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Abstract

Adherent raindrops on windshield or camera lens may
distort and occlude vision, causing issues for downstream
machine vision perception. Most of the existing raindrop
removal methods focus on learning the mapping from a
raindrop image to its clean content by the paired raindrop-
clean images. However, the paired real-world data is dif-
ficult to collect in practice. This paper presents a novel
framework for raindrop removal that eliminates the need
for paired training samples. Based on the assumption that
a raindrop image is a composition of a clean image and
raindrop style, the proposed framework decomposes a rain-
drop image into a clean content image and a raindrop-style
latent code. Inversely, it composes a clean content image
and a raindrop style code to a raindrop image for data aug-
mentation. The proposed framework introduces a domain-
invariant residual block to facilitate the identity mapping
for the clean portion of the raindrop image. Extensive ex-
periments on real-world raindrop datasets show that our
network can achieve superior performance in raindrop re-
moval to other unpaired image-to-image translation meth-
ods, even with comparable performance with state-of-the-
art methods that require paired data.

1. Introduction

Adverse weather such as rain poses a challenge for out-
door computer vision tasks. Adherent raindrops on wind-
shield or camera lens usually distort and occlude a portion
of scene, leading to degraded performance of downstream
computer vision applications including self-driving cars and
outdoor surveillance cameras. Therefore, it is essential to
restore a clear scene first.

Many CNN-based autoencoder methods [4, 31, 15, 33,
30, 11, 6, 7, 17, 18, 32, 36, 37, 34] learns the mapping from
rain images to clean images, have achieved satisfactory re-
sults on synthetic datasets Rain100H [37], DID-MDN [36]
and Rain800 [32]. They mainly focus on the rain streak

Figure 1. Without requiring paired training data, our proposed net-
work can learn to achieve superior raindrop removal as illustrated:
For the raindrop images in the left column, the images in the right
column show the corresponding recovery by our decomposition
generator.

removal and ignore the fact that visibility is distorted or oc-
cluded by raindrops mostly (see Figure 2) instead of by the
rain streak. Very few synthetic datasets such as Hao et al.
[8] and RainCityscapes++ [28] blend the synthetic raindrop
into the images with handcrafted functions. However, they
are still far from the real images.

Qian et al. [26] collected a real-world well-aligned
raindrop-clean image pairs. [26, 27, 8, 29, 25, 19, 24, 1]
have shown promising results on the dataset using paired
training. However, this dataset is very hard to collect and
has many limitations. The raindrop image and its clean im-
age are taken at different times, so any dynamic objects and
ambient light change will make the paired data not aligned.
Hence, paired training methods rely on this kind of dataset
can hardly generalize to driving scene image. Since it’s
not practical to collect a real-world driving scene raindrop-
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clean paired dataset, we can only leverage the unpaired
dataset.

An unpaired dataset consists of two or more collec-
tions of images in different domains. Images in each do-
main collection do not have the exact counterparts in other
domain collections. Practically we can collect real-world
unpaired raindrop images and clean images. Specifically,
the clean images can be taken right before and after the
rain. They also can be taken right after each wipe of
the windshield. Recently, generic domain transfer meth-
ods [20, 39, 13, 2, 3, 38] achieved very promising results
in image-to-image translation with unpaired data. Inspired
by them, [12, 21, 5] were proposed to restore clean images
from a shadow, blurring, and Gaussian noise respectively
with only unpaired images. However, to our best knowl-
edge, no existing method dedicates to remove the adherent
raindrops effectively with only unpaired data. Directly ap-
plying the generic domain transfer and the domain-specific
image-to-image transfer methods on raindrop removal do
not achieve a satisfactory result.

In this paper, we observe the fact that a clean scene can
blend with infinite many kinds of raindrop styles to form
infinite raindrop images. All those raindrop images share
one scene. In other words, a clean image can be composed
of many raindrop styles to generate many different raindrop
images. The raindrop images can also be decomposed to
the common scene and different raindrop styles. Hence,
we formulate the raindrop removal as a many-to-one image-
to-image translation problem. Moreover, we generate new
realistic raindrop images by composing clean scenes and
raindrop styles. The mixture of raindrop style and the clean
scene is a very complicated function, which a hand-crafted
function can hardly represent. Our strategy is to use an au-
toencoder to directly learn the decomposition function from
a raindrop image to a clean scene and a raindrop style la-
tent code while another autoencoder learns the composition
function from a clean scene and a raindrop style to a rain-
drop image. We represent the raindrop style as a latent code
that is encoded or decoded by the proposed autoencoders.

