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Abstract

Training deep models using contrastive learning has
achieved impressive performances on various computer vi-
sion tasks. Since training is done in a self-supervised man-
ner on unlabeled data, contrastive learning is an attractive
candidate for applications for which large labeled datasets
are hard/expensive to obtain. In this work we investigate
the outcomes of using contrastive learning on synthetically
generated images for the Image Quality Assessment (IQA)
problem. The training data consists of computer generated
images corrupted with predetermined distortion types. Pre-
dicting distortion type and degree is used as an auxiliary
task to learn image quality features. The learned representa-
tions are then used to predict quality in a No-Reference (NR)
setting on real-world images. We show through extensive
experiments that this model achieves comparable perfor-
mance to state-of-the-art NR image quality models when
evaluated on real images afflicted with synthetic distortions,
even without using any real images during training. Our
results indicate that training with synthetically generated
images can also lead to effective, and perceptually relevant
representations.

1. Introduction
Image Quality Assessment (IQA) refers to the problem of

objectively quantifying and predicting perceptual judgments
of image quality. In No-Reference (NR) or blind IQA, the
task is to estimate quality with no additional information
about the pristine reference image or the type of distortions
present in the degraded image. IQA models are designed
with the aim of obtaining accurate quality predictions that
have high correlations with subjective judgements. The pres-
ence of multiple distortion types, along with the influence of
content on perceived image quality, make blind IQA problem
a challenging task. Social media applications, image and
video-sharing sites such as Facebook, Instagram, YouTube
etc. have millions of digital user-generated contents (UGC)
uploaded to them everyday, and it is essential to objectively
control and govern the quality, before performing additional

operations such as compression.
NR-IQA has been extensively studied over the last decade,

resulting in a variety of IQA datasets and models. Two
types of IQA databases have been proposed in the literature
: LIVE-IQA [39], CSIQ-IQA [24] etc. which contain syn-
thetically degraded images, and CLIVE [13], KonIQ [18]
etc. which contain images with realistic distortions. Dis-
torted images with synthetic artifacts often contain a single
distortion type such as blur, white noise etc. whereas in
case of authentic artifacts, a combination of multiple distor-
tion types are present. To objectively capture these artifacts,
different approaches have been presented in the literature.
Natural Scene Statistics (NSS) based models [33–35, 38]
rely on statistical deviations arising due to distortions for
obtaining quality-aware features. Recently, deep Convolu-
tional Neural Network (CNN) based, data-driven IQA mod-
els [21, 41, 50, 54] have achieved remarkable accuracy in
predicting image quality.

Deep CNNs contain millions of trainable parameters, thus
require large labeled datasets to achieve better performance.
However, currently there is lack of sufficiently large labeled
IQA datasets, thus majority of the existing methods use
transfer learning methods, where a pretrained model is fine-
tuned using image quality labels. In CONTRIQUE [29],
an unsupervised training scheme using unlabeled dataset
was proposed as an alternative to transfer learning, and the
model performance was observed to be comparable to that
of current state-of-the-art (SOTA) IQA models. Employing
synthetic data for training is another approach that has been
explored in the literature for problems like stereo disparity
[32], optical flow [6, 10]. For these applications, the models
trained on synthetic data was shown to perform well even
on real-world datasets [7, 42]. One key drawback of using
synthetic data is the presence of domain gap between real
and synthetic images, which can be a significant factor for
certain applications [4].

Here, we investigate the performance of models trained
on synthetic data for IQA problem. The goal is to under-
stand the significance of semantic information in obtaining
features which are representative of image quality. We fol-
low the CONTRIQUE [29] framework in our experiments,

93



where real images are replaced with synthetically generated
images, and the training is performed in a self-supervised
manner using a contrastive objective. To the best of our
knowledge, this is first such work employing synthetic im-
ages for the IQA problem. Our contributions in this work
can be summarized as

1. We generated synthetic images using the dead leaves
(DL) [25] model. DL model is based on statistical
properties of natural images. It is a simplistic model
for image generation and computationally inexpensive.
During testing, model trained on DL data was evaluated
on real images with no additional fine-tuning.

