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Abstract

Existing methods have achieved excellent performance
on image restoration, but most of them are designed for one
type of degradation. However, the weather is complex in the
real world. So networks designed for single tasks are usu-
ally difficult to apply. Therefore, we propose a task-adaptive
attention module to enable the network to restore images
with multiple degradation factors. The task-adaptive at-
tention module mainly includes three parts: Task-Adaptive
sub-network, Task Channel Attention, and Task Operation
Attention. To evaluate the model, we construct a mixed
degradation factors dataset that combines three degrada-
tion factors of rain, haze, and raindrop. The experimental
results show that our method not only better restores images
with mixed degradation factors, but also show competitive
results compared to the state-of-the-art models of each task.

1. Introduction

There have been many studies on image restoration,
which aims to restore degraded images to a certain ex-
tent. Most of the traditional image restoration methods are
based on defined prior methods or physical models. For
example, dark channel prior algorithms[8] for image de-
hazing, Wiener filtering[26] for image denoising and sparse
coding[20] for image deraining. Recently, learning-based
methods are widely applied in various image restoration
tasks and have become state-of-the-art models in almost
all sub-tasks. Including image deraining[19, 11, 17, 6],
dehazing[1, 15, 24, 3, 4, 21, 7], deblur[12, 29, 22, 12],
denoising[26, 37, 14], low-light enhancement[33, 34, 2,

13], etc. These previous studies have proved that deep
learning can be more superior and flexible than those tra-
ditional methods in image restoration.
Although the existing deep learning models have achieved
good results in each sub-task of each image restoration,
the generalization ability of these models have a lot of
room for improvement. In the real world, the weather en-
vironment is complex and changeable so that these mod-
els designed for a single task cannot be applied in the real
world. At present, there are few studies on image restora-
tion with mixed degradation factors or multiple scenes im-
age restoration[35, 27, 18]. As in actual autonomous driv-
ing or surveillance environments, the main factor of image
degradation is the weather condition, so we specifically se-
lects three types of weather conditions that usually accom-
pany in reality: rain, hazy, and adherent raindrops to create
a dataset which mixes three degradation factors for training
and evaluation. In addition, we mix the single degradation
factor datasets of three tasks(rain, hazy, and adherent rain-
drops) for comparison experiments with the state-of-the-art
models. Although it is usually difficult to design models
for removing multiple degradation factors at the same time,
there is a potential relation among these tasks, that is, they
all aim to remove some noise from the images. It also
means that the model designed for a certain task can usu-
ally achieve the desired effect after training on the dataset
of another task. In addition, according to the lottery ticket
hypothesis of the neural network[5], a model with a large
number of parameters usually has a sub-model with a rela-
tively small number of parameters but similar performance.
The parameters are pruned to reduce the number of param-
eters but achieve similar performance. According to this as-
sumption, a model for a certain image restoration task can
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also find a subspace with similar performance in its param-
eter space. Based on the above-mentioned assumption, we
introduce a task-adaptive attention mechanism to guide the
model to allocate parameter subspaces for different degra-
dation factors or tasks.
At the same time, since the previous work did not use the
prior information of image degradation intensity or cate-
gory, there is still a lot of room for improvement in image
restoration with mixed degradation factors. Therefore, in
this paper, we propose the Task Adaptive Attention Mod-
ule to supervisedly adapt to the mixed degradation factors
because supervised attention can better allocate parameter
subspace for the model. The Task Adaptive Attention Mod-
ule contains three sub-modules, namely Task Adaptor sub-
net, Task Operation Attention, and Task Channel Attention.
The role of Task Adaptor sub-net is to predict the intensity
vector of the mixed degradation factor, which is served as
the prior information of Task Operation Attention and Task
Channel Attention. Task Operation Attention assigns corre-
sponding weights to a series of Operation Blocks to adapt
to different tasks, which is similar to supervised selection
of multiple Operation Blocks. Task Channel Attention per-
forms channels selection and removes the noisy channels.
Our contribution can be summarized as follows:

• We propose a mixed degradation factors dataset, which
is more in line with the severe weather conditions that
may be encountered on the vehicle camera. Accord-
ing to the knowledge of authors, this is the first dataset
containing multiple degradation factors under complex
weather.

• We propose the Task-Adaptive Attention Module,
which show good performance on mixed degrada-
tion factors image restoration and multi-scene image
restoration.

• Our network can be trained in an end-to-end manner
and has achieved competitive results on both mixed
degradation factors dataset and mixture of different
bad weather datasets.