Unlike generic style transfer methods, where the entire
image is modified, the raindrop removal only removes the
raindrop from the input image and keeps its clean portion
unchanged. Residual blocks are introduced to the autoen-
coders of the GANs to facilitate identity mapping for the
clean portion. Rain can appear and disappear at any time
randomly. The model should be domain invariant to han-
dle the input image with and without raindrops. Thus, we
enforce the output to be identical to the input when the in-
put image is clean. We conduct extensive experiments on
two real-world raindrop datasets. The results show that
our method achieves comparable performance with state-
of-the-art paired methods and outperforms other unpaired
image-to-image translation methods. In summary, our con-

Figure 2. When driving under the rainy condition, raindrop is the
major factor affects the visibility and degrades the computer vision
applications performance.

tributions are:

• We propose an unpaired training framework, Rain-
GAN. It is the first work that formulates the raindrop
removal problem as a many-to-one image-to-image
translation problem. It leverages unpaired real-world
images, which makes it the first approach to be able to
remove the real-world raindrop effectively.

• Through the composition of different permutations of
clean scene and raindrop style, we synthesize the re-
alistic raindrop images to further improve the perfor-
mance of the raindrop removal tremendously.

• We introduce a residual block to the autoencoders on
restoring the raindrop portion of the images.

2. Related Work
Rain removal problems have been studied extensively for

decades. Most of works [4, 31, 15, 33, 30] focus on rain
streak removal. Due to the lack of paired raindrop-clean
real-world images, very few adherent raindrop removal
methods have been proposed. Traditional method [35] mod-
els adherent raindrops using the law of physics and detects
raindrops based on these models in combination with inten-
sity derivatives of the input image. A hand-crafted feature
is hard to generalize well on real-world data.

Raindrop removal methods. Qian et al. [26] collected
a raindrop-clean real-world dataset and proposed Attentive-
Recurrent Network, which uses LSTM [10] to learn the
raindrop mask to aid the raindrop removal in GAN. [27]
integrate an edge map as an attention map to the autoen-
coder. [1] proposed to augment Qian et al. [26] dataset with
screen-space refraction. The augmented data is trained with
VGG perceptual loss [16] and GAN loss. Although their re-
sults are quite promising, they require well-aligned paired
data for training. Collecting well-aligned scenes requires
the scenes to be static. Hence, the model learned from such
a dataset, hard to generalize to the real-world driving scene.

Unpaired image domain transfer.Unpaired image do-
main transfer methods [39, 20, 13, 38, 3, 2] leverage un-
paired data when the paired data is not available. Cycle-
GAN [39] and UNIT [20] are one-to-one translation meth-
ods. They use the cycle-consistency loss to enforce the gen-
erator to keep the content information while transferring the
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Figure 3. Illustration of the our framework. Decomposition-to-Composition (D2C) and Composition-to-Decomposition (C2D) are showd
on the top and bottom of the figure, respectively. a raindrop image x and clean image y are first passed through D2C to obtain their clean
content cx and cy , style code sx and sy , and reconstructed image x̂ and ŷ. Then the style codes are swapped. cy , sx, cx and sy are passed
through C2D to generates composed image ỹ and x̃, reconstructed content image ĉy and ĉx, and style code ŝx and ŝy . Two discriminators
DC and DR learns to distinguish cx from y and ŷ from x. GD and GC generate realistic clean and raindrop image respectively to fool
DC and DR.

style. The one-to-one relationship between images in two
domains forces the generator to encode domain-specific in-
formation into the transferred image so it can be mapped
back to the original image. The encoded domain-specific
information harms the translation quality. Unpaired many-
to-many image-to-image translation methods [13, 38, 3, 2]
learns the content and style information separately. The
same image in one domain can transfer to many other styles
in another domain by injecting different style information.
However, no style information is needed to transfer a rain-
drop image to a clean image. On top of MUNIT [13], Mask-
ShadowGAN [12] uses a binary shadow mask to guide the
shadow removal. DRNet [21] introduces perceptual loss
and KL loss to remove the blurring. LIR [5] remove Gaus-
sian noise with Background Consistency Module. They
work well under their task, but their losses are not optimal
for raindrop removal.

