights of such image
guidance are different. In terms of the network architecture,
our method does not have an image decoder separate from
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Figure 5. Qualitative comparison with IR_L2* [30] retrained with the unsupervised setting on the KITTI test set. Our RMSE in three
examples is better than IR_L2* [30], and our results present smaller errors, especially around object boundaries, according to close-up error
maps. It indicates the effectiveness of the proposed explicit image guidance to latent depth features.

Method #Param. RMSE | MAE | iRMSE | iMAE |
Unsupervised IR_L2* 11.63M 1943.28 541.36 17.88 7.76
(only sparse input) Ours 2.29M 1451.67 429.74 4.89 1.78
S2D 18.8M 1299.85 350.32 4.07 1.57
Unsupervised DDP 27.8M 1263.19 343.46 3.58 1.32
(sparse & RGB inputs) VOICED 9.7M 1169.97 299.41 3.56 1.20
ScaffFusion 7.8M 1121.89 282.86 3.32 1.17

Table 1. Quantitative comparison with unsupervised methods on the KITTTI test set. The methods we compare include IR_L2* [30] (this
method is retrained with the unsupervised setting, i.e., replacing dense ground truth with input sparse depth), S2D [32], DDP [55], VOICED
[52], and ScaffFusion [51]. These results are obtained from the benchmark, and no ground truth is available. | means smaller is better.

the main branch, so it does not aim to reconstruct the image.
Functionally, our image guidance is directly imposed on la-
tent depth features by penalizing their difference (regarded
as explicit guidance), and dense depth has to be recovered
from the refined features. By contrast, [30] implicitly gener-
ates image-related features by reconstructing the image as an
output. We will justify the effectiveness of our explicit image
guidance in the unsupervised setting through experiments.

Relationship with existing unsupervised models. Our
formulation for training the model in Eq. 7 is consistent with
the general form of the unsupervised framework defined in
Eq. 3. The image guidance loss ¢,., similar to /. in Eq. 3, is
an extra loss that facilitates network training. However, it
is essentially different from other works [32, 55, 52, 51] in
that (1) it focuses on enhancing intermediate latent features,
and (2) it does not require a second image for training.

Inference. Learning the proposed depth completion auto-
encoder only requires the image during training. At test time,
our model only takes sparse depth as input (see Fig. 2(b)),
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ie., ~
d = g(d:0y),

where 67 denotes the parameters of the optimal model.

®)

5. Experiments

In this section, we demonstrate the effectiveness of our
method through both quantitative and qualitative results.

5.1. Experimental Details

Dataset. We report depth completion results on the
KITTI Depth Completion Benchmark [45]. The KITTI depth
maps are acquired by reprojecting LiDAR points taken over
a short time window onto an image, and around 5% of the
pixels have depth values. When counting the sparse depth
maps, there are 85,898 training, 1,000 validation, and 1,000
test images in total. Ground truth depth maps are generated
by accumulating LiDAR points from adjacent frames using
semi-global matching, with outliers manually removed [45].
Test set performance is evaluated on the online benchmark
server with no ground truth available to the public.
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Figure 6. Model analysis. (a) Impact of the resolution and number of channels of latent features. “c
image features. (b) Comparison with the vanilla auto-encoder with different feature resolutions and channels.

Feature resolution m/1I m/4 =/16 /64

= E .
E 200 é 2400
w 2200 w 2200
2 2000
@ 1800 I I ﬂf 1800
1600 1600
ol .I .| i 1 .

Feature channels
(b) Comparison with vanilla auto-encoder

mVanilla = Ours

3000
16 (v 64 (v 01 02 03 04 05 06 07 08 09 1

Input densities (%)
(c) Comparison with various input densities

Rt

means that we use CNNs to extract the
“v” represents the vanilla

auto-encoder. (c) Robustness to input densities. Here the vanilla auto-encoder share the same latent feature resolution and channel with our

default image-guided model.

Evaluation metrics. Following the benchmark [45],
we use four quantitative evaluation metrics: (1) root mean
square error (RMSE in mm), (2) mean absolute error (MAE
in mm), (3) RMSE of inverse depth iRMSE in 1/km), and
(4) MAE of inverse depth iMAE in 1/km). Among them,
RMSE is used to rank approaches on the benchmark.

