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(a) Content & Style  (b) Neural style [10] (c) DPST [18]

(f) DILIE (ours)

(d) weT2 [40] (e) STROTSS [14]

Figure 1: The figure shows that DILIE framework outputs images with better perceptual quality. The style image is shown at the left
corner of content image. The first row shows that DILIE output image with minimum haze corruption for hazy image enhancement. The
second row shows that DILIE output images with better clarity for noisy image enhancement.

Abstract

We consider the generic deep image enhancement prob-
lem where an input image is transformed into a perceptually
better-looking image. The methods mostly fall into two cat-
egories: training with prior examples methods and training
with no-prior examples methods. Recently, Deep Internal
Learning solutions to image enhancement in training with
no-prior examples setup are gaining attention. We perform
image enhancement using a deep internal learning frame-
work. Our Deep Internal Learning for Image Enhancement
framework (DILIE) enhances content features and style fea-
tures and preserves semantics in the enhanced image. To
validate the results, we use structure similarity and percep-
tual error, which is efficient in measuring the unrealistic
deformation present in the images. We show that DILIE
framework outputs good quality images for hazy and noisy
image enhancement tasks.

1. Introduction

Deep image enhancement is an ill-posed problem that
aims to improve the perceptual quality of an image using
a deep neural network [16, 39, 35, 37]. An image could
be considered as the composition of content features and
style features. The content features denote the objects, their
structure, and their relative positions. The style features rep-
resent the color and the texture information of the objects.
Deep image enhancement aims to improve the quality of the
content and the style features.

Performing deep image enhancement without using prior
examples of training data was proposed as an open problem
[41]. The prior examples are related to supervised learning
tasks that use clean and corrupted image pairs to perform
image restoration. Recently, Deep Internal Learning (DIL)
methods have shown how to use deep convolutional neural
networks to perform image restoration and image synthesis
without using prior examples [34, 9, 20, 30, 29]. DIL is
different from training data-based methods that use prior
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examples to supervise the image enhancement task [23, 13].

Let us discuss an example of a deep image enhancement
task. Suppose I denotes a hazy image. The haze particles
degrade content features and style features. The content fea-
tures are corrupted because haze particles reduce the clarity
of the structure of the objects. The style features are cor-
rupted due to gray and blueish patterns introduced by haze.
The image enhancement task is to improve the perceptual
quality of the hazy image I.

The enhancement of content and style features of hazy
image I may draw inspiration from the image restoration
and the style transfer methods. One strategy is to utilize the
content features from I and transferring the photo-realistic
features from a style image S. The interesting observation
here is that maintaining the balance between the content fea-
ture and the style feature is challenging (Fig. 6).

We formulate a generic framework called Deep Internal
Learning for Image Enhancement (DILIE) (Algorithm 1).
It does not use prior examples of training data to perform
image enhancement. Fig. 1 shows the hazy and noisy im-
age enhancement tasks using DILIE. The good perceptual
quality of DILIE framework is due to the ability of CNN
to learn good quality image statistics from a single image
[34, 9, 30, 21].

We illustrate DILIE framework in Fig. 2 for hazy image
enhancement!. Given the degraded image I as input, the
aim is to generate the enhanced image I*. The main idea
is to formulate the content feature enhancement (CFE) and
the style feature enhancement (SFE) models separately for
generalizability. Fig. 2 shows CFE decomposes the hazy
image I into environmental haze layer H and haze-free im-
age I°/¢. SFE transfers photo-realistic features from style
image S to I¢f¢.

The content feature enhancement is performed based on
the type of corruption. CFE module for image dehazing is
modeled using the image decomposition model. CFE mod-
ule for image denoising is modeled using image reconstruc-
tion model. The image decomposition model performs joint
optimization to separate the degraded image into clean and
corrupted features. Image reconstruction generates a clean
image with pixel-based reconstruction loss. Both these ap-
proaches rely upon the strong image prior captured by the
encoder-decoder network [34].

