
Multi-View Motion Synthesis via Applying Rotated Dual-Pixel Blur Kernels

Abdullah Abuolaim Mahmoud Afifi Michael S. Brown

York University

{abuolaim,mafifi,mbrown}@eecs.yorku.ca

Abstract

Portrait mode is widely available on smartphone cam-

eras to provide an enhanced photographic experience. One

of the primary effects applied to images captured in por-

trait mode is a synthetic shallow depth of field (DoF). The

synthetic DoF (or bokeh effect) selectively blurs regions in

the image to emulate the effect of using a large lens with a

wide aperture. In addition, many applications now incor-

porate a new image motion attribute (NIMAT) to emulate

background motion, where the motion is correlated with es-

timated depth at each pixel. In this work, we follow the trend

of rendering the NIMAT effect by introducing a modification

on the blur synthesis procedure in portrait mode. In partic-

ular, our modification enables a high-quality synthesis of

multi-view bokeh from a single image by applying rotated

blurring kernels. Given the synthesized multiple views, we

can generate aesthetically realistic image motion similar to

the NIMAT effect. We validate our approach qualitatively

compared to the original NIMAT effect and other similar

image motions, like Facebook 3D image. Our image motion

demonstrates a smooth image view transition with fewer ar-

tifacts around the object boundary.

1. Introduction

Unlike digital single-lens reflex (DSLR) and mirrorless

cameras, smartphone cameras cannot produce a natural

shallow depth of field (DoF) due to the camera’s small aper-

ture and simple optical system. Instead, many smartphones

(e.g., iPhone 12, Google Pixel 4, Samsung Galaxy) emulate

a shallow DoF via a portrait mode setting that processes the

image at capture time. These methods typically isolate the

subject from the background and then blur the background

to emulate the swallow DoF [26]. An example is shown in

the first row of Fig. 1.

Most smartphone cameras apply the synthetic bokeh ef-

fect using a common image processing framework. This

traditional procedure takes an input image with minimal

DoF blur and an estimated depth map to determine the blur

kernel size at each pixel (i.e., defocus map). In some cases,

Figure 1: This figure shows a comparison between differ-

ent image motion effects. We also show the output of the

traditional bokeh synthesis. Our approach takes the sharp

image (i.e., deep DoF) to generate the image motion. Other

approaches start with the blurry input (i.e., shallow DoF) to

synthesize the image motion. Note: this figure is designed

to be animated. However, the IEEE PDF eXpress valida-

tor does not allow the animation package. Therefore, we

provide in-PDF animated figures in our arXiv version.

a segmentation mask is also used to avoid blurring pixels

that belong to the people and their accessories. Fig. 2 shows
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Figure 2: This figure shows a typical synthetic shallow depth of field (DoF) processing framework. This framework takes

three inputs: single image, estimated depth map, and segmentation mask. Given the inputs, the synthetic DoF unit produces

the desired image. The image, depth map, and segmentation mask are taken from the dataset in [26].

an illustrative example of the common synthetic bokeh

framework.

Recently, Abuolaim et al. proposed a new image mo-

tion attribute (NIMAT) effect [1] that generates multiple

sub-aperture views based on DoF blur and dual-pixel (DP)

image formation. Abuolaim et al.’s method produces mul-

tiple views from a single input image captured by a DSLR

camera and has a natural shallow DoF. Their DP- and DoF-

based view synthesis is designed to generate pixel motion

correlated to the defocus blur size at each pixel. How-

ever, obtaining an image with a natural shallow DoF using

a smartphone camera is difficult, as mentioned earlier. In-

spired by NIMAT [1], we provide a similar effect by modi-

fying the traditional synthetic bokeh framework. Our mod-

ification enables synthesizing shallow DoF along with gen-

erating multiple views by applying a rotated blurring kernel.