3. Proposed Method

We consider a raindrop image x composes of a clean im-
age cx and a raindrop style latent code sx. The decomposi-
tion and composition functions can be expressed as:

cx, sx = GD(x) (1)

and
x = GC(cx, sx), (2)

where GD and GC are the decomposition generator and
composition generator respectively. They are implemented
as autoencoders. Our goal is to train GD to learn the map-
ping function from raindrop images to clean images while
keeping scenes unchanged. We make a few assumptions
to achieve the goal. A raindrop image is decomposed into
a clean image and a raindrop-style latent code. The same
raindrop image should be composed back by the clean im-
age and latent code, so all the raindrop image information is
stored in the clean image and the raindrop style latent code.
When the clean image is composed with another raindrop
style latent code, the corresponding raindrop style should
be transferred to the clean image. To fulfill the assumptions,
RainGAN is devised to have two pipelines: Decomposition-
to-Composition (D2C) and Composition-to-Decomposition
(C2D). We randomly sample one raindrop image x and one
clean image y from each domain and pass them through
D2C and followed by C2D for each iteration of the training
process. Figure 3 illustrates our framework.

3.1. Decomposition-to-Composition

GD decomposes a raindrop image x to a clean image cx
and a raindrop style latent code sx. GC then takes cx and
sx to generate x̂. Similarly a clean image y is fed to the
same pipeline to generate cy , sy and ŷ. In order to remove
the raindrop, we apply LSGAN [23] adversarial loss to GD
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and DC as:

LGAN(DC) =
1

2
Ey∼pdata(y)[(DC(y)− 1)2]

+
1

2
Ecx∼pdata(cx)[(DC(cx))

2]

(3)

and

LGAN(GD) =
1

2
Ecx∼pdata(cx)[(DC(cx)− 1)2], (4)

where pdata(cx) is the clean image distribution generated
by GD and DC is a clean image discriminator. By minimis-
ing LGAN(DC), DC tries distinguish between a generated
clean image cx and a real clean image y. While minimis-
ing LGAN(DC) to enforce GD to generate clean images that
looks real. Reconstruction loss Lrecon(x, x̂) = ||x − x̂||1
and Lrecon(y, ŷ) is applied to enforce the content and rain-
drop style and are being preserved. As y is a clean im-
age, cy should be identical to y, identity loss Lidt(y, cy) =
||y−cy||1 is applied to ensure GD does not change the input
image when no rain present.

3.2. Composition-to-Decomposition

The order of GD and GC is reversed in C2D pipeline.
GC composes sx and cy obtained from D2C to ỹ, which is
then decomposed to ŝx and ĉy by GD. Adversarial loss is
applied to GC and DR, is defined as:

LGAN(DR) =
1

2
Ex∼pdata(x)[(DR(x)− 1)2]

+
1

2
Eỹ∼pdata(ỹ)[(DR(ỹ))

2]

(5)

and

LGAN(GC) =
1

2
Eỹ∼pdata(ỹ)[(DR(ỹ)− 1)2], (6)

where pdata(ỹ) is the raindrop image distribution composed
by GC and DR is the raindrop image discriminator, which
distinguishes between a generated raindrop image ỹ and
a real raindrop image x. We optimize LGAN(DR) and
LGAN(GC) to make GC generate photo-realistic raindrop
images. In another word, a raindrop style is transferred
from a raindrop image to another clean image. We then
can train GD with augmented data in paired manner by ap-
plying reconstruction loss Lrecon(cy, ĉy) and Lrecon(sx, ŝx).
Likewise, cx and sy are also fed to the pipeline. x̃, ŝy and ĉx
are generated accordingly with Lrecon(cx, ĉx), Lrecon(sy, ŝy)
and Lidt(cx, c̃x) being applied to them.