Training procedure. We implement our network with
PyTorch [34], and train and test the model on one NVIDIA
Titan X GPU. All the training data have a resolution of
352 x 1216. The model is trained with the Adam optimizer
[23], where the initial learning rate is set as 0.001. In our
default model, n = 1, v = 1, w,, = 0.1. Further, the latent
features ¥ € R352X1216x1 ghare the same spatial resolution,
i.e., height and width, with the input, and only have one fea-
ture channel that is directly guided by the gray-scale image
without any convolutional layers to extract image features,
ie., ¢(r) = r € R32xX1216X1 " The default vanilla auto-
encoder share the same latent feature resolution and channel
with our default model. All the other details of parameter
settings can be found in the supplementary material.

5.2. Comparison with Existing Methods

We compare four published unsupervised works, S2D
[32], and DDP [55], VOICED [52], and ScaffFusion [51].
Note that although TR_L2 [30] is not specially designed for
unsupervised depth completion, its usage of the image is
similar to ours, i.e., adding it to the training loss. For a
fair comparison, we retrain IR_L2 [30] by replacing dense
ground truth with sparse depth. We rename it as IR_L2*.

IR_L2*, We report quantitative results in Table 1. Our
model significantly outperforms IR_L2* [30], i.e., surpass-
ing RMSE by 491.61 (25.3%), MAE by 111.62 (20.6%),
iRMSE by 12.99 (72.65%), and iMAE by 5.98 (77.1%). Fur-
ther, we have around 5x fewer parameters than IR_L2* [30].
Qualitative results in Fig. 5 also indicate the superiority of
our model in key regions such as object boundaries.

The primary reason for our superior performance is that
the proposed image guidance gives direct and explicit re-
finement to depth features (a “brute-force” refinement). By
contrast, IR_L2* implicitly learns image-related features by
reconstructing the image from sparse depth and then trans-
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fers them to the depth completion encoder. This is less help-
ful when dense depth ground truth is unavailable, because
it is more difficult for depth features to coincide with image
features with such limited depth points for supervision.

S2D, DDP, VOICED, and ScaffFusion. The quantitative
results on the KITTTI test set are reported in Table 1. Natu-
rally, our method does not beat the four works quantitatively
due to the input difference and less additional information
used during training. Even so, we still achieve competi-
tive performance in some qualitative examples, which are
displayed in the supplementary material.

5.3. Analysis

Impact of the resolution and number of channels of la-
tent features. For clarity, the feature resolution refers to the
spatial dimension, i.e., height and width, and channels repre-
sent the number of feature maps. We first investigate their
impact to our image-guided model. For the self-mapping,
we set the latent channel number to 1, and then use the one-
channel gray-scale image to directly guide latent features.
For the CNN mapping, we apply a 3-layer convolutional
network with 3 x 3 kernels to extract image features from
the gray-scale image. From Fig. 6(a), we observe that using
CNNs s to extract image features does not bring significant
performance gain, i.e., using the original image to directly
guide latent features yields the best RMSE in all feature reso-
lutions. Moreover, adding extra channels with CNNs reduces
performance. We attribute the performance degradation after
using more parameters to the over-complete auto-encoder
[48], i.e., the model tends to simply copy the input to the
output without learning useful features. This problem is
caused by having excessive parameters in the hidden layer,
e.g., using too many channels or a very complex network.
In our system, the sparse input only has one channel, so we
design the latent feature to have one channel and the network
to be light-weight.

For feature resolution, we find that reducing it leads to
larger errors. This is because the spatial correspondence at
each position between the input, image, and output cannot
be well preserved with the reduced resolution. We show
visual examples in the supplmentary material. These results



b B P

- -
Image as LF
(w/o retraining)

(a) Image

(c)

(d) Image as LF
(with retraining)

(e) Our depth

Figure 7. Qualitative results of using RGB and gray images to guide or replace latent features. There is no significant difference between
using the RGB or gray image to guide latent features. Replacing latent features with the image, either retraining or not retraining the model,
cannot produce better results than ours. “LF” represents latent features, and they are visualized by normalizing the values into 0-1.