2. We introduced an extension to the DL model by includ-
ing textures, and studied its influence on image quality
prediction. We observed that addition of textures al-
ways improved model performance.

3. DL images lack semantic information prevalent in nat-
ural images. In order to better understand the impact
of image semantics, a dataset containing anime images
was used for training, and the model performance was
observed to be better than that obtained using DL data.

4. Models trained with synthetic data achieved perfor-
mance comparable to SOTA IQA models on datasets
containing synthetic distortions.

2. Related Work
2.1. Blind Image Quality Assessment

The presence of diverse distortion types coupled with the
effects of image content on different artifacts makes blind
IQA a challenging task. NR models can be broadly cate-
gorized based on the design philosophy - traditional/hand-
crafted models, and deep CNN based models. Traditional
models generally contain a hand-crafted feature extraction
framework to obtain quality aware features and a regressor is
trained to map these features to quality scores. These include
Natural Scene Statistics (NSS) based models such as DI-
IVINE [35], BLIINDS [38], BRISQUE [33] and NIQE [34],
where deviations in the image statistics due to artifacts is
used for predicting quality. CORNIA [48] and HOSA [47]
employ a codebook based approach, where quality aware
representations are obtained using a visual codebook con-
structed from local patches.

Inspired by the successes of deep learning on various
computer vision tasks [16, 17, 42], many CNN-based based
models have been applied for NR-IQA achieving impressive
performances. The lack of large-scale datasets involving
image quality has led to use of transfer learning techniques,
whereby a pretrained model is fine-tuned using ground-truth
quality scores. Pretrained CNNs extract reliable semantic
features, and in [22] it was shown that these features are

also excellent indicators of image quality. DB-CNN [54]
used two separate CNNs to account for synthetic and real-
istic artifacts, respectively. In [50], a statistical distribution
of subjective scores was used during training yielding su-
perior quality estimates. PaQ-2-PiQ [49] model showed
that fine-tuning with both image and patch quality scores
can considerably improve model performance. In CON-
TRIQUE [29], a self-supervised training mechanism using
unlabeled dataset was shown to yield robust and accurate
image quality representations. All the above models employ
real images during training and testing, while here we focus
on employing synthetic images for training, and real images
for testing.

2.2. Synthetic Data for Training

Certain computer vision problems such as disparity esti-
mation, optical flow etc. have achieved remarkable successes
in using synthetic datasets for model training, and fine-tuning
on real world data. This is particularly beneficial for those
applications for which obtaining large-scale labeled datasets
is challenging and expensive. Synthetic datasets such as
Sintel [6], Flyingchairs [10], and Scene flow [32] have sig-
nificantly contributed towards improving stereo disparity [7]
and optical flow [42] estimation. Recently Achddou et al. [1]
employed images generated using dead leaves model for
training a deep CNN, and obtained competitive performance
on various image restoration tasks. Here we appraoch IQA
problem using synthetic data, which has not been explored
previously.

3. Method
Here, the goal is to learn effective representations us-

ing synthetically generated images which can be used to
predict quality of real images. Since artificially created im-
ages are used for training, there is no ground-truth quality
scores that can be used for training. Hence, a self-supervised
training methodology based on CONTRIQUE [29] model is
employed for feature learning. The whole training procedure
is illustrated in Fig. 1. In the following sections each module
present in the training pipeline is presented in detail.

3.1. Synthetic Image Generation

The first step is to create a database of undistorted syn-
thetic images. In the literature, obtaining synthetic images
using computer animation, and rendering using 3D graph-
ics software such as Blender1 has been extensively stud-
ied [6, 10, 32]. These images are created with the goal of
lending sufficient diversity and realism as observed in natu-
ral images. However, this typically requires a careful design
of contents in terms of background, color, objects present
in the scene, degree of textures etc. Here, we experiment

1https://www.blender.org/
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Figure 1. Illustration of training pipeline using synthetic images.

with Dead Leaves (DL) model, a simplistic image generation
model based on natural image statistics.

