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Abstract

Ensuring ideal lighting when recording videos of people
can be a daunting task requiring a controlled environment
and expensive equipment. Methods were recently proposed
to perform portrait relighting for still images, enabling
after-the-fact lighting enhancement. However, naively ap-
plying these methods on each frame independently yields
videos plagued with flickering artifacts. In this work, we
propose the first method to perform temporally consistent
video portrait relighting. To achieve this, our method op-
timizes end-to-end both desired lighting and temporal con-
sistency jointly. We do not require ground truth lighting an-
notations during training, allowing us to take advantage of
the large corpus of portrait videos already available on the
internet. We demonstrate that our method outperforms pre-
vious work in balancing accurate relighting and temporal
consistency on a number of real-world portrait videos.

1. Introduction
Portrait videos are a large portion of user content being

uploaded daily to online and social media platforms. They
typically feature one person—such as a news anchor, an en-
tertainer, or a communicator—whose face and upper torso
are featured prominently. While relatively simple in con-
cept, high-quality portrait videos are hard to capture, re-
quiring proper illumination equipment and a controlled en-
vironment to get the right aesthetics.

The rise of user-created amateur content and video con-
ferencing has brought its share of portrait videos shot with
relatively modest cameras and lighting equipment (e.g.,
ring lights, cellphone cameras). Illumination can be chal-
lenging to control fully in these situations, and manually
post-processing each video to correct its lighting requires
training and is time-consuming. Recent advances allow
for post-capture editing of lighting in single portrait im-
ages [33, 48], but produce flickering results when applied

to videos on a frame-by-frame basis. Extending these fully
supervised methods to work directly on videos instead of
images proves to be prohibitively expensive and laborious,
as they require portraits with a vast diversity of illumina-
tion conditions for training. This data is not available pub-
licly and is usually acquired using expensive lighting and
capture rigs such as light stages [13, 26] or mechanical
gantries [8, 12].

In this work, we propose an end-to-end differentiable
portrait video relighting pipeline that generates tempo-
rally consistent videos. Our pipeline consists of a por-
trait relighting method [33, 48] and a video consistency
method [2, 20, 18] trained jointly using three losses: tem-
poral loss, perceptual loss, and lighting loss. In addition to
the pipeline, we also introduce a novel method to train it
involving the generation of relit portraits on the fly, thereby
eliminating the need for lighting annotations during train-
ing. Thus, our method can be trained using any existing
video dataset.
We summarize our contributions as the following:
• An end-to-end differentiable pipeline that involves the

following: facial alignment and segmentation, colorspace
conversion, single image portrait relighting, blending of
the face back onto the upper body, blind consistency with
temporal, lighting and perceptual consistency losses.

• A novel method for training this pipeline with readily
available portrait videos, without ground truth lighting
annotation needed.

• Experiments on a variety of portrait videos demonstrating
state-of-the-art relighting accuracy while preserving tem-
poral consistency better than existing non-lighting-aware
methods, as demonstrated by our user study.

Despite the promising results we obtain, there are future di-
rections that could enhance our method. First, our pipeline
only handles human faces and does not relight the back-
ground. Full scene relighting from a single image is not
yet tackled in the literature. Furthermore, some blending
artifacts are slightly visible, which could be alleviated by
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Figure 1. Given input video frames (top), we apply a single image relighting methods per-frame [48] (2nd row), producing a video that
has the desired target lighting on average—as shown by the low average lighting estimation error, visualized via rendered spheres in the
leftmost column—but flickers between frames. Applying a blind video consistency method [18] (3rd row) removes the flickering, but also
significantly changes the lighting. In contrast, our method (bottom) produces a flicker-free video that preserves the desired target lighting.
Note, the first column is the average relighting error, the darker the image, the better the corresponding method.

leveraging recent compositing methods such as [44].

2. Related Work
While the problem of end-to-end portrait video relight-

ing has not been tackled in the past, there has been signif-
icant work on related topics. In the following, we discuss
relevant steps such as human face modeling, lighting esti-
mation, relighting, and video temporal consistency.