3.3. Objective Function

Lidt and Lrecon are summarized as :

Lidt = Lidt(y, cy) + Lidt(cx, x̃) (7)

and

Lrecon = Lrecon(x, x̂) + Lrecon(y, ŷ) + Lrecon(cx, ĉx)

+ Lrecon(cy, ĉy) + Lrecon(sx, ŝx) + Lrecon(sy, ŝy).

(8)

Put all losses together, our full objective function is:

L(GD, GC , DR, DC) = LGAN(GD) + LGAN(GC)

+ LGAN(DC) + LGAN(DR)

+ Lrecon + λLidt,

(9)

where λ controls the importance of Lidt. We optimize the
function as follow:

G∗
D, G∗

C = arg min
GD,GC ,DR,DC

L(GD, GC , DR, DC) (10)

Intuitively, GD and GC can be viewed as an encoder and
decoder pair. In D2C, GD encodes x, and store them into
latent code cx and sx. GC composes the x̂ with cx and
sx. The objective function is used to regularize the latent
codes. Lrecon(x, x̂) enforces sx and cx preserve the content
and raindrop style which can be used to restore x, so GC can
reconstruct the x losslessly. LGAN(GD) enforces the GD

only encodes clean content in cx. In C2D, LGAN(GC) en-
forces GD only encodes raindrop style in sx, as sx is used to
apply a raindrop style in y. Hence, the content and raindrop
style are decomposed optimally from a raindrop image.

4. Implementation
The residual block [9] has been proved effective in learn-

ing identity mapping. Fog, mist, shadow, motion blur, and
noises usually spread over the entire image. However, rain-
drops usually only distort a portion of images. Therefore,
there could be a large portion of the image is clean and
only require identity mapping. We introduce Decomposi-
tion Residual Block and Composition Residual Block(see
Figure4) for GD and GC to facilitate the identity mapping
in the clean part and focus only on learning the residual be-
tween raindrops and its clean scene.

4.1. Decomposition Residual Block

We define cx = tanh(rdx + x), where rdx denoted as a
residual image. Firstly, GD takes x as an input and generate
rdx and sx. rdx is then added to x followed by tanh activation
to obtain cx. We can see that GD learns to generate the
residual image. Then it produces clean images indirectly.
This process is called decomposition. Similarly, GD can
also take y as input to get (cy, sy) = GD(y).

4.2. Composition Residual Block

cx and sx are first concatenated and passed to GC to gen-
erate rcx. rcx is a residual image, which is then added to cx,
followed by tanh activation to produce x̂
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Through the experiment, we find out that encoding the
raindrop style code to the same dimension as the output im-
age can keep the geometry and style information. When the
style code is composed with another clean image, the rain-
drop visual effect display on the fake raindrop image is very
similar to the one in the original raindrop image. Figure 7
shows the effectiveness of raindrop transfer.

4.3. Discriminative Network

We use PatchGAN [14] architecture as DC and DR.
Raindrop images and clean images are extracted by CNNs
and downscaled by four times. LSGAN[23] loss is used for
adversarial training. The real label is set to 1 and the fake
label is set to 0.

Figure 4. The architecture of our decomposition residual block
(a) and composition residual block (b). The input images are
first passed through three Convolution, Instance Normalization,
and Relu blocks, followed by two ResNet blocks and three De-
convolution, Instance Normalization, and Relu blocks. The out-
puts are the residual images which then being added to the input
images, followed by a tanh activation

4.4. Training and Inference Scheme

During the training, images are randomly sampled from
the clean and raindrop domains. We apply random flip to
the images, followed by randomly adjusting the brightness
and contrast. We use Adam optimizer to optimize genera-
tors and discriminators. The learning rate is set to 0.0002
and λ is set to 20. During inference, we simply forward the
images to GD to obtain the clean image.

5. Experiments
5.1. Dataset and Evaluation Metrics

The true unpaired real-world dataset has no ground truth
for the raindrop images. To evaluate the effectiveness of
raindrop removal in real-world images, we used two well-
aligned real-world raindrop datasets, Qian et al. [26] dataset

and Robotcar [25] dataset. They were collected for paired
training with the ground truth. Therefore, we not only
demonstrated the raindrop removal on the real-world im-
ages but also used the two common metrics, peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) with
the ground truth for our evaluation. We trained the model in
an unpaired manner on the real-world datasets to show the
feasibility of training on other unpaired real-world datasets.