The DL model was originally proposed by Matheron
[31] to study morphological properties of materials, and
was later observed to exhibit many statistical characteristics
commonly seen in natural images [25]. In the DL model
it is assumed that the image is formed by a set of template
based objects whose locations are sampled from a Poisson
process, and are arranged in a layered manner with partial
occlusions. The marginal and joint derivative statistics of
these DL images was observed to be similar to that of natural
images [25]. Additionally, the power spectrum of DL images
showed inverse square variation with frequency, commonly
seen in natural scenes [12, 40].

Here, for obtaining DL images we follow the procedure
detailed in [1], using circular disks as template objects. The
radius r of circular disks is sampled from f(r) = Kr−3

distribution, where K is a normalizing constant. In [25] it
was shown that this constraint was essential to have statistics
similar to natural images. In order to have similar color his-
tograms as natural images, each disk was assigned colors by
randomly sampling from natural image color histogram. For
this purpose, a natural image was fed as input during image
generation (different scenes had different natural images).

3.1.1 Textured Dead Leaves

The expressive power of the original DL model can be en-
hanced by introducing textures to template objects present
in the DL model. From Fig. 2a it can be observed that the
images generated from the original DL model can contain
significant smooth regions. Since smooth regions have small
gradients, marginal gradient distributions are peakier when
compared to that of natural images, as can be observed in Fig.
3. Including textures has several advantages: (i) It boosts gra-
dient values, particularly in smooth regions. (ii) The statistics
of resulting textured DL images are closer to that of natural
images. This is illustrated in Fig. 3 where distributions are
visually as well as objectively (using Kullback-Liebler diver-
gence values) compared. Additionally, we also show in Sec.
4.2 that representations learned from textured DL images
yield better quality estimates. The textures were applied to
each circular disk separately using alpha blending with equal
weights on texture and background color. The textures were
randomly chosen from Brodatz texture database [5]. In Fig.
2, a sample DL image and corresponding textured version is
shown.

3.2. Auxiliary Task

An auxiliary task is an alternate but closely related task
for which ground-truth labels are either known or can easily
be obtained. Following the CONTRIQUE framework, the
auxiliary task is to obtain embeddings that can distinguish
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(a) DL Image (b) Textured DL Image

Figure 2. Sample DL image and corresponding textured version.

images based on distortion type as well as the degree of
degradations. This can be considered as a classification
problem with images afflicted with same distortion type and
degradation level categorized under the same class.

Let an undistorted synthetic image s be distorted by
di, i ∈ {1, . . . , D} with degradation degree lij , j ∈
{1, . . . , Li} resulting in a distorted image s̃ji . Here D and
Li denote number of distortion types and degradation de-
grees, respectively. Thus, this is a classification problem
with

∑D
i=1 L

i + 1 classes (total number of degradation lev-
els + one undistorted image). To extract features, the images
are fed to a deep model consisting of two parts: an encoder
and projector. An encoder can be any popular CNN archi-
tecture like Resnet [17] (with fully connected terminal layer
removed) and the projector is a multi-layer perceptron (MLP)
which reduces the dimensionality of the features produced
by the encoder. For a given image s ∈ R3×H×W

k = f(s), z = g(k) = g(f(s)) k ∈ RB , z ∈ RK (1)

where k is the B-dimensional output from the encoder. Sim-
ilar to [8, 15], the intermediate features k are L2 normalized
before feeding as input to the projector. In the last step, a
contrastive loss for image si is calculated as

Li =
1

|P (i)|
∑

j∈P (i)

− log
exp(ϕ(zi, zj)/τ)∑N

m=1 1m ̸=i exp(ϕ(zi, zm)/τ)
,

(2)

where N is the number of images present in the batch, 1 is
the indicator function, τ is the temperature parameter, P (i)
is a set containing image indices belonging to the same class
as si (but excluding the index i) and |P (i)| is its cardinality.
ϕ measures similarity between a pair of representations and
is calculated as a dot product ϕ(a, b) = aT b/||a||2||b||2.
The expression (2) is similar to the supervised contrastive
loss [20] with class labels derived from prior knowledge
about distortions.
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Figure 3. Comparison of distributions of spatial derivatives of natu-
ral and DL images. For plotting purposes 100 images from each
type were employed. For DL and textured DL distributions, KL-
divergence values with respect to natural images is also shown.