In our proposed framework, the defocus blur kernel shape

is determined based on the sub-aperture image formation

found in DP sensors. To our knowledge, we are the first

to introduce this novel synthetic bokeh and DP-/DoF-based

multi-view synthesis. Fig. 1 shows a comparison of differ-

ent image motion approaches. It also provides the output

of the traditional bokeh synthesis in the first row. Recall

that other image motion approaches do not synthesize the

bokeh effect. As a result, our method combines image mo-

tion and synthetic DoF into a single step. As demonstrated

in Fig. 1, our image motion exhibits a smooth view tran-

sition with fewer artifacts around the object boundary com-

pared to other approaches. Note that Fig. 1 is designed to be

animated. However, the IEEE PDF eXpress validator does

not allow the animation package. Therefore, we provide in-

PDF animated figures in our arXiv version 1.

1https://arxiv.org/pdf/2111.07837.pdf

2. Related Work

Synthetic bokeh The bokeh effect in photography is an

aesthetic quality of the blur that renders the main subject of

the taken photo in focus while the background details fall

out of focus. As mentioned earlier, standard smartphone

cameras cannot produce such bokeh photographs due to the

small size of the aperture and short focal length used in al-

most all smartphone cameras. Due to this limitation, a large

body of work has targeted ways to emulate a shallow DoF

image for smartphone cameras (e.g., [12,13,16,24–26,28]).

Prior methods require either up-down translation of the

camera (e.g., [13]) or benefits from the parallax caused by

accidental handshake during capturing (e.g., [12,28]). How-

ever, both strategies may lead to undesirable results as they

rely on a specific type of movement that is not always ap-

plied in real scenarios. As a result, having low parallax lim-

its these methods’ ability to work properly.

Another strategy requires multi-image capturing, or

stereo imaging, to estimate image depth from defocus cues

extracted from these multiple images, or stereo pairs, of the

same scene [9, 11, 24, 25, 27, 30]. However, this strategy

results in ghosting effects and cannot work properly with

non-static objects.

Instead of relying on multi-image capture, monocular

single-image depth estimation methods are adopted to pre-

dict depth information using either inverse rendering [7,15]

or supervised machine learning [8,14,18,21]. Given the es-

timated depth map, synthetic rendering of shallow DoF im-

ages is then a straightforward process. However, the quality

of this synthetic bokeh effect is tied to the accuracy of the

estimated depth map. In recent years, learning-based depth

estimation methods have achieved impressive results; how-

ever, like most deep learning-based techniques, such learn-

ing depth estimators often suffer from poor generalization
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Figure 3: An overview of our proposed framework for multi-view synthesis based on rotated DP blur kernels. This framework

takes three inputs: single image, estimated depth map, and segmentation mask. Given the inputs, the multi-view synthesis

unit produces n views based on the number of rotated point spread functions (PSFs). The image, depth map, and segmentation

mask are taken from the dataset in [26].

to images taken under conditions beyond training examples.

Thus, synthesized shallow DoF images could suffer from

obvious artifacts around the main object’s edges.

To mitigate failure cases in single-image depth estima-

tion, a few methods propose to replace the depth estimation

process with some constraints in the scene to improve the

results. For example, by dealing only with photos of people

against a distant background, bokeh effects can be gener-

ated without a need for a depth map estimation [22, 23].

With this reasonable constraint, synthetic shallow DoF can

be achieved by first segmenting out the human subject. This

is typically performed using a trained convolutional neu-

ral network. Next, the background can be blurred using a

global blur kernel. While effective, this approach assumes a

constant difference in depth between the main subject (i.e.,

people) and the background. In addition, this approach re-

quires a deep network to segment people from images prop-

erly.

Unlike all methods above, in this paper, our goal is to

produce an image motion effect similar to the NIMAT ef-

fect [1]. A high-quality bokeh synthesis is an extra by-

product output.

DP sensor DP sensors were developed as a means to im-

prove the camera’s autofocus system. The DP design pro-

duces two sub-aperture views of the scene that exhibit dif-

ferences in phase that are correlated to the amount of defo-

cus blur. Then, the phase difference between the left and

right sub-aperture views of the primary lens is calculated

to measure the blur amount. The phase information is also

used to adjust the camera’s lens such that the blur is mini-

mized. While intended for autofocus [3, 5], the DP images

have been found useful for other tasks, such as depth map

estimation [10,20,29], defocus deblurring [2,4,6], and syn-

thetic DoF [26].
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Figure 4: Thin lens model illustration and dual-pixel (DP)

image formation. The circle of confusion (CoC) size is cal-

culated for a given scene point using its distance from the

lens, camera focal length, and aperture size. Note: we ac-

knowledge that this figure was adapted from [4]

.