Face modeling and editing in the wild: The problem

of face detection and alignment has been under scrutiny for
many years, first using optimization techniques [14, 5] and
more recently with deep learning-based methods [49, 45,
11, 9]. Once detected, inverse rendering methods can be ap-
plied to model a face, a topic initiated by the 3D Morphable
Model [1] which demonstrated successful face relighting
under specific circumstances. Shu et al. [31], followed by
[34], extend the 3DMM concept using a generative adver-
sarial network to decompose portraits into reflectance prop-
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erties, including shape, albedo, and lighting, from which
they perform lighting transfer.

As most face modeling methods present in the literature
are tailored for single images, they can be naively extended
to video by processing each frame independently. Meth-
ods to automatically select the most representative frame
for the face were later developed [23]. Very recently, work
has been proposed to learn to directly act on the face mesh,
providing expression synthesis for videos [28]. This con-
cept of modeling expressions has also been used in the con-
text of video compression [36], considerably reducing the
bandwidth required during videoconferencing sessions.

Lighting estimation and relighting: A controlled light-
ing environment such as a light stage [8, 7] allows for the
acquisition of face reflectance properties with high fidelity.
Once the properties are captured, it is possible to use them
to relight a facial performance in post-production [27]. Sim-
ilarly, Einarsson et al. [10] develop a technique that uses
time-multiplexed lighting coupled with high-speed cameras
to capture a person running on a treadmill. However, these
techniques require complex lighting setups, which can be
expensive or inconvenient to use. To circumvent this, por-
trait lighting estimation methods [19, 4] propose to use the
human face as a light probe, estimating the environment
lighting from a single image. Furthermore, lighting esti-
mation was also proposed for videos of generic scenes [22],
taking advantage of the entire sequence of frames.

In addition to lighting estimation, relighting has also re-
ceived much attention from the computer vision commu-
nity. Techniques using inverse rendering methods on a
coarse geometry of the face were initially proposed [39, 37].
Despite the promising results offered by those techniques,
their use of a face geometry proxy limits the relighting to
a fixed region of the portrait, precluding its use on hair. To
mitigate this, image-based methods using additional hard-
ware such as an IR projector [35] were proposed. [40] per-
forms relighting of videos but requires an input video with
uniform illumination across the face. Additionally, their
lighting transfer scheme requires a similar skin color and
face geometry between the target and reference videos, lim-
iting its applicability in the wild. Recently, deep learning-
based methods propose in-the-wild relighting for humans
bodies [16], or even entire scenes [50, 21, 43], allowing
a user to change the lighting of the whole image post-
capture. Deep learning methods have also been applied
to single image portrait lighting manipulation. Zhang et
al. [47] automatically remove cast shadows and simulate
a fill light to dampen stark lighting and improve the vi-
sual appeal of portraits. Single image portrait relighting
methods [38, 48, 33, 24] change the lighting to a user-
specified target lighting condition. These methods are
all trained with datasets (either real or synthetic) of pho-
tographs with ground truth lighting annotations. We ex-

tend such methods—in particular, Deep Portrait Relight-
ing [48]—to videos without requiring such annotation video
relighting data.

Video temporal consistency: A naive way to extend
single-image methods to video is to apply them on a frame-
by-frame basis. Doing so typically results in videos with
temporal discontinuities and noticeable flickering. This
problem was originally addressed by Blind Video Temporal
Consistency [2] using a gradient-domain technique. Since
then, multiple methods using a CNN [18], a GAN [6], lever-
aging the Deep Video Prior [20], or specifically tailored
for full-body human synthesis [41] were proposed. In our
work, we draw inspiration from Lai et al. [18] to develop
a fast feed-forward network that enforces the video’s tem-
poral consistency. However, when directly applying [18]
on relit videos, we observe a drift in the lighting, straying
away from the target lighting specified. To solve this, we ex-
plicitly integrate lighting cues to the temporal consistency
model, allowing for a flicker-free video that preserves the
target lighting defined by the user throughout its duration.