The aim of SFE is to transform the input image (con-
tent) into a visually appealing output image by transferring
style features from the style image. SFE is modeled based
on the desired style specification, i.e., photo-realistic style
transfer [18, 40] or artistic style transfer [14]. Note that
the distortions in the style transfer output lead to a lack of
photo-realism. We measure the deformations using percep-
tual error Pieapp [26] computed between the content image

'We describe DILIE framework for noisy image enhancement in the
supplementary material.

and the output image. DILIE output images with low per-
ceptual error and better visual quality (Table 1).

DILIE preserves the semantics of the input image using
the contextual content loss denoted by Lc,. The contex-
tual content loss compares context vectors between input
corrupted image and enhanced image. The context vec-
tors represent high-level semantics information. The con-
text vectors are extracted using pre-trained feature extractor
VGG19 [23]. Fig. 2 illustrates L1, is computed between [
and 7¢/¢ to preserve the contextual content features in 1°/¢.
We describe DILIE framework in Sec. 3.

Contributions. The major contributions are as follows.

* We propose a generic framework (DILIE) that addresses
corruption-specific image enhancement using image re-
construction, image decomposition, and photo-realistic
feature enhancement (Algorithm 1).

* We show image enhancement for the challenging sce-
nario where photos were taken in hazy weather (Fig. 3
and Fig. 4). We also perform enhancement of the noisy
images (Fig. 5).

* DILIE shows that utilization of contextual features im-
proves image dehazing (Table 2). DILIE outputs images
with good visual quality and lower perceptual error (Ta-
ble 1 and Fig. 6). We also show the limitation of DILIE
framework (Fig. 8).

2. Related Work

Deep Internal Learning. DIL aims to learn the inter-
nal patch distribution and utilize the deep image prior
to perform image restoration [34, 9] and image synthesis
[20, 30, 29] For simplicity, we divide DIL approaches into
two categories: DIL methods that use Generative Adversar-
ial Networks (GANSs) [36, 20, 30, 29] and DIL methods that
do not use GAN [34, 9]. DIL is similar to Zero-reference
method (ZR) [11] that does not require any paired or un-
paired training data. It is interesting to note that ZR [11]
uses example images of different exposure levels to train
DCE-Net for low-light image enhancement. DILIE does not
use task-specific reference images for image enhancement.
DILIE uses a pretrained feature extractor (VGG19) trained
on image classification, which makes it different from other
DIL methods [34, 9, 30, 29].

Content Feature Enhancement. CFE is performed us-
ing image reconstruction and image decomposition models.
Image reconstruction models use an encoder-decoder net-
work (ED) to perform denoising, super-resolution, and in-
painting [34]. Dehazing is formulated as an image decom-
position problem [9], where ED separates the image layer
and haze layer. For simplicity, image dehazing could be
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Figure 2: Hazy Image Enhancement. The figure shows DILIE framework for hazy image enhancement. Hazy image I is transformed
into an enhanced image I™. The left side shows the content feature enhancement (CFE) and the right side shows the style feature enhance-
ment (SFE). CFE performs image decomposition to output haze-free image 7°¢, transmission map M and haze layer H. VGG19 network
¢ is used to extract features to compute contextual content loss Lc 1., content loss L¢, and style loss £5. Image decomposition loss L;p
is a pixel-based loss (Eq. 3). SFE improves style features using content loss L¢ and style loss Ls.

classified into classical [6, 8, 12, 33], supervised method
using deep learning [15], and unsupervised methods [9].

Style Feature Enhancement. Gatys et al. proposed
Neural style [10] for style feature enhancemnt. Luan et
al. [18] improved Neural style [10] for photo-realism.
WCT?2 enhances photorealism using wavelet transforms
[40]. STROTSS [14] uses optimal transport for more gen-
eral style transfer.

3. Our Approach

DILIE is a unified framework to restore the content fea-
tures and synthesizes new style features for image enhance-
ment. We have provided the DILIE framework in Algo-
rithm 1. For simplicity, DILIE framework is described as
follows (Eq. 1).

I* =DILIE(I, [, S, 6, a, B). (1

Here, I denotes the input image and I* is the output en-
hanced image. The encoder-decoder network f is used for
the reconstruction or decomposition of input I. The style
image S is used to enhance the style features of image I.
The VGG19 network ¢ is used for image context learning
[19] and the style features enhancement [10, 14]. DILIE
framework performs content feature enhancement (CFE)
and style features enhancement (SFE) separately. « and
are the parameters used for CFE and SFE. CFE enhances
content features by learning deep features using encoder-
decoder f. SFE uses the style image .S for photo-realistic
and artistic feature enhancement.