Method | RMSE] | MAE |
Vanilla 257271 | 69653

Vanillaa | 114993 | 37112

Vanillak | 285728 | 761.62

) Ours 146460 | 43123
Unsupervised Oursa 107746 | 359.46
(only sparse input) g 1542.16 | 445.60
EG 108538 | 58301

DG 3496.80 | 682.19

0G 272314 | 71177

Table 2. Quantitative comparison with the vanilla auto-encoder and
different positions of image guidance on the KITTI validation set.
A means the model is evaluated on valid pixels in the input that
have ground truth. % is the evaluation on remaining pixels that
do not have input values but have ground truth. “EG”, “DG”, and
“OG” mean image guidance is placed to the encoder, decoder, and
output respectively. | means smaller is better.

validate our choice in default vanilla and image-guided mod-
els, i.e., one-channel latent feature with full resolution. In
the following, all the experiments are performed on default
models unless otherwise specified.

Effectiveness of image guidance over the vanilla auto-
encoder. To validate the effectiveness of image guidance,
we compare the vanilla auto-encoder and our image-guided
model. In Fig. 6(b), our model outperforms the vanilla one
by a large margin with various settings of feature resolutions
and channels. Further, combining Fig. 6(a) and (b), the over-
all performance after using image guidance is significantly
better than the vanilla model in all the cases. For quantitative
results in Table 2, our model surpasses its RMSE by 1108.02
(43.1%) and MAE by 265.3 (38.1%). We further separately
evaluate valid pixels in the input and remaining pixels that do
not have input values in the table. The performance on valid
pixels is similar because they are input values commonly
existing in two models. However, our model significantly
outperforms the vanilla one on remaining pixels. This large
improvement is owing to image guidance, and indicates that
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our method can generalize better to unseen pixels.

Reasons for intermediate guidance. To verify interme-
diate guidance to latent features, we place this guidance to
the encoder (EG), the decoder (DG), and output (OG) respec-
tively, and then retrain the model. From Table 2, employing
image guidance to the encoder produces slightly worse re-
sults, which is because depth features from the sparse input
have not been sufficiently encoded. By contrast, the perfor-
mance after moving the guidance to the decoder is signifi-
cantly degraded. The underlying reason is the decoder’s task
is to recover dense depth from latent features. Requiring
an additional task of the decoder detracts from the depth
completion task. An extreme case is after we place image
guidance at the output layer, the results become even worse
than the vanilla model (the decoder has to both recover dense
depth and reconstruct the image, which is difficult to work
well). In conclusion, applying image guidance to intermedi-
ate latent features yields the best results, where the original
depth features have been well encoded and refined, and the
decoder can focus on depth completion.

RGB vs. gray guidance. We can use either the RGB
image or its grayscale to guide latent features. They do not
differ too much in terms of the final performance because the
image content in two color spaces is similar, e.g., important
structures contained in RGB are also mostly visible in gray.
From Fig. 7(b) and (e), we do not see obvious difference
between two types of latent features and dense output, except
that latent features guided by the gray image present brighter
appearance. According to quantitative results in Table 3, we
find that using the gray image for guidance yields slightly
better results. This is because it is harder to penalize RGB
and latent features as it involves three channels. Also, more
feature channels make the model easier to be affected by
the over-complete issue (see above). In fact, in Fig. 7(b),
we show that the learned 3-channel latent feature (visual-
ized like an RGB image) does not present obvious colors,
i.e., it still looks gray. It suggests that the network does not
rely on specific colors for completion. Structure informa-



Method | RMSE | | MAE |
. RGB 1485.85 439.76
Guiding L¥ Gray 146460 | 431.23
Replacing LF RGB 24499.30 9209.43
(w/o retraining) Gray 16107.76 8867.21
Replacing LF RGB 4615.71 2003.55
(with retraining) Gray 5134.19 2321.09

Table 3. Quantitative results of using RGB and gray images to
guide or replace latent features on the KITTI validation set. |
means smaller is better. There is not significant difference between
using the RGB or gray image to guide latent features. Replacing
latent features with the image, either with or without retraining,
produces poor results. “LF” represents latent features.

tion indicated by intensity difference is more important. A
similar phenomenon on better results with the gray image
is observed in [31, 30]. Moreover, in terms of practical use,
the gray image occupies less storage than RGB. Hence, by
default, we use the gray image to guide latent features.