3. Approach
A straightforward way to extend single image relighting

methods to video is to apply them on each frame indepen-
dently. In this work, we leverage the Deep Portrait Relight-
ing (DPR) network from [48] to perform re-illumination.
We want to point out that our method is not tied to this spe-
cific method and can extend any image relighting method.
We encourage the reader to look at our supplementary video
results to better appreciate the results obtained by applying
DPR on a per-frame basis. In general, doing so generates
high frequency flickering and causes global changes in the
lighting level and average color of the face. These problems
are the motivation for our proposed system to improve the
temporal consistency of the lighting in portrait videos.

Problem Challenges and Assumptions: There are sev-
eral key challenges to overcome with designing an end-to-
end portrait video relighting system. Our system needs to
generate temporally consistent lighting across frames, but
has to be robust to significant variations in face geometry,
reflectance, and pose. In particular, a moving face in the
video requires accurate facial alignment to ensure the re-
sulting relighting tracks the movement and is robust to oc-
clusion. Further, the relit face must be seamlessly blended
back onto the upper torso, neck, and hair without artifacts.

We make some critical assumptions in our pipeline to
make the problem of video relighting more tractable. In
this paper, we focus facial relighting and do not solve the
harder problem of relighting in general. Our method will
relight regions close to the facial region such as the up-
per neck and hair next to the forehead, but will not per-
form full human body relighting nor change lighting on
long hair. Despite this, we believe modeling and editing
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Figure 2. Pipeline of the proposed Method. Our end-to-end relighting framework consists of two major sections, the relighting & the
consistency part. The input video frame It is relit by the portrait relighting architecture, these processed frames Pt is then passed through
the consistency network along with the previously stabilised relit frame Ot−1 to obtain the temporally consistent relit image Ot. For a video
segment, the first relit image is taken as Ot−1 for t = 0. The network is trained with loss functions to account for temporal consistency,
data fidelity and lighting preservation. For details regarding the architecture, please refer to the supplementary.

face lighting on videos is a useful first step. In addition,
the quality of our relit results is based on Deep Portrait Re-
lighting (DPR), which uses spherical harmonics to relight
faces. As such, our method inherits its limitation of cap-
turing only low-frequency lighting. However, our generic
pipeline can be applied to a different relighting component
and exploit a more powerful lighting representation with
minimum changes. Finally, we assume the target lighting is
static during the entire video, so that we can properly con-
strain the temporal consistency of this lighting. Dynamic
lighting with a dynamic moving face is a much more chal-
lenging problem that is out of scope of the current work.

4. Proposed System

Our proposed pipeline, schematized in Figure 2, intro-
duces a joint network architecture coupled with strong loss
constraints specifically for video relighting. In the follow-
ing, we first describe how we perform face alignment, fol-
lowed by our relighting step. Then, we detail our composit-
ing step, and finally the consistency network with which we
balance temporal and lighting consistency losses.

4.1. Facial Alignment and Warping

To execute our method, we employ an input video frame
It which we relight using DPR [48] and denote Rt. We
employ the same portrait pre-processing steps as DPR, as
described in [17]. Concretely, we use the method of Bulat
et al. [3] to detect facial landmarks and warp the face to
some specific location in the image. In practice, we cache
the warped images and their masks to reduce computational
overhead during training.

4.2. Portrait Relighting and Blending

To relight the face in the input frame, we make use of
Deep Portrait Relighting (DPR) [48]. This network is in-
spired by the Hourglass architecture [25], which is com-
posed of an encoder and a decoder connected together by a
bottleneck layer. DPR changes slightly this architecture by
adding a subnetwork connected at the bottleneck layer. The
role of this subnetwork is twofold: it estimates spherical
harmonic coefficients from the encoder—performing light-
ing estimation from the input image—and encodes the input
target lighting for the decoder. In summary, this network
takes as input a source image, a target lighting and outputs
the image Rt relit under the given lighting condition. Note
that the relighting is done on the luminance channel of the
LAB image. For specific details regarding implementation,
we encourage the reader to refer to the original paper [48].