Fig. 2 illustrate CFE and SFE procedures for hazy image
enhancement. The input is a hazy image I and the output is

Algorithm 1: Deep Internal Learning for Image Enhance-
ment (DILIE).

1 DILIE (I, f,S,¢,a,0):

2 I°/¢ = CFE((I, f, ¢, )

3 if S then

4 I* = SFE(I'¢, S, ¢, 8)
5 output [*

6 else

7 L output 1/ as I*

8 CFE (I, f,¢,a):

9 if « = 1 then

10 ‘ Ife = ID(I, f, $) > Image Decomposition.
1 else

12 L I¢° = IR(1, f) > Image Reconstruction.
13 return 7°/¢

14 SFE (I°f¢. S, ¢.5):
15 if 5 = 1 then

16 ‘ I = PE(ICfe, S, @) > Photorealistic Style.
17 else

18 L I* = AE(I/°, S, ¢) > Artistic Style.

19 return [”*

an enhanced image I* (Eq. 1). CFE aims to separate a hazy
image I into its underlying haze-free content image I¢/¢
and haze layers H. SFE aims to improve the style features
of computed content image 7°/¢. Formally, CFE performs
image decomposition to separate hazy image I into content
image [ cfe haze layer H, and transmission map M. Here,
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M is a mask that is used to compute the reconstruction of 1
from I°/¢ and H. The reconstruction of I is compared with
I using image decomposition loss L;p to preserve relation-
ship between 1¢/¢, H, and M. Finally, SFE takes haze-free
content image 1°/¢ as input to compute the final enhanced
image as I*.

Algorithm 1 highlights CFE and SFE procedures. CFE
performs content features enhancement by image decompo-
sition or image reconstruction models. SFE performs style
feature enhancement using a photo-realist style or artistic
style. We describe CFE in Sec. 3.1 and SFE in Sec. 3.2.

3.1. Content Feature Enhancement

CFE could be majorly performed in the following two
ways: image reconstruction (IR) and image decomposition
(ID). The formulation of content feature enhancement is
given in Eq. 2.

I1°7¢ = CFE(I, f, ¢, ). 2)

Here, I¢f¢ denotes the output of the content feature en-
hancement. The structure of the encoder-decoder network
f provides an implicit image prior for the restoration of im-
age features [34]. The corruption-specific image prior en-
ables diverse applications. For example, dark channel prior
for the image dehazing [9, 12] and encoder-decoder without
skip connections as denoising prior [34]. The VGG network
¢ is used to extract the contextual features to compute the
contextual content loss for preserving the context of image
I in CFE output [23]. The parameter o denotes whether
CFE is used to model image decomposition (o« = 1) or re-
construction (« = 2).

3.1.1 Image Decomposition

Image decomposition (ID) improves the quality of images
by separating image features and corrupted features. Sup-
pose an image I as a combination of image feature layer
and environmental noise. ID separates I into the image fea-
tures layer 7°/¢ and the image corruption layer D, where
the separation is determined by a mask M. In the image
dehazing (Sec. 4.1), the mask is a transmission map that de-
termines image features 1¢/¢ and airlight H (i.e., corruption
layer D). ID is defined in Eq. 3.

(9230;79:1) = argmin ‘CID(I;fec7fad7f‘9m,)' (3)
(ecgedﬁm)

Here, £;p denotes the image decomposition loss. fg,_, fo,,
and fg, , are the instances of encoder-decoder network. 6.
is the parameter of image content layer, 64 is the param-
eter of distortion layer, and 0,,, is the parameter of mask
M. z., z4, and z,, are random vectors that are the inputs

for the networks. Formally, Eq. 3 models the joint opti-
mization to compute /¢ = fy.(z.), D = fg=(z4), and
M = fp- (2m). We have shown L;p in Eq. 4.