3.3. Multiscale Learning and Augmentations

Images, as well as artifacts present in them are multi-
scale, and for obtaining better quality estimates it is essential
to consider the effects of both local as well as global image
characteristics. To obtain more accurate quality estimates,
prior IQA methods [33–35, 46] have used feature extraction
at multiple scales. In the training pipeline, we employ im-
ages at two scales: full resolution, and half-scale resolution
obtained by downsampling by a factor of two. An anti-
aliasing filter is used before downsampling to avoid aliasing
artifacts as shown in Fig. 1.

The images are then randomly cropped to a fixed size
M × M . Although the cropped version can have differ-
ent perceived quality as the original image, we assume that
the distortion class remains the same. For each image two
cropped versions are obtained, one each at full-scale and
half-scale. The cropped versions are then subjected to two
augmentations : horizontal flipping and color space conver-
sion. Different color spaces are employed to extract com-
plementary quality information present in them. Four color
spaces RGB, LAB. HSV and grayscale along with a band-
pass transform obtained using local Mean-Subtraction (MS)
coefficients were randomly chosen for each crop of the in-
put image. Prior NSS based models [3, 14, 30, 43] have
also demonstrated the perceptual significance of using these
transformation for quality prediction. Note that the above
augmentations are quality preserving, whereby quality of
the input image remains unchanged on application of these
transforms.

The last step in the training pipeline involves partitioning
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the transformed image into non-overlapping patches of size
P ×P . This is done with the goal of capturing image quality
attributes in a more granular manner. These patches were
then fed as input to the encoder to obtain local representa-
tions and subsequently used in the loss function (2). Note
that we assumed that patches will inherit the same distor-
tion class labels as the original image, as was the case with
cropping operation.

3.4. Evaluating Representations

Once the model training is complete the last step involves
mapping learned embeddings to quality scores. The correla-
tions of human judgments against predicted quality scores
serve as a proxy for evaluating efficiency of the learned rep-
resentations. During evaluation, the projector network g(.)
is discarded and output k from encoder is used as image
features. An L2 regularized linear regressor (ridge regres-
sion) is trained on top of the frozen encoder network using
ground-truth quality scores from a suitable IQA database
for predicting quality. The expression for ridge regression is
given by

y = Wk, W ∗ = argmin
W

N∑
i=1

(GTi − yi)
2 + λ

M∑
j=1

W 2
j ,

(3)

where y denotes predicted scores, GT ground-truth quality
scores, λ is the regularization parameter, W is a trainable
vector having same dimensions as h, M is number of dimen-
sions of h, and N is the number of images present in the train-
ing set. During inference, all the features are computed at
the native resolution of the input image, and no data augmen-
tations are performed. Features are extracted at two scales :
full-scale and half-scale, and a concatenated version of these
two scales is used for regression. Note that no additional
fine-tuning of encoder using ground-truth quality scores is
performed as this can modify encoder weights, and will not
be a true indicator of the effectiveness of self-supervised
training process as well as the training data employed.

4. Experiments and Results

In this section we perform a series of experiments to in-
vestigate the effect of using synthetic data for training. First
we will describe experimental settings, evaluation procedure
and methods used for comparison. We then compare the
performance of models trained using synthetic data against
SOTA IQA models. Additionally, we also analyze the out-
come of using anime images for training. Lastly, we extend
the current model to a Full Reference (FR) setting where
features from both reference and distorted images are used
for predicting quality.