The relit image Rt is then un-warped to the original
video frame using the inverse of the warping operation de-
scribed in §4.1. In addition, we compute a background
maskMt using [42], which we feather lightly using a Gaus-
sian blur operation. We then blend the relit image Rt onto
the original video frame It using the mask Mt using

Pt = Mt �Rt + (1−Mt)� It , (1)

where � is element-wise multiplication. To make this
pipeline end-to-end, all the processing such as warping,
color space conversion, and blending are implemented as
differentiable functions using Kornia [29]. At this point, we
have pairs of images (It, Pt) that represent the same video
frame lit under two different illumination conditions.
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4.3. Consistency Network

Blind consistency methods in video typically utilize self-
supervision to mitigate temporal artifacts for processed
video. In our design exploration, we first applied a blind
consistency network [18] directly to the output of a DPR-
processed video. This consistency network comprises of
convolutional layers followed by residual blocks. The out-
put of the residual block is then passed through a ConvL-
STM [30] layer. This ConvLSTM layer learns relationship
between neighbouring frames to give a temporally consis-
tent output. The current output frame is fed back as an in-
put to the consistency network for next pair of frames being
processed.

We incorporate this same consistency network architec-
ture into our pipeline. As shown in the Fig. 2, we obtain the
stabilized output frameOt from the consistency network Ψθ

with trained parameters θ with

Ot = Ψθ (Pt, Pt−1, Ot−1) , (2)

where Pt and Pt−1 are the relit frames at time t and t−1 re-
spectively (see §4.2), and Ot−1 is the previously stabilized
relit frame at time t − 1 output at a previous iteration. For
the first image to be stabilized t = 2, we use Ot−1 = Pt.

Applying [18] successfully mitigates the temporal incon-
sistencies but detrimentally changes the content of the video
as time progresses. For instance, the lighting seems to be
decoupled from the facial geometry and shadows and bright
reflectance patches across the face seem to not conform to
the facial movement in the video. Further, there is a subtle
color warping or drift of both the face and background over
time. To circumvent those issues, we introduce the addi-
tional loss functions described in the following.

4.4. Loss Functions

The primary goal of the network pipeline is to perform
relighting in a consistent manner, while preserving data-
fidelity and ensuring that relit videos maintain the same re-
quested target lighting. For this purpose we use the follow-
ing loss functions.

Lighting Estimation Loss: The first loss function’s pri-
mary goal is to ensure that the consistency network does not
alter the lighting as time progresses during the video, a phe-
nomena we observe when applying blind consistency to the
output of DPR-relit video (see Fig. 3).

To prevent this, we utilize the light estimation network
from the DPR network to perform a lighting estimation loss.
In other words, we require the lighting estimated from each
video frame to be temporally stable and not shift around.
To implement this, the output frame Ot is passed through
the encoder of the relighting network to extract the SH of
the light associated with it, let us denote this as Llight. The

error is then calculated on the 9 SH coefficients Li as

Llight =

9∑
i=1

(
Litarget − Liestim

)2
. (3)

Temporal Loss: The second loss enforces the tempo-
ral consistency on the processed video. We follow [18] and
implement this loss on both short and long-term. The short-
term loss is computed by measuring the warping error be-
tween two consecutive frames, while the long-term consis-
tency is applying the warping error between the first frame
of the video and the current frame. The optical flow com-
ponent of the warping error is provided by FlowNet2 [15]
being processed on the aligned face images. Formally, the
temporal loss is defined as

Ltemporal =

T∑
t=2

N∑
j=1

Mj
t (‖Oj

t−Ô
j
t−1‖1+‖O

j
t−Ô

j
1‖1) , (4)

where Ojt is the jth pixel of the tth output of the consistency
network, Ôt−1 is the frame Ot−1 which was warped using
the optical flow estimation, and M j

t−1 is the optical flow

uncertainty mask given by Mt = e−50‖It−Ît−1‖2
2 . This un-

certainty mask prevents penalizing the network for errors in
the optical flow estimation.

Perceptual Loss: The final loss we implement is a per-
ceptual loss based on VGG features [32], computed as

Lperceptual =

T∑
t=2

N∑
j=1

∥∥∥φ4(Ojt )− φ4(P jt )
∥∥∥
1
, (5)

where φ4(·) is the output of the 4th layer (i.e., relu4-3) of
the pretrained VGG-19 network. This allows the network
to ensure the content of the video is preserved including
texture, facial movement and occlusions that occur.