Lip(I; foo, fous for) =H(fem(zm) ® fo.(zc)
+ (1= for,(2m)) © fo,(2a)) (4
- IH

Here, ® denotes Hadamard product. Eq. 4 shows that
the layer separation is achieved by composing image [
from image features I°/¢ = fox(zc) and corruption layer
D = fo:(za), and then minimizing pixel-wise differences.
We will discuss the image decomposition for hazy image
enhancement in Sec. 4.

The image decomposition in Eq. 4 does not consider con-
text of the input image. The abstract information of content
features represents the context of the image, i.e., objects and
their relative positions. The features extractor ¢ (VGG19)
is used to preserve the context of the image using contex-
tual content loss. The content features are mostly present at
the higher layers of feature extractor ¢ denoted by ¢¢ and
the style features are mostly contained at the initial layers
denoted by qbs [10]. The contextual content loss L, is de-
fined between the content features of I and 1¢/¢ = fy_(2.)
as given in Eq. 5.

Ler(I,¢; fa.) = —log CX (¢ (fo.(2c)), 0 (I)). (5)

Here, C'X denotes the contextual similarity [23]. CX
is computed by using the cosine distance between fea-
ture vectors. C'X is computed by finding for each feature
#% (fo.(2c)): of the image I°7¢, the contextually similar
feature ¢ (I); of the corrupted image I, and then sum over
all the features in ¢© (fp_(z.)). We call the strategy above
as the contextual similarity criterion. The key observation is
that high-level content information (image context) is simi-
lar in both I¢/¢ and I. £, maximizes the contextual sim-
ilarity between 1¢7¢ and I to improve performance.

3.1.2 Image Reconstruction

Image reconstruction model (IR) uses encoder-decoder
(ED) denoted by fy, to reconstruct the desired image, where
0, is the network parameters. Suppose z,. is input to the net-
work fp, . IR model is described in Eq. 6.

0* = argmin L;g(7; fo,),
0
where Lrr(1; fo,) = || fo(z) = T(I)||.

Here, L is the reconstruction loss and 7 is the image
transformation function. The output of CFE in image re-
construction is /¢ = fy.(z,). Note that 7 varies based

(6)
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on the application under consideration. For example, 7 is
an identity function for denoising and 7 is a downsampling
function for super-resolution [34]. The encoder-decoder
network fy_in Eq. 6 is observed to provide an implicit prior
for image feature enhancement [34].

3.2. Style Feature Enhancement

We described that CFE enhances the content features of
I. SFE aims to improve style features and output the en-
hanced image I* given the CFE output 1¢/¢. SFE transfer
the style features to 1¢7¢ using style image S. We define
SFE in Eq. 7.

Ir :SFE(ICfeaSafv(ba/B)' (7)

Here, I* is the enhanced image and S is the reference style
image. [ represents the type of feature enhancement, i.e.,
photo-realistic (8 = 1) or painting style artistic (5 = 2).

The style features enhancement is performed using the
content loss Lo and style loss L£g. The content loss
Lc is defined between the content feature representations
¢ (I¢/¢) extracted from /¢ and the content feature rep-
resentations ¢ (I*) extracted from I*. The content loss is
given by Lo = L(¢9(1¢7¢),¢%(I*)). The style loss
Lg is computed between the style feature representations
#°(9) extracted from S and the style feature representation
¢%(I*) of I*. Formally, L5 = L(¢°(S),¢°(I*)). We
provide the detailed description of L& and Lg in the sup-
plementary material.

SFE could be considered as photo-realistic or artistic fea-
tures enhancement. The photo-realistic feature enhance-
ment (PE) is aimed to minimize the distortion of object
boundaries and preserve photo-realism using loss Lpg. In
contrast, the artistic feature enhancement (AE) allows small
deformations to achieve an artistic look using loss £ 4.

3.2.1 Photo-realistic Feature Enhancement

The photo-realism characterization in the image is an un-
solved problem [18]. The enhancement of the photo-
realistic features is based on the observation that if the in-
put image is photo-realistic, then those features could be
retained [18]. The image with lower perceptual errors is
observed to be more photo-realistic [26]. Therefore, the
quality of photo-realism in the output /* is measured by
the perceptual error score PieAPP [26].