Qian et al. [26] dataset has a train set and two test sets.
The train set comprises 861 pairs of images. Test a contains
249 pairs of images and Test b contains 58 pairs of images.
A glass with a water droplet is used to simulate the adherent
raindrop. The raindrop-clean image pairs were taken with
and without the glass in front of the camera lens. Any move-
ment or ambient change in the scene caused the misalign-
ment between the paired images and inaccurate evaluation
results. These datasets are not truly paired because the im-
ages were taken at different times. PSNR evaluates the pixel
accuracy and SSIM focuses more on the structure of the
contents. PSNR is affected significantly by small changes
in ambient light or misalignment. Since raindrops usually
change the structure of the clean images significantly, we
believe that SSIM is more appropriate than PSNR in the
evaluation of this problem.

Robotcar [25] dataset was collected by a stereo camera
mounting on a moving car. Water was dynamically sprayed
on the right camera while the left camera was clean all the
way. The left camera and the right camera were calibrated
to align with the scene. The entire dataset is consists of
4816 paired images in sequence. Raindrops in this dataset
are much denser than the Qian et al. [26]. They occlude the
majority of the area of the raindrop images. We randomly
selected 500 pairs of images for the evaluation set and 4316
pairs of images for the training set. The training images are
equally divided into two sets. Each set has 2158 pairs of
images. We used the raindrop images from the first set as
the raindrop domain images and the clean images from the
second set were taken as the clean domain images. Hence
the clean domain and the raindrop domain training images
are truly unpaired sets.

5.2. Baselines

We evaluated our method on both datasets and compared
it with WSRR-GAN [22], the only unpaired method dedi-
cated for raindrop removal to our knowledge, LIR [5], an
unpaired method for Gaussian noise removal, CycleGAN,
a generic one-to-one style transfer method, and DRNet, an
unpaired method for deblurring. One of the state-of-the-art
paired methods, AttentiveGAN [26] was also included as a
reference.
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 5. Visual comparison among different methods. From left to right: (a) Raindrop image, (b) LIR, (c) CycleGAN, (d) AttentiveGAN,
(e) WSRRGAN, (f) DRNet, (g) Ours, and (h) Ground-truth. Our method has successfully removed most raindrops while keeping the color
and content almost the same as the ground truth.

Setting Method Test a Test b
PSNR SSIM PSNR SSIM

Paired AttentiveGAN 31.5700 0.9023 24.1596 0.8292

Unpaired

CycleGAN 24.2038 0.8396 21.9647 0.7802
WSRR-GAN 25.4624 0.8763 23.2445 0.8064

LIR 21.3000 0.8393 20.5594 0.7990
DRNet 24.8379 0.8616 23.0263 0.8171
Ours 28.5517 0.9095 25.6648 0.8627

Table 1. Quantitative results on Qian et al. [26] dataset. Test a and Test b are used for evaluation. Test b has denser raindrops than Test a,
so all the results are lower. Our methods outperform the other methods on both test set.

PSNR SSIM
Raindrop 13.04 0.43
CycleGAN 15.72 0.56
LIR 13.51 0.49
Ours 16.66 0.59

Table 2. Quantitative results on Robotcar [25] dataset. The rain-
drop image has a very low PSNR and SSIM score. It’s difficult
the estimate the ground truth with little information. Our methods
estimate the best clean feature and score the highest scores

5.3. Results

Table 1 shows that our method outperforms other state-
of-the-art unpaired methods by a large margin on Test a on
both PSNR and SSIM. Our SSIM results are even higher
than AttentiveGAN’s. LIR performs poorly as it only fo-
cuses on texture transfer while keeping the image structure,
whereas raindrops partially distort the content image struc-
ture. CyclGAN works better than LIR as it does not impose
so many structure consistency constraints. The result is still
far from state-of-the-art. WSRR-GAN’s results are far be-
hind ours as well. On the harder dataset Test b, which has
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(a) Raindrop (b) CycleGAN (c) LIR (d) Ours (e) Groundtruth
Figure 6. Qualitative evaluation on Robotcar [25]. Despite the visibility is largely occluded and distorted, our method restored coherent
clean features in the raindrop images.

some misalignment. All the results are lower than Test a’s.
It could also because the raindrops are denser and larger in
Test b than Test a. Despite the difficulty, our method out-
performs all paired and unpaired methods on both PSNR
and SSIM by a large margin. It shows that our method is
very capable of restoring the structure of distorted raindrop
images. As Test b contains four times more images than
Test a, we believe that the results are less biased to the test
set. It shows that our method has a better generalization
over a larger test set and unseen data.