2. Related Work
In this paragraph, we will briefly review some researches

on leanrning-based image restoration and the attention
mechanism in computer vision

2.1. Deep Learning in Image Restoration

Convolutional neural networks have been widely used in
various computer vision tasks and have achieved exciting
results in the field of image restoration. Most of the recent
works of single image dehazing are to generate the residual
map of the haze. [24] proposed the residual block and the
attention mechanism for feature fusion, which has achieved

state-of-the-art result in the indoor dehazing dataset. [3]
introduced a threshold fusion sub-network combined with
the smooth dilated convolution, which has achieved good
results on both rain removal and haze removal. Recently,
there have been many GAN-based image dehazing work.
[4] introduced cycleGAN to restore a hazy image. [19] pro-
posed a progressive single image deraining network, which
proved that the application of progressive threshold fusion
network can make a great improvement in image derain-
ing. [36] proposed a multi-step progressive image restora-
tion network, which has achieved state-of-the-art results in
various image restoration tasks. The GAN network com-
bined with visual attention has made a great progress on
deraindrop[23] as well.
At present, there are only a few works aimed at image
restoration with combined degradation factoirs. [35] in-
troduced reinforcement learning to enable effective image
restoration in a variety of degradation levels. [27] integrates
attention into image restoration of mixed distortions. The
operation is selected based on the dynamic weights of at-
tention so that a single model can remove raindrops, blur,
noise, and JEPG at the same time. However, the above-
mentioned scene restoration is less relevant in actual auto-
matic driving, monitoring, face recognition and other ap-
plications and the performance still has a lot of room for
improvement.

2.2. Attention Mechanisms for Computer Vision

Recently, there have been many studys on the attention
mechanism for computer vision. The attention mechanism
searchs for the relevant feature to learn the weight distri-
bution and then uses the learned parameters to weight the
corresponding feature map. [10] can find the relationship
among the channels of feature map and adaptively suppress
the channels that are not important to the current task. [32]
proposed a model that combines the channel attention mod-
ule and the spatial attention module, which can better ex-
tract the weights of the spatial domain and the channel do-
main. [30] proposed a non-local method to search for the
global relationship.
The attention mechanism also has many applications in the
field of image restoration. Non-local was introduced to im-
age restoration by [38] for the first time. Operation-wise
attention[28] was proposed to restore images with mixed
degradation factors. [24] combined the CBMA attention
module and feature fusion ,which achieved state-of-the-art
performance on the image dehazing. The Task Adaptive
Attention Module that we propose is basically similar to the
above methods, but it targeted for multiple mixed degra-
dation factors. We proposed a supervised attention mech-
anism to adaptively remove various degradation factors at
the same time.
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3. Methods
3.1. Architecture Design

Our network structure is shown in Figure 1. Firstly, the
input image is down-sampled by the encoder and the di-
mension of feature map is expanded. The feature map ex-
tracted by the encoder is will be fed into two paths. One
path is called the task adaptor, which generates the nor-
malized intensity values corresponding to each degradation
factors. The intensity values served as the prior informa-
tion of Task Attention Group and Task Attention convo-
lution. Another path is the main network, consisting of
Task Attention groups and gate sub-net. Multiple task at-
tention groups extract the feature of different degradation.
The Gate sub-network was firstly introduced by [3], which
performs weighted fusion on the outputs of all the Task At-
tention groups. After up-sampling, the predicted degrada-
tion residual is added to the input degraded image through
skip-connection to obtain a clean image.
In particular, we added an additional layer of first-order dif-
ferential feature map with the size of H×W×1 to the input
dimensions. According to [31], edge feature map can help
training convergence.

3.2. Task Adaptor

The task adaptor is a simplified version of MobileNet
v3[9]. Its role is to predict the values of each degradation
factor. N indicates the number of degradation factors.

TaskSelection = classifier (input) ∈ R1×N (1)

TaskSelection is used as the prior information of Task At-
tention Block so that the model gives attention weights of
different operation blocks and channels according to the in-
tensity of different degradation factors.

3.3. Task Attention Block

As shown in Figure 2, the Task Attention Block have
a task operation-wise attention and a task channel-wise at-
tention. The commonly used operation-wise attention and
channel-wise attention were both self-supervised, using the
information of the feature map to generate a weight vector.
Our idea is to use the intensity information of each degra-
dation obtained by the Task Adaptor to supervisedly learn
the weight vector. The purpose of our method is to better
divide parameters into multiple sub-tasks and improve the
efficiency of the model.