The total loss for PE is defined as Lpg = L, + p X
Lc + k X Lg, where 1 and k are the coefficients for the
content loss L and the style loss Lg. The affine loss £,
preserves the object structure while transforming the style
features. More specifically, affine loss uses Matting Lapla-
cian M jcr. of the input 7°/¢ [18], where M .. represents
the grayscale matte for the content features. Intuitively, the

affine loss function transforms the color distribution of I*
while preserving the object structure.

3.2.2 Artistic Feature Enhancement

We described that small image feature deformation could be
present in the artistic style transfer. Therefore, the strategy
is to match the distribution of the style and the content fea-
tures and do not use the affine loss to reduce deformations
in I*.

The total loss for AE is defined as Lap = pu X Lo +
Kk X Lg, where u and k are the coefficients for the con-
tent loss L and the style loss £g5. We use relaxed earth
mover distance (EMD) to match the image feature distribu-
tion [14]. The EMD loss preserves the distance between all
the pairs of features extracted from the VGG19 ¢ to allow
pixel value modification for style features while preserving
the structure of the objects.’

4. Applications
4.1. Hazy Image Enhancement

Pictures taken in the hazy weather may lack scene infor-
mation such as contrast, colors, and object structure. The
image degradation model [38] for the hazy image is shown
in Eq. 8.

I(p) =1(p) x M(p) + H(p) x (1 — M(p)). (8)

Here, p is the pixel location and I is the degraded obser-
vation. I is the haze-free image and M is the transmission
map. Intuitively, the hazy image I could be considered as a
haze layer H superimposed on the true scene content I.

Image dehazing can be formulated as a layer decomposi-
tion problem to separates the hazy image () into a haze-free
image layer (/ cfey and a haze layer (H), where [ cfe is the
approximation of haze-free image I. We have discussed the
generalized image decomposition framework for image en-
hancement in Eq. 3 (Sec. 3). We show its applicability for
hazy image enhancement in Eq. 9 (Fig. 2).

(0%,65,065,) = argmin Lrp(1; fo,, fo,, fo,,)
(0c,0n,0m) 9)

+Ler (I, ¢ fo.).

Here, £;p is for image decomposition (Eq. 3) and Lc 1,
is for preserving image context (Eq. 5). 6}, represents the
parameters for haze layer. The transmission map M =
fo: (2m) separates the haze-free image 1 cfe = Jox () and
the atmospheric light ' = fg: (25). The joint framework is

aimed to estimate [ and H preserving their relations.

2We provide more details of DILIE framework in the supplementary
material.
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(a) Content & Style  (b) Neural style [10] (c) DPST [18] (d) WCT2 [40] (e) STROTSS [14] (f) DILIE (ours)

Figure 3: Hazy Image Enhancement (outdoor). The content image contains haze and the style images are clear images (photo-realistic).
Neural style [10] deforms the geometry of the objects. DPST [18] does not distribute image features well. WCT?2 [40] output contains

haze corruption, as shown by white spots. STROTSS [14] does not preserve fine image features details. It could be observed that DILIE
(ours) output images with better visual quality.

(a) Content & Style  (b) Neural style [10] (c) DPST [18] (d) WCT2 [40] (e) STROTSS [14] (f) DILIE (ours)

Figure 4: Hazy Image Enhancement (indoor). The figure shows the image feature enhancement of the indoor scene. It could be
observed that DILIE outputs images with good quality (see the cropped images).

(a) Content & Style  (b) Neural style [10] (c) DPST [18] (d) WCT2 [40] (e) STROTSS [14] (f) DILIE (ours)

Figure 5: Noisy image enhancement. The figure shows image enhancement for content images containing noise with strength o = 0.25
using artistic style images.

Neural [10] | DPST [18] | WCT2 [40] | STROTSS [14] | DILIE
I-Haze [2] 3.80 3.33 3.52 291 2.78
O-Haze [3] 3.00 2.71 2.88 2.81 2.55
Denoising 100 5.00 4.98 4.53 4.82 4.27

Table 1: The table shows that DILIE (ours) performs image enhancement with minimum perceptual error PieAPP [26].