Figure 5 shows the qualitative results. LIR [5] barely
removes raindrops as it is optimized for high-frequency
texture noise removal, but raindrops are mostly in low-
frequency content space. Due to the cycle-consistency con-
strain, CycleGAN is forced to encode all information in-
cluding the raindrop into the output clean images. The rain-
drops cannot be removed optimally. AttentiveGAN largely
removes raindrops, while suffering from color shift and ar-
tifacts. Our method removes most of the raindrops while
creating fewer artifacts.

Figure 6 demonstrates raindrop removal performance on
Robotcar [25] dataset, which raindrops are large and dense.
It is very hard to estimate the content being occluded even
for a human. LIR [5] somehow removes the small rain-
drops, while the large raindrop remains. The images re-
stored by CycleGAN are darker than the ground truth and
some artifacts can be seen. Our method successfully re-
moves the raindrops and restores coherent content. How-
ever, the estimated coherent content could potentially be
wrong when restored from a large occluded raindrop area.
In practice, the windshield wiper constantly removes the
raindrops. The leftover raindrops are much smaller, which
true content can be easily estimated by our method.

We also measure the decomposition generator inference
speed. Our model runs at 67 Hz with 384 × 256 resolution
images on an Nvidia RTX 2080Ti GPU. Practically, our de-
composition generator can be added before computer vision
tasks such as object detection without creating too much
overhead. Due to the 2-stage constraints, WSRR-GAN can
only run at 4.8 Hz at a similar resolution.
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(A) (B) (C) (D)
Figure 7. Transfer visualization. (A) Real-world raindrop image A. (B) Real-world clean image B. (C) Clean image B composed with A
raindrop style. (D) Raindrop removed A. The location and the style of raindrop have been reproduced on the clean image.

5.4. Ablation Study

To evaluate the effectiveness of D2C, C2D, and residual
module(RM) in our framework, we add them one by one to
train and evaluate under the same setting and compare with
D2C without residual module as a baseline. D2C without
residual block directly maps a raindrop image to a clean
image using an autoencoder. Table 3 shows the quantitative
result of the ablation study. With residual module (RM),
PSNR and SSIM are much higher than without it. Adding
the C2D residual module, the results further improve due to
the data augmentation. We can tell that both RM and C2D
are very effective in removing the raindrop.

Method PSNR SSIM
D2C 24.5031 0.8411
D2C + RM 26.5031 0.8811
D2C + C2D + RM (ours) 28.5517 0.9095

Table 3. Adding RM and C2D, the model performance boosted
significantly

5.5. Raindrop Transfer

We also study whether our decomposition generator can
create a unique mapping between a raindrop style and a
style code by conducting a raindrop transfer experiment.
Figure 7 demonstrates that GD not only removes the rain-
drops but also successfully extracts a raindrop visual style
and encodes it to a content-invariant style code. With the
same style code, GC transfer it naturally to the other clean
images.

6. Conclusion and future work

In this paper, we propose a concise end-to-end training
framework RainGAN for adherent raindrop removal, which
leverages unpaired real-world data. It fills the gap where the
dedicated raindrop removal paired methods cannot be gen-
eralized well on real-world raindrop images. It is the first
method that can be deployed for outdoor camera intelligent
systems to remove the raindrop effectively. The decompo-
sition generator is domain invariant and only performs rain-
drop removal when there are raindrops in the images. In
addition, we have successfully demonstrated its capability
to extract raindrop style from a raindrop image and trans-
fer the style to another image using our proposed decom-
position and composition generators. This capability can
be further exploited as a way for natural noise augmenta-
tion in other applications. In the future, as the framework is
generic, it can be applied to other noise removal problems
such as fog and haze, where clean-noise paired images are
practically impossible to collect.
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