4.1. Experimental Details

Training Data

We generated 5000 DL images using the method detailed in
Sec. 3.1. The generated images were then corrupted with
D = 25 distortion types with each type having Li = 5 de-
grees of degradation. The distortion types and degrees were
same as those employed in KADIS [27] dataset. Interested
readers can refer to [27] for more details about distortion
types and degradation levels. Since there are 125 (25 × 5)
possible distortions for each image, the generated dataset
contains around 5000× 25 = 625, 000 images in total. This
results in 126 distortion classes (125 distortion classes + 1
undistorted type) that are used in the contrastive objective
(2).

Training Details

Resnet-50 [17] architecture (with fully connected layer re-
moved) was used as the encoder network g(.) and MLP with
2 hidden layers as projector network g(.). Both the hidden
layers of MLP contained 2048 neurons. The training was
done with a batch size of N = 512 and the sampled images
were randomly cropped to square blocks of size M = 256.
For local feature extraction the image crops were further
partitioned to patches of size P = 64, resulting in 4 patches
from each image crop. The temperature parameter used in
(2) was fixed at τ = 0.1 and dimension of final feature z
was chosen to be K = 128. Local representations were
calculated using adaptive average pooling layer at the end
of encoder module. The models were trained from scratch
for 25 epochs using a stochastic gradient descent (SGD)
optimizer having initial learning rate of 0.3 and cosine de-
cay schedule without restarts [28] and a linear warmup for
first two epochs. The implementations used in this work are
available here. 2

Compared Methods

We compared the performance of models trained on DL and
textured DL data against nine SOTA IQA models. The com-
pared methods include traditional models such as BRISQUE
[33], NIQE [33], CORNIA [48] and HOSA [47]. The
above models (except NIQE) use a support vector regres-
sor (SVR) for predicting quality. The compared methods
also contain deep learning based IQA models such as DB-
CNN [54], PQR [50], BIECON [21], HyperIQA [41] and
CONTRIQUE [29]. For numerical comparison of above IQA
models, we copied the numbers provided by the respective
authors or as available in the literature. Note that all the
above models are trained on real images with no presence of
synthetic images in their design framework.

2https://github.com/pavancm/CONTRIQUE_syn
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Table 1. Performance comparison of NR models on IQA databases containing synthetic distortions. In each column, the first and second
best models are boldfaced. Entries marked ’-’ denote that the results are not available.

Method LIVE-IQA [39] CSIQ-IQA [24] TID2013 [36] KADID [26]
SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

BRISQUE [33] 0.939 0.935 0.746 0.829 0.604 0.694 0.528 0.567
NIQE [34] 0.907 0.901 0.627 0.712 0.315 0.393 0.374 0.428

CORNIA [48] 0.947 0.950 0.678 0.776 0.678 0.768 0.516 0.558
HOSA [47] 0.946 0.950 0.741 0.823 0.735 0.815 0.618 0.653

DB-CNN [54] 0.968 0.971 0.946 0.959 0.816 0.865 0.851 0.856
PQR [50] 0.965 0.971 0.872 0.901 0.740 0.798 - -

BIECON [21] 0.961 0.962 0.815 0.823 0.717 0.762 - -
HyperIQA [41] 0.962 0.966 0.923 0.942 0.840 0.858 0.852 0.845

CONTRIQUE [29] 0.960 0.961 0.942 0.955 0.843 0.857 0.934 0.937
Dead Leaves 0.940 0.941 0.852 0.873 0.703 0.731 0.776 0.774

Textured Dead Leaves 0.950 0.951 0.920 0.930 0.751 0.776 0.820 0.820

Figure 4. Sample images from the Danbooru database

Evaluation Criteria

Spearman’s rank order correlation coefficient (SROCC) and
Pearson’s linear correlation coefficient (PLCC) were the
evaluation metrics used for comparing IQA models. The
predicted scores were fed to a four parameter logistic non-
linearity [44] before calculating PLCC.

For evaluation we used four IQA databases containing
synthetic distortions : LIVE-IQA [39], CSIQ-IQA [24],
TID [36] and KADID [26]. These datasets contain images
corrupted with synthetic distortions along with correspond-
ing human opinion scores. For calculating weights of the lin-
ear regressor, each dataset is randomly divided into 70%,10%
and 20% sets corresponding to training, validation and test-
ing, based on reference image to avoid overlap of contents.
The above procedure was repeated 10 times with different
train-test combinations to avoid any bias on the choice of
training contents, and the median performance is reported.