3. Defocus-Based Multi-View Synthesis

In this section, we describe our framework for multi-

view synthesis based on rotated DP blur kernels. An

overview of the proposed framework is shown in Fig. 3.

First, we introduce the thin lens model used to determine

the blur kernel size at each pixel. Then, the DP point spread

function (PSF) is described in Sec. 3.2. Afterward, Sec. 3.3

introduces the defocus blur procedure. Lastly, Sec. 3.4 ex-

plains the process of multi-view synthesis via rotated PSFs.

3.1. PSF Size Based on the Thin Lens Model

The size of the PSFs at each pixel in the image can be cal-

culated using the depth map. Therefore, we model camera

optics using a thin lens model that assumes negligible lens

thickness, helping to simplify optical ray tracing calcula-

tions [19]. This model can approximate the circle of confu-

sion (CoC) size for a given point based on its distance from

the lens and camera parameters (i.e., focal length, aperture

size, and focus distance). This model is illustrated in Fig. 4,
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Figure 5: Circle of confusion (CoC) formation in DP sensors. (a) Traditional sensor and (c) DP sensor. (b) and (d) are the

CoC formation on the 2D imaging sensor of two scene points, P1 and P2. On the two DP views, the half-CoC flips direction

if the scene point is in front or back of the focal plane. Note: we acknowledge that this figure was adapted from [1].

where f is the focal length, s is the focus distance, and d is

the distance between the scene point and camera lens. The

distance between the lens and sensor s′, and the aperture

diameter q are defined as:

s′ =
f s

s− f
, (1)

q =
f

F
, (2)

where F is the f-number ratio. Then, the CoC radius r of a

scene point located at distance d from the camera is:

r =
q

2
×

s′

s
×

d− s

d
. (3)

3.2. PSF Shape Based on DP Image Formation

Once the radius of the PSF is calculated at each pixel

(Sec. 3.1), we need to decide the PSF shape to be applied.

In this section, we adopt a DP-based PSF shape for DP view

synthesis.

We start with a brief overview of DP sensors. A DP sen-

sor uses two photodiodes at each pixel location with a mi-

crolens placed on the top of each pixel site, as shown in

Fig. 5-c. This design was developed by Canon to improve

camera autofocus by functioning as a simple two-sample

light field camera. The two-sample light-field provides two

sub-aperture views of the scene and, depending on the sen-

sor’s orientation, the views can be referred to as left/right

or top/down pairs; we follow the convention of prior pa-

pers [2, 20] and refer to them as the left/right pair. The

light rays coming from scene points that are within the cam-

era’s DoF exhibit little to no difference in phase between

the views. On the other hand, light rays coming from scene

points outside the camera’s DoF exhibit a noticeable defo-

cus disparity in the left-right views. The amount of defocus

disparity is correlated to the amount of defocus blur.

(a) All-in-focus input (b) Our synthetic bokeh

(c) All-in-focus input (d) Our synthetic bokeh

Figure 6: Our synthetic bokeh results given an input all-in-

focus image. The images used in this figure are from the

synthetic DoF dataset [26].

Unlike traditional stereo, the difference between the

DP views can be modeled as the latent sharp image be-
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(a) Our synthetic DP views (b) Real DP views

Figure 7: Results from our DP-view synthesis framework based on defocus blur in DP sensors. (a) Our synthetic DP views.

(b) Real DP views. Our framework can produce DP views that have defocus disparity similar to the one found in real DP

sensors. The image on the left is from the synthetic DoF dataset [26]. Note: the DP views are designed to be animated.