Replacing latent features with the image. The image
guidance loss defined in Eq. 6 enforces the similarity be-
tween latent features and the image. A natural question is,
what will the performance be if we replace latent features
with the image, i.e., the image guidance loss is equal to zero?

The first experiment is, given our trained model with
default settings, we replace latent features with the image
directly at test time. As shown in Fig. 7(c), the decoder
cannot recover any correct depth, which is also reflected
by the extremely poor quantitative results in Table 3. The
underlying reason is that the trained parameters are fixed,
and the direct replacement destroys the learned information
in latent layers. The second experiment is that we replace
latent features with the image and retrain the entire model.
This makes more sense as it actively adjusts parameters. In
that case, the encoder is blocked and the network comes
to use the decoder to recover dense depth directly from the
image, i.e., depth estimation from a single image supervised
by the sparse input. We can observe in Fig. 7(d) as well
as Table 3 that this approach produces better results than
above model without retraining. However, the performance
is still less competitive than ours. Visual results indicate
that the depth of some important details, e.g., trees and car
boundaries, cannot be properly recovered.

Based on these results, we find that replacing latent fea-
tures with the image is less effective for depth completion.
Specifically, latent features guided by the image and the im-
age itself are two different concepts. Latent features are a
type of feature representation of sparse depth. Guided by the
image, they are embedded with more consistent structural
cues, but are still conditioned on sparse depth rather than the
image. By contrast, the image is another modality inherently
different from depth. It cannot be regarded as a latent repre-
sentation of sparse depth, so recovering depth directly from
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Method RMSE | | REL |

. Vanilla 0.449 0.081
(Oﬁ‘y‘ss‘;‘;::‘;zlo IR_L2* [30] 0.358 0.062
Ours 0315 0.053

Hand-crafted TGV [12] 0.635 0.123
(sparse & RGB inputs) Bilateral [41] 0.479 0.084

Table 4. Quantitative comparison on the NYUv2 test set. | means
smaller is better. Our model outperforms the vanilla auto-encoder,
IR_L2*[30], and hand-crafted methods. It indicates that our method
has good applicability to other dataset.

the image is less accurate. This is also observed in [28, 36].

Robustness to input densities. We also analyze the ro-
bustness to different input densities. The valid points with
depth values in the original sparse input account for around
5% of the entire depth map. We further reduce the input
sparsity by randomly retaining points with ratios from 90%
to 10%, similar to [39, 53, 7, 28]. Our results in Fig. 6(c)
demonstrate the good generalization ability of our model
to different densities (measured by RMSE). With an in-
creased density, depth completion performance is gradually
enhanced because more input data is provided. Moreover,
our model performs consistently better in all cases than the
vanilla auto-encoder, which further indicates its effectiveness.
We also reduce the LiDAR scanning lines as an alternative
way to downsample the input, which is illustrated in the
supplementary material.

Application to indoor scenarios. Our model can also
be applied to indoor scenes, e.g., NYUv2 [41]. Each sparse
input for training has 500 randomly selected depth values,
the same as [30, 35]. We evaluate the proposed model on the
official labelled test set that contains 654 samples. In Table
4, we report RMSE and REL (mean absolute relative error).
Our model outperforms the vanilla auto-encoder, IR_L.2*
[30], and hand-crafted methods.

6. Conclusion

In this paper, we propose a new unsupervised depth com-
pletion model. Formulated as an auto-encoder, our model
only takes sparse depth as input, which is essentially dif-
ferent from existing unsupervised works that use the RGB
image as an additional input in both training and test phases.
To reduce structure inconsistency, we propose to employ
the image to guide latent features in the training process.
This approach enables the acquisition of more dense and
structural features beneficial for producing more consistent
and accurate depth values. We validate its effectiveness
through extensive experiments on the KITTI Depth Com-
pletion Benchmark. The proposed method also has good
applicability to indoor scenes, e.g., NYUv2. Our future work
will focus on leveraging other information, e.g., 3D point
clouds, surface normal, to enhance latent features.
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