4.2. Correlation Against Human Judgments

In Table 1 we compare the performance of IQA models
across four databases. Since models trained on synthetic data
are based on CONTRIQUE framework, they are clustered
together for ease of comparison. From the Table we can
derive two important conclusions. (i) Using textured dead

Table 2. SROCC performance comparison of model trained on the
Danbooru dataset against models trained on dead leaves trained
data. In each column, the top performing model is boldfaced.

Model LIVE-IQA CSIQ-IQA TID KADID

CONTRIQUE 0.960 0.942 0.843 0.934
Dead Leaves 0.940 0.852 0.703 0.776

Textured 0.950 0.920 0.751 0.820Dead Leaves
Danbooru 0.960 0.942 0.790 0.910

leaves data almost always improves performance. (ii) The
performance difference between CONTRIQUE and models
trained on synthetic images demonstrate the domain gap be-
tween real and dead leaves images. Notably, on LIVE-IQA
and CSIQ-IQA datasets this gap relatively low, especially
when trained with textured DL data. Also from Table 1 it
can be seen that models trained on DL data outperform most
traditional IQA models, suggesting that the learned repre-
sentations from synthetic data more accurately represent
perceptual quality than handcrafted features.

4.3. Training with the Danbooru dataset

We analyzed the significance of using synthetic images
generated from dead leaves model in Table 1. In this ex-
periment we investigate the effect of using other type of
synthetic images obtained by a different generative model.
In particular we use Danbooru [2] dataset, which is a large-
scale collection of anime images containing in excess of 4
million images. Sample images present in this dataset are
shown in Fig. 4. The motivation behind using this dataset is
to study the importance of image semantics on IQA as anime
images contain more semantic information than dead leaves
images. The images present in this database are of high
quality with 512 × 512 resolution and contains images of
popular anime characters. We randomly sample 5000 images
from this dataset, and artificially degrade them following the
same procedure employed for DL images, obtaining a total
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Table 3. Full Reference performance comparison across 4 IQA databases. In each column, the first and second best models are boldfaced.
Entries marked ’-’ denote that the results are not available.

Method LIVE [39] CSIQ-IQA [24] TID2013 [36] KADID [26]
SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

PSNR 0.881 0.868 0.820 0.824 0.643 0.675 0.677 0.680
SSIM [45] 0.921 0.911 0.854 0.835 0.642 0.698 0.641 0.633
FSIM [52] 0.964 0.954 0.934 0.919 0.852 0.875 0.854 0.850
VSI [51] 0.951 0.940 0.944 0.929 0.902 0.903 0.880 0.878

PieAPP [37] 0.915 0.905 0.900 0.881 0.877 0.850 0.869 0.869
LPIPS [53] 0.932 0.936 0.884 0.906 0.673 0.756 0.721 0.713
DISTS [9] 0.953 0.954 0.942 0.942 0.853 0.873 - -

DRF-IQA [23] 0.983 0.983 0.964 0.960 0.944 0.942 - -
CONTRIQUE-FR 0.966 0.966 0.956 0.964 0.909 0.915 0.946 0.947

Dead Leaves 0.948 0.948 0.931 0.932 0.791 0.816 0.869 0.868
Textured Dead Leaves 0.950 0.950 0.945 0.950 0.842 0.853 0.898 0.900

Danbooru 0.962 0.962 0.950 0.957 0.880 0.891 0.935 0.937

of 625,000 distorted images. In Table 2, the performance
of the Danbooru trained model is compared against other
models, and it can be seen that it outperforms DL trained
models. These results indicate that training data containing
better semantic information can be beneficial in obtaining
more accurate image quality representations.