We provide in-PDF animated figures in our arXiv version.

ing blurred in two different directions using a half-circle

PSF [20]. This is illustrated in the resultant CoC of Fig. 5-

d. The ideal case of a half-circle CoC on real DP sensors

is only an approximation due to constraints of the sensor’s

construction and lens array. These constraints allow a part

of the light ray bundle to leak into the other-half dual pixels

(see half CoC of left/right views in Fig. 5-d).

Unlike other approaches [4, 20], we provide a simplified

model of the DP PSF using a disk C shape that is element-

wise multiplied by a ramp mask as follows:

Hl = C ◦Ml, s.t. Hl ≥ 0, with
∑

Hl = 1, (4)

where ◦ denotes element-wise multiplication, Ml is a 2D

ramp mask with a constant intensity fall-off towards the

right direction, and Hl is the left DP PSF. One interesting

property of the DP sensors is that the right DP PSF Hr is

the Hl that is flipped around the vertical axis – namely, H
f
l :

Hr = H
f
l . (5)

Another interesting property of the DP PSFs is that the

orientation of the “half CoC” of each left/right view reveals

if the scene point is in front or back of the focal plane [1,

4, 20]. Following the prior work of modeling directional

blur using DP image formation, we also select the DP-based

“half CoC” PSF model to capture the directional blur in this

paper. However, this directional blur PSF does not have

to be DP-based and can be any generic PSF that involves

blurring and shifting the image content. Therefore, we test

other non-DP-based directional PSF in Sec. 4.2.

3.3. Applying Synthetic Defocus Blur

In our framework, we use an estimated depth map to ap-

ply synthetic defocus blur in the process of generating a

shallow DoF image. To blur an image based on the com-

puted CoC radius r, we first decompose the image into dis-

crete layers according to per-pixel depth values, where the

maximum number of layers is set to 500 (similar to [17]).

Then, we convolve each layer with the DP PSF (Sec. 4),

blurring both the image and mask of the depth layer. Next,

we compose the blurred layer images in order of back-to-

front, using the blurred masks. For an all-in-focus input

image Is, we generate two images – namely, the left Il and

right Ir sub-aperture DP views – as follows (for simplicity,

let Is be a patch with all pixels from the same depth layer):

Il = Is ∗Hl, (6)

Ir = Is ∗Hr, (7)

where ∗ denotes the convolution operation. The final output

image Ib (i.e., synthetic shallow DoF image) that is pro-

duced by the traditional portrait mode can be obtained as

follows:

Ib =
Il + Ir

2
. (8)

Fig. 6 shows the results of the generated synthetic bokeh

image Ib using our proposed framework. Furthermore, our

synthetically generated DP views exhibit defocus disparity

similar to what we find in real DP data, where the in-focus

regions show no disparity and the out-of-focus regions have

defocus disparity. We provide in Fig. 7 an animated com-

parison between our generated DP views and real DP views

extracted from a Canon DSLR camera.
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(a) Facebook 3D image (b) NIMAT effect [1] (c) Our NIMAT effect

(d) Facebook 3D image (e) NIMAT effect [1] (f) Our NIMAT effect

Figure 8: A comparison between different image motion approaches. This image motion is produced by animating the

synthetic output views of each approach. Two cases of scene depth variation are provided: a small depth variation in the first

row and a large one in the second row. Our proposed image motion produces a pleasant motion transition and fewer artifacts

compared to others. The images used in this figure are from the synthetic DoF dataset [26]. Note: the synthetic output

views are designed to be animated. We provide in-PDF animated figures in our arXiv version.

3.4. Multi-View Synthesis

The main idea of this work is to generate multiple views

from an all-in-focus image with its corresponding depth

map. Therefore, we can generate an aesthetically realis-

tic image motion by synthesizing a multi-view version of

a given single image. As discussed in Sec. 3.2, the DP

two sub-aperture views of the scene depending on the sen-

sor’s orientation and, in this work, our formation contain

left/right DP pairs, and consequently, our framework syn-

thesizes the horizontal DP disparity as shown in Fig. 7. We

can synthesize additional views with different “DP dispar-
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ity” by rotating the PSFs during the multi-view synthesis

process as shown in Fig. 3. For example, eight views can be

generated by performing a 45o clockwise rotation step three

times (i.e., 45o, 90o, 135o). Then, we generate our effect by

alternating the output views to produce the image motion.