AODNet [15] | MSCNN [27] | DcGAN [17] | GFN [28] | GCANet [4] | PFFNet [24] | DoubleDIP [9] | DILIE (ours)
I-Haze [2] 0.732 0.755 0.733 0.751 0.719 0.740 0.691 0.790
O-Haze [3] 0.539 0.650 0.681 0.671 0.645 0.669 0.643 0.705

Table 2: The table shows SSIM comparison for dehazing of I-Haze and O-Haze dataset. DILIE outperforms other methods in comparison.

The main goal of Eq. 9 is to separate image features and into haze layer H. Similarly, the image features of I have
haze features based on the semantics. The characteristics of similar characteristics and get separated into the haze-free
haze particles in I are similar. Therefore, they accumulate image layer 7¢/¢. We have discussed contextual content
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(a) Clean Image I (b) Hazy Tmage T

(c) Style Image S

(d) DPST [18]
455

H:0.45

(e) WCT2 [40] (f) STROTSS [14] (g) DILIE (ours)
H:0.943 H:0.876 H:0.350

Figure 6: Ablation Study (I). The figure highlights the corruption of image features due to the haze in the enhanced output images. The
style features (color information) of the outputs get affected by haze even when the input style image does not contain haze particles. H
denotes the relative perceptual error due to haze computed using PieAPP [26]. DILIE output image with the minimum perceptual error and

minimum effect from the haze.

loss Lcr given in Eq. 5 matches the contextual similarity
between features. Lo improves the performance of the
layer decomposition framework.

Fig. 3 shows the image enhancement of the outdoor
scene and Fig. 4 shows the enhancement of the indoor
scene. The outdoor scenes mostly contain clouds and trees
and the indoor images mostly contain objects present in
the household. The hazy image enhancement improves the
quality of image features of hazy outdoor and indoor scenes.

Table 1 shows that DILIE output images with better
perceptual quality for hazy image enhancement’. Table 2
shows that DILIE achieves a good Structural Similarity In-
dex (SSIM) for image dehazing. It is interesting to observe
that the generalisability of DILIE (ours) allows good perfor-
mance for both content feature enhancement (image dehaz-
ing) and style feature enhancement (hazy image enhance-
ment).

Fig. 6 shows that if the input image contains haze par-
ticles, then the haze information gets incorporated into the
output even when S does not include haze information. Ide-
ally, the output should contain the content features from 1
and style features from S. The hazy image enhancement
highlight that preserving a perceptually good balance be-
tween the style and the content features is challenging. CFE
module removes haze features so that the final output I* has
less influence due to bad weather conditions.

4.2. Noisy Image Enhancement.

Denoising aims to recover a clean image from a noisy
observation. The image degradation model for the noisy
image is given as I = I + €. Here, I the noisy image, Iis
the clean content image, and ¢ is the additive noise.

Image denoising is formulated as image reconstruction,
where an encoder-decoder f reconstructs the clear image
I¢f¢ from the noisy observation I. The network f provides

3We used implementation of Neural style provided in [32], Tensorflow
implementation of DPS given in [1], contextual loss implementation in
[22], STROTSS implementation in [25], and WCT?2 implementation in [5].
‘We have provided more visual comparisons in the supplementary material.

a high impedance to noise and allows image features [34].
We have discussed the generalized framework for image re-
construction using transformation 7 in Eq. 6. Image de-
noising is performed by taking 7 to be identity function as
given in Eq. 10.

I°7¢ = fy(z), where, 6* = argmin| fo(z) — I||. (10)
0

Here, the restored image 1°7¢ = fy(2) is the approxima-
tion of 1. The reconstruction loss given in Eq. 10 is itera-
tively minimized, and early stopping is used to get the best
possible outcome before the network over-learn the noisy
features.

We make noisy image enhancement more challenging by
using the style and the content images containing noise with
the strength 0 = 0.25. We show the output images in Fig. 5.
It could be observed that DILIE gets a better distribution of
features with better clarity (see cropped images). We have
shown a quantitative comparison in Table 1. It can be ob-
served that DILIE outperforms other methods in compari-
son.

(a) Content (b) Styles  (c) Output-1

(d) Output-2

Figure 7: Ablation Study (II). The figure shows image en-
hancement of content image with two different style images using
DILIE. Output-1 is with style image at the bottom and Output-2 is
with style image at the top.