We train our model by summing the three aforemen-
tioned losses as:

L = λlLlight + λtLtemporal + λpLperceptual , (6)

with various weights λ· to balance the losses during train-
ing. In our experiments, we empirically use λl = 5,
λt = 100 and λp = 10.

5. Implementation and Evaluation
Dataset: Our dataset consists of 190 videos (≈ 90000

frames) of interviews and recordings of celebrities, which
we split into 80% training and 20%for our validation. These
videos of varying lengths feature significant variations in
skin tone, facial geometry, pose/movement, facial expres-
sions, and background environments. Additionally, we
prune the videos containing multiple subjects before carry-
ing out the preprocessing. For each video, we extract facial
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Figure 3. Qualitative comparison on relighting, showing the error (below) when comparing the relit frames (above) to the target lighting.
This evaluates the accuracy of each method at preserving the image content. The difference images (rows 2, 4, 6, 8) are multiplied by 3.

landmarks Ft, warping matrix ωt, and background masks
Mt during preprocessing. For details regarding the training
procedure, please refer to the supplementary material.

Evaluation Metrics: To evaluate our methods quantita-
tively, we employ traditional temporal metrics commonly
used for video consistency, including the Warping Error
from [18]. In addition, we evaluate the data fidelity in terms
of Perceptual Similarity metric using LPIPS [46].

Comparisons: Since, to the best of our knowledge, no
end-to-end portrait video relighting method exists, we de-
velop our own baselines for comparison. In addition to uti-
lizing DPR per frame, we also compare against the pipeline
of DPR + blind consistency[18]. In addition, we also fine-
tune blind consistency on our training data to help demon-
strate the need for our additional loss functions. Another
related but slightly different approach in the literature is the
use of deep priors [20] to estimate lighting per frame. We

compare explicitly against the method in [20] to show the
differences between a deep prior and a trained end-to-end
architecture.

Training details: Our algorithm was trained on two
Geforce GTX 1080Ti GPUs. We use ADAM optimizer with
β1 = 0.9, β2 = 0.999 and a learning rate of 1e − 04. Dur-
ing training, the sequence length is fixed to 11, with the first
frame chosen as the reference. We trained the model for
130 epochs, which took over 50 hours.

6. Experimental Results
In this section, we present our experimental results in

both qualitative and quantitative comparisons. We highly
encourage the reader to view the supplementary video
to grasp our method’s capabilities better.

In Figure 3, we show two frames from two different por-
trait videos, followed by the results from DPR [48], pre-
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input per-frame [48] pretrained [18] finetuned [18] [20] ours

Figure 4. Qualitative warping error evaluation. We relight a video frame (leftmost) using different methods (rows 1,3), and show the
warping error between two consecutive frames (rows 2,4, see §4.4 for more details). Note how DPR applied per-frame can generate images
with a lot of flicker, as seen in the warping error (row 2,4 left). [18] generally removes flicker very well (low warping error), but loses the
lighting content and introduces a brown-ish tinge (see Fig. 3). [18] and [20] perform generally well but tend to lose high-frequency details.
Our method (rightmost) provides a good balance between temporal consistency and content preservation.

trained blind consistency [18] applied to the DPR relit video
with and without finetuning, deep prior method [20], and fi-
nally our method. Underneath each method is the difference
image between that frame and the reference relighting pro-
duced by DPR. This helps visualize any errors in lighting
in the frame, effectively measuring the method’s capabil-
ity to keep the lighting content stable. As we can see, the
blind consistency methods (both pretrained and finetuned)
have significant errors in their lighting as compared to the
reference relit frame. This is due to the method’s focus on
minimizing temporal flickering artifacts over keeping the
physically-plausible lighting and colors. We also noticed
that the pretrained blind consistency model would experi-
ence a drift in colors slowly throughout the video, as shown
in the second frame relative to the first in Figure 3.

We further investigate how well each method preserves
lighting by using DPR to estimate the lighting in each frame
of the relit video. As shown in Figure 5, the blind method’s
lighting is changing distinctly over time as compared to the
reference relit target. Both the deep prior and our method
produce frames with more accurate lighting.