4. Experiments

4.1. Results Using DP PSF

Following the qualitative comparison procedure intro-

duced in [1], we provide the animated image motion (or

NIMAT effect) of different approaches in Fig. 8. In par-

ticular, we compare ours with the results from [1] and the

Facebook 3D image. As mentioned earlier and unlike other

approaches, our proposed framework starts with the deep

DoF image (i.e., almost all-in-focus) to produce the syn-

thetic bokeh (or synthetic shallow DoF) image and the mul-

tiple DoF/DP-based views. Therefore, we provide the syn-

thetic bokeh image as input to other approaches. This sec-

tion also introduces the NIMAT-like effect from the com-

mon Facebook 3D image by uploading a single image and

rendering the 3D version. Then, we save multiple frames at

different view directions following the circular pixel motion

transition found in the NIMAT effect [1].

The results in this section show two cases of scene depth

variations — namely, a small depth variation (Fig. 8, first

row) and a large one (Fig. 8, second row). While the Face-

book 3D image motion is sufficient in the first row, it suffers

from few artifacts around the foreground object boundary

(e.g., the wall behind the person’s head and arm). As for

the NIMAT effect results from [1] in the first row, the im-

age motion is barely noticeable in the background due to

the small blur size that is a result of the small scene depth

variation.

The second row of Fig. 8 shows the large depth varia-

tion case, where the blur size varies from small to large. In

this case, the Facebook 3D image exhibits noticeable and

unpleasing artifacts (e.g., missing pixels). While the NI-

MAT effect from [1] produces pleasing image motion, we

can still spot few artifacts that do not exist in ours. Note

that we are aware the Facebook 3D image is not made for

the same purpose, but we rendered it with the same motion

transition settings of the NIMAT effect for comparison pur-

poses.

4.2. Results Using Other PSFs

As mentioned earlier in Sec. 3.2, the directional PSF

used to render the NIMAT effect can be any generic PSF

that involves blurring and shifting the image content. In

Fig. 9, we show the NIMAT effect rendered using two dif-

ferent PSF shapes – namely, DP-based PSF (Fig. 9, c) and

transitional blurring 2D ramp mask with a constant inten-

sity fall-off towards the opposite direction (i.e., Ramp PSF

(a) NIMAT – DP PSF (b) NIMAT – Ramp PSF

(c) DP PSF (d) Ramp PSF

Figure 9: A comparison between different PSFs used to ren-

der the NIMAT effect. The two PSFs (i.e., DP PSF and

Ramp PSF) are able to render smooth image motion. How-

ever, different motion transitions and artifacts can be intro-

duced by using different PSFs. Note: the synthetic output

views are designed to be animated. We provide in-PDF

animated figures in our arXiv version.

in Fig. 9, d). These results demonstrate that other non-DP-

based PSF can be utilized to render the NIMAT effect as

long as it satisfies the conditions of having a transnational

and blurring operator. Nevertheless, different motion transi-

tions and artifacts can be introduced by using different PSFs

as shown in Fig. 9.

5. Conclusion

In this work, we proposed a modification to the DoF syn-

thesis associated with most smartphones’ portrait mode fea-

ture. This modification can be easily integrated into the tra-

ditional DoF synthesis unit and enables the generation of

multiple sub-aperture views along with the synthetic bokeh

photo. With this modification, we are also able to produce

an aesthetic image motion effect similar to the novel NI-

MAT effect from [1]. For our multi-view synthesis, we in-

troduced the novel idea of convolving the input image with

the rotated blurring kernels based on the DoF blur and DP

image formation. We validated our approach qualitatively

and demonstrated that it produces smooth motion transition

in the NIMAT effect with fewer artifacts compared to oth-

ers. We aim to encourage work in this new research direc-

tion that presented a new pleasing effect of image motion.
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