3.3.1 Task-Operation Attention

The Task-Operation Attention module Fl is composed of
weights W1 ∈ RT×C and W2 ∈ RO×T . σ(·) represents
the activation function ReLU. T indicates the number of

degradatrion tasks and O indicates the number of operation
blocks.

Fl(x) = W2σ (W1x) (2)

Task Adaptor predicts the value vector A corresponding to
each task. The weight vector of each operation block is
obtained through Fl. Oi denotes the output of the i-th oper-
ation block. The feature map weighted by Operation-wise
Attention denotes Xo, then we have

Xo =
∑
i

Fi ×Oi (3)

To illustrate how Task-Operation Attention works, we visu-
alize the mean value of attention weights of different bad
weather tasks in Figure 3. Each row and column indicates
one of the attention layers and one of the operations em-
ployed in each layer. We can observe that the attention
weights differently depending on different tasks to a cer-
tain extent, it indicates that different tasks own and share
the operation blocks.

3.3.2 Task-Channel Attention

Similarly, the Task-Channel Attention module is composed
of weight W3 ∈ RT×C , and bias B ∈ RC . z ∈ RC×H×W

denotes the input feature map. The output feature map is
calculated by the following formula:

attention = Sigmoid (W3 TaskSelection +B3) ∈ RC×1×1

(4)

output = attention ∗ z ∈ RC×H×W (5)

The mean value of channel attention weights are shown in
Figure 4. It can be seen that the channel weights differ-
ently depending on the degradation types. It shows that our
method does select channels to adapt different degradation
factors.

3.3.3 Operation Block

Operation Block is composed of smooth dilate convolution
and skip-connection. Each Task Attention group contains
multiple Task Attention Blocks. The dilation in each Group
is set to 2, 3, 4, 1, respectively. The filter size of all convo-
lution is H ×W ×C and the number of C is set to 120. As
shown in the Figure. 2, all operation blocks are performed
in parallel.

3.4. Loss Function

Loss function is a key point for multi-task learning. As
for the image restoration, we combine smooth L1 and SSIM
as the loss function. The gradient of Smooth L1 will de-
crease as the loss becomes small. Differential coefficient of
smooth L1 remains 1 when the loss is rather large. So it
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Figure 1. The architecture of proposed network

Figure 2. The architecture of Task Attention Block

Figure 3. Task-Operation Attention Map

will be more stable at the beginning of training than L2 and
have better convergence than L1. J indicates the input im-
age. The outputs of our network include the restored image
I and the predicted classification Y .

Î , Ŷ = Network(J) (6)

Figure 4. Task-Channel Attention Map

smooth L1(I, Î) =

{
0.5(I − Î)2 if |I − Î| < 1

|I − Î| − 0.5 otherwise
(7)

SSIM pays more attention to the whole brightness and con-
trast ratio of the image instead of the pixels. Therefore,
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weighting these two loss functions as the loss of the image
restoration can evaluate the image-wise and pixel-wise per-
formance better.
For task adaptor, we use L2 as the loss function. Consid-
ering that the learning rate is reduced in the later stage of
training and the classifier is basically stable, we add the co-
efficient of cosine decay to it to make it smoothly decrease.

L2(Y, Ŷ ) = (Y − Ŷ )2 (8)

The loss function L of our network is as below. λ1, λ2 and
λ3 indicate the coefficients.

L = λ1Smooth L1(I, Î) + λ2(1− SSIM(I, Î))

+cosdecay(λ3, epochs)L2(Y, Ŷ )
(9)

4. Experiment
4.1. Dataset

According to our knowledge, there is no publicly avail-
able dataset with various degradation intensity labels. How-
ever, the degradation intensity label can help the model bet-
ter adapt to different degradation factors, so we synthesized
a new dataset, which includes 2061 image pairs and each
image pair has a corresponding degradation factor inten-
sity label. The 2061 clean images with depth maps are
collected by [16]. The generation process of our dataset
is shown in Figure 5. We add the weather degradation
factors(haze, rain and adherent raindrop) from far to near.
For each image, the degradation levels of haze, rain and
raindrop are randomly chose from uniform distribution in
the range [60,150], [250,300] and [5,25]. Moreover, for a
more objective comparison, we train our model on differ-
ent bad weather dataset, including image deraining: ”DDN”
dataset[6], image dehazing dataset: ”RESIDE V0”[16] and
raindrop dataset[23]. The ”DDN” dataset contains 12600
training samples and 1400 testing samples.”Reside V0”
contains 13990 training samples. We use SOTS indoor
as the testset, with 500 indoor test samples. The raindrop
dataset contains 1119 raindrop and ground truth pairs, of
which 58 real-world images are selected as the test images.
Considering the imbalance of size among datasets, we over-
sample the raindrop dataset and amplify all the images by
rotation, random clipping, and other methods. After pro-
cessing, the number of samples in each epoch is 38644.