In Figure 4, we show the average warping error on two
other portrait videos. This warping error is computed in two
steps. First, we compute the optical flow between frames of
the original video. Second, we warp the adjacent frames of
each relit video using this optical flow and then compute the
difference between them. Note how the blind consistency
methods achieve the lowest warping error. This measure
corroborates the viewing experience and adequately cap-
tures our perception of the amount of temporal flickering

in the video, as the blind consistency methods featured the
least amount of flickering of all videos. However, the re-
sults produced by this technique progressively change color
and lighting throughout the video. Both Figures 3 and 4
demonstrate that our method achieves a good compromise
in preserving the lighting while minimizing a large amount
of the temporal flicker.

To quantify the previous observations, we present the
results of our error metrics for the various methods in Ta-
ble 1. These numbers are evaluated on 5 randomly cho-
sen videos, relit with 5 different lighting conditions. Our
method achieves the best average LPIPS distance [46] of all
methods with 0.0028, while proposing a competitive aver-
age warping error of 0.0089, much better than the error of
0.012 from the frame-by-frame relit video. As mentioned
before, both blind consistency methods change their content
over time, which results in a higher LPIPS error. We note
that our method is on-par with these methods with respect to
warping error, lending evidence to our method as satisfying
both constraints for portrait video relighting well.

6.1. User Study

To further emphasize the importance of temporal sta-
bility for humans, we conducted a user study to inves-
tigate how the subjects perceive our method against per-
frame DPR, Blind Consistency, Finetune and Deep Prior.
Twenty-five subjects participated in the study (12 females,
13 males). None of the participants were aware of the re-
search or the methods. All the participants had a normal or
corrected-to-normal vision. We utilized 10 videos relit by
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Figure 5. Starting from the top, the rows correspond to
[48],[18],[20] and our method consecutively. Each row shows the
frames of a video as handled by one of the aforementioned meth-
ods. The inset in the per-frame row, shows the target lighting used
for the relighting. Applying blind temporal consistency (row 2) to
relit portrait video significantly alters the lighting condition from
frame to frame (shown via spheres rendered with the lighting). Our
approach (row 4) ensures a consistent lighting condition through-
out the frames of the video.

Method Warp Error ↓ LPIPS [46] ↓
Per-frame DPR [48] 0.012160 -

Blind Consistency [18] 0.007050 0.01496
Finetune [18] 0.008817 0.00635

Deep prior [20] 0.009143 0.00514
Our Method 0.008922 0.00276

Table 1. Quantitative evaluation comparing state-of-the-art meth-
ods on flickering (warping error between adjacent frames) and
lighting and content preservation (LPIPS between the per-frame
DPR result), both lower is better. Our method preserves the best
the lighting while providing competitive flicker removal, much
better than naive per-frame relighting.

all the methods, and we limited all videos to 30s sequences.
Study Details: The study was a two-alternative forced-

choice. Given two differently relit videos, the subject was
forced to select one choice. Due to COVID-19 restrictions,
the users were asked to perform the study on their respec-
tive mobile devices. Each trial compared our result to either
(per-frame DPR, Blind Consistency, Finetune, and Deep
Prior), where our result is randomly set as either the first
or second video. Each video is displayed for 30 with a 2s
blank screen between each. The users were instructed to

base their decision on what they found most appealing aes-
thetically and was not straining their eyes. Each user had to
undergo 20 trials, that is 5 trials per pair of the 4 combina-
tions. The users could pause the study and resume at their
convenience.

Results: The user study results are shown in Fig. 6. De-
spite slight artifacts present in our results, our method is
overwhelmingly preferred over all other methods, including
in every case over DPR and 74% of the time over finetuned
blind consistency, which is the next best performing method
after our method.

Figure 6. User study results showing the vote ratio comparing two
methods at a time. 1.0 denotes humans preferred the first method
throughout all trials. The very high vote ratio (� 0.5) shows a
clear preference for our method.

7. Discussion

In this paper, we tackle the challenge of extending a deep
single portrait image relighting method to video. We in-
troduce a novel pipeline that synergizes single-image por-
trait relighting with blind video consistency. To the best of
our knowledge, this is the first end-to-end video relighting
pipeline proposed for portrait videos. We hope our work
sparks interest in portrait video relighting and leads to the
production of high-quality videos without the need for time-
consuming processes or expensive equipment.
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