5. Ablation Studies

Fig. 6 illustrates that DILIE output images with less en-
vironmental noise. The quantitative comparison for haze
corruption is described as follows. Consider the hazy im-
age I, haze-free image I, and the style image S (Fig. 6).
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(a) Content

(b) Style (c) DILIE

Figure 8: Limitation. The figure shows weather change, where
the content image is a hazy scene and the style image is a rainy
scene.

The difference of image features between I and I is due to
the haze. Let ST(y, z) denote the style transfer of content
y using style z. Fig. 6 shows that when performing ST be-
tween I and S, the output image is observed to have haze
corruption even when S does not have haze information.

To quantify haze corruption, let E(w, x) denote the per-
ceptual error [26] between image w and image x. The rel-
ative error H = |E(I, ST(, S)) — E (I, ST(I, S))|| with
reference to haze-free image I measures the deformations
caused by haze in ST(Z, S) by comparing ST output of the
clean image I and the corrupted image I using perceptual
error PieAPP [26].

Fig. 6 shows that DILIE output image with minimum
perceptual error H. It could also be observed visually that in
WCT?2 [40] output contains haze corruption. DPST [18] and
STROTSS [14] outputs also have haze effects when looking
carefully. DILIE has the minimum haze effect *.

Fig. 7 shows the results which are produced by the pro-
posed framework with the same input but different reference
images. Here, Output-1 is from the hazy content image and
style-1 image (bottom). Output-2 is from the hazy content
image and style-2 image (top). DILIE achieves image en-
hancement of the hazy image by incorporating a variety of
style features.

6. Limitation

Fig. 8 shows the limitation of DILIE. The content image
is a hazy image and the style image is a rainy image. The
challenges are haze removal and improvising style features
from a rainy scene with preserving object structure. The
image features are not very clear in the output image. It
could be because both style and content images have a high
degree of corruption. We propose as future work to perform
image enhancement when both content and style images are
of bad weather conditions.

4We discuss the ablation study more in the supplementary material.

7. Implementation Details

DILIE uses instances of encoder-decoder networks (ED)
for content feature enhancement. We used depth-5 encoder-
decoder network (ED) in our experiments. Fig. 2 shows
that hazy image enhancement uses three instances of ED
networks for the separation of haze from image features.
These ED networks do not share weights. ED uses convo-
lution with strides for downsampling. For upsampling op-
eration, we used bilinear upsampling and nearest neighbor
upsampling.

We used pre-trained VGG19 as the feature extractor de-
noted by ¢ [10, 31]. VGGI19 network extract style fea-
tures, content features, and contextual features for image
enhancement. It is interesting to note that VGG19 net-
work is pre-trained for the image classification task on
the ImageNet dataset [7]. We used the following lay-
ers of ¢: convl_2, conv2_2, conv3_2, and conv4_2. The
content features are $“={conv4 2} and style features are
¢ ={conv1_2, conv2_2, conv3_2} (Fig. 9).

maxpool

~ maxpool

maxpool

maxpool maxpool

conv 3_1 conv 4 1 conv 5_1
conv 3_2 conv 5_2

conv 1_1 conv 2_1

fc1 fc2 softmax

conv 1_2 conv 2_2 conva 2

conv 3_3 conv4_3 conv 53

conv 5_4

conv 3_4 conv 4_4

Figure 9: The figure illustrate layers of feature extractor
(VGG19 Network ¢) used in our experiments.

DILIE framework does not use a training dataset and
uses only the corrupted input image and a reference image
in the training process. The training process refers to itera-
tively minimizing the loss function. The corrupted image is
used to train ED networks for content feature enhancement.
The reference style image is used to provide style features
extracted using a feature extractor.

8. Conclusion

We have discussed a deep internal learning framework
for image enhancement (DILIE). The interesting challenge
in image enhancement is that the degraded input image cor-
rupts both style and content features. DILIE is a generic
framework for content feature enhancement (CFE) and style
feature enhancement (SFE). We show that CFE and SFE to-
gether lead to output images with a low perceptual error
and good structure similarity. As future work, we propose
to explore image enhancement for other image degradation
models such as underwater scenes and snowfall.
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