4.2. Training detail

Our model can be trained end-to-end on the mixed degra-
dation factors dataset and different bad weather dataset.
The initial learning rate is set to 0.0003 and the number of
epochs is 40. We use cosine decay to gradually reduce the
learning rate. The formula is as follows. We use AdamW
as the optimizer and weight decay is set to 2× 10−4 .

Table 1. Results of mixed degradation factors test set in ablation
study

TOA TCA PSNR SSIM
! ! 29.62 0.9528
! % 29.30 0.9509
% ! 28.12 0.9410
% % 27.77 0.9386

Table 2. Results of test methods on ”DDN” dataset
Metrics DDN[6] NLEDN[17] MSPFN[11] Ours
PSNR 28.24 29.79 32.82 30.68
SSIM 0.8654 0.8976 0.9302 0.9248

Table 3. Results of test methods on RESIDE V0 dataset
Metrics AOD[15] PFFN[21] MSBDN[7] Ours
PSNR 19.67 24.78 33.79 32.34
SSIM 0.8065 0.8923 0.9842 0.9737

Table 4. Results of test methods on Raindrop dataset
Metrics AttentGAN[23] Quen et al. [25] Ours
PSNR 31.57 31.44 29.41
SSIM 0.9023 0.9263 0.9248

4.3. Ablation study

To show the effectiveness of the Task Attention module
of our network, we conducted an ablation study in mixed
degradation factors dataset, which is shown in Table 1. We
have verified the effectiveness of Task Operation Atten-
tion(TOA) and Task Channel Attention(TCA) respectively.
As can be seenthe network with both Task Operation At-
tention and Task Channel Attention has better performance
than the others. The visualization of the results are shown
in Figure 6.

4.4. Comparison with State-of-the-art Methods

We take some state-of-the-art methods as the base-
line for comparison, including rain removal : DDN[6],
NLEDN[17], MSPFN[11]; hazy removal: AODNet[15],
PFFN[21], MSBDN[7]; raindrop removal: AttentGAN[23],
Quen et al. [25]. It is important to note that the compared
networks are trained on the dataset of single tasks and our
network is trained on the different bad weather dataset
which merges all the above-mentioned datasets.

4.4.1 Qualitative Results

PSNR(Peak Signal to Noise Ratio) and SSIM(Structural
Similarity) are recognized image quality evaluation stan-
dards. We use them as the metrics to compare our network
with some state-of-the-art methods in various tasks. The
results are shown in Table 2, Table 3 and Table 4. Even
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Figure 5. The generation process of mixed degradation factors dataset

(a)Input (b)w/o TOA&TCA (c)w/o TOA

(d)w/o TCA (e)Ours (f)GT
Figure 6. Visualization of results in ablation study

though our network is designed for removing multiple
degradation factors, it still shows competitive results in
PSNR and SSIM of the three tasks, which are close to the
best results of the state-of-the-art methods.

4.4.2 Quantitative Results

Figure 7, Figure 8 and Figure 9. show the output of
different methods respectively. We can see that our
restoration results have achieved competitive results in
color restoration, and preserved the details well. In Figure
7, the girl’s face: It can be seen that the texture of the skin
and lip is well preserved rather than becoming smooth and
the athlete: The number on the vest still remains clear and
well-recognized. In Figure 9, We can see that the edges of
the object and building haven’t turned blunt, but still sharp
enough to be distinguished.

(a)Input (b)DDN (c)NLEDN

(d)MSPFN (e)Ours (f)GT
Figure 7. Rain removal results of our method compared with state-
of-the-art rain removal methods.

5. Conclusion

In this paper, we propose an end-to-end mixed degrada-
tion factors image restoration network and complex weather
dataset. The key of our network to adapt combined dis-
tortions is the Task Adaptive Attention Module, which in-
cludes Task Adaptor, Task Operation Attention and Task
Channel Attention. The above-mentioned method can adap-
tively generate corresponding weights for different degrada-
tion factors. Results in complex weather dataset show that
our network can restore mixed bad weather degradation fac-
tors images robustly. At the same time, competitive exper-
imental results are obtained on the mixed dataset of rain,
haze and raindrop removal compared with state-of-the-art
methods.
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(a)Input (b)AOD Net (c)PFFN

(d)MSBDN (e)Ours (f)GT
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with state-of-the-art adherent Raindrop removal methods.
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