4.4. Full-Reference IQA

Similar to CONTRIQUE, the learned representations can
be employed in an FR setting with no additional training of
the encoder module. This is accomplished by incorporating
reference features in the regressor as

y = W |kref − kdist|,

W ∗ = argmin
W

N∑
i=1

(GTi − yi)
2 + λ

M∑
j=1

W 2
j ,

(4)

where absolute difference between the features of refer-
ence and distorted images is used for predicting quality.
The performance of FR-IQA models is compared in Ta-
ble 3. Similar evaluation protocol of dividing datasets into
70%,10%,20% as training/validation/testing sets, respec-
tively based on content, was followed. The train-test di-
vision was repeated 10 times and median correlation values
are reported. Nine SOTA FR-IQA models were included for
performance comparison : PSNR, SSIM [45], FSIM [52],
VSI [51], PieAPP [37], LPIPS [53], DISTS [9], DRF-IQA
[23] and CONTRIQUE-FR [29]. From the Table 3 we can
make similar observations as seen in the No-Reference case,
where training with Danbooru data performed better than
that using DL data, emphasizing the importance of semantic
information for training.

5. Drawbacks of Using Synthetic Images
In the previous sections we analyzed the model perfor-

mances on synthetically distorted IQA datasets. Every dis-
torted image in these databases was corrupted by a ’single’

distortion type. However, if we consider images with real-
istic distortions such as User Generated Content (UGC) im-
ages, a combination of multiple distortions is involved. Mod-
els which are trained on synthetic data often under-perform
when evaluated on UGC datasets as can be seen in Table
4, where performances across 4 IQA datasets KonIQ [18],
CLIVE [13], FLIVE [49] and SPAQ [11] containing authen-
tic distortions are compared. We hypothesize that two fac-
tors might have contributed to this performance gap. Firstly,
the training data contains distorted images which only have
’single’ types of corruption. Thus there exists a significant
domain gap in terms of synthetic and authentic distortions
resulting in lower performance. Artificially replicating au-
thentic distortions is hard, as they often contain diverse mix-
tures of unknown distortions. Secondly, image semantics
play a major role in quantifying realistic distortions [22, 41].
Thus, the lack of sufficient semantic information might also
be a contributing factor of the performance degradation.

6. Conclusion and Future Work

In this work we investigated the effect of using synthetic
data in an unsupervised training framework for learning ef-
fective image quality representations. A synthetic image
dataset from dead leaves model was generated, and discrimi-
nating distortion type and degree was used as an auxiliary
task to train a deep CNN model. We conducted holistic
evaluation on multiple IQA databases and analyzed the sig-
nificance of texture and semantic information in predicting
image quality. We also highlighted the drawbacks of employ-
ing models trained with synthetic data on images corrupted
with realistic distortions. As part of future work we plan
to explore adding multiple distortions to the training data
similar to LIVE multiply distorted dataset [19], and analyze
its effect on quantifying realistic distortions.
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Table 4. Performance comparison of NR models on IQA databases containing authentic distortions. In each column, the first and second
best models are boldfaced. Entries marked ’-’ denote that the results are not available.

Method KonIQ [18] CLIVE [13] FLIVE [49] SPAQ [11]
SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

BRISQUE [33] 0.665 0.681 0.608 0.629 0.288 0.373 0.809 0.817
NIQE [33] 0.531 0.538 0.455 0.483 0.211 0.288 0.700 0.709

CORNIA [48] 0.780 0.795 0.629 0.671 - - 0.709 0.725
HOSA [47] 0.805 0.813 0.640 0.678 - - 0.846 0.852

DB-CNN [54] 0.875 0.884 0.851 0.869 0.554 0.652 0.911 0.915
PQR [50] 0.880 0.884 0.857 0.882 - - - -

HyperIQA [41] 0.906 0.917 0.859 0.882 0.535 0.623 0.916 0.919
CONTRIQUE 0.894 0.906 0.845 0.857 0.580 0.641 0.914 0.919
Dead Leaves 0.812 0.826 0.671 0.700 0.460 0.500 0.870 0.877

Textured Dead Leaves 0.820 0.835 0.677 0.700 0.485 0.528 0.872 0.879
Danbooru 0.841 0.851 0.715 0.717 0.520 0.540 0.886 0.893
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