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Abstract

Imaging through scattering media is challenging: object
features are hidden under highly-scattered photons. Con-
ventional methods that characterize scattering properties,
such as the media input-output transmission matrix, are
susceptible to environmental disturbance that is not ideal
for many imaging scenarios, especially in biomedical imag-
ing. Learning from examples is ideal for imaging in highly
scattered regimes because it is adaptable and accurate even
when the microstructures of the scattering media change.
In current approaches, network output on unseen scatter-
ing media contain artifacts that inhibit meaningful object
recognition. We present a network architecture that is able
to generate high quality images over a range of different
scattering media and image sizes with minimal artifacts.
Our network learns the statistical information within highly
scattered speckle intensity patterns. This allows us to com-
pute an accurate mapping from different speckle patterns
to their corresponding objects given scattering media with
varying microstructures. Our network demonstrates supe-
rior performance compared to similar models, especially
when trained on a single scattering medium and then tested
on unseen scattering media. We estimate the uncertainty of
our approach and use the available data efficiently, increas-
ing the generalizability of predicting objects from unseen
scattering media with multiple different diffusers.

1. Introduction
In biological imaging, tissues act as scattering media

that induce aberration and background noise in the cap-
tured image, where the true object is faded out. Retrieving
the hidden object from the image thus becomes a challeng-
ing inverse problem in computational optics. Normally, the
properties of the random scattering media are not known
and are difficult to fully characterize. Traditional tech-
niques formulate this problem as an optimization based
on a transmission matrix or forward operator, with a reg-

ularization term derived from the object prior knowledge:
x̂ = argmin

x
∥y −Ax∥2 + λΦ(x), where x is the unknown

object with x̂ being its estimation, and y is the observed
image, A the forward matrix, and a regularization func-
tion Φ (x) with a weighting parameter λ. However, many
practical instances of imaging arise when such formulations
and methods fail. The nonlinearity that exists in the for-
ward imaging process, especially under heavy light scat-
tering conditions, means that learning from examples is an
ideal solution due to the ability to handle nonlinearities.

Real world applications. Motivating this work are real-
world applications including (i) Imaging through tissue with
visible light, which allows for non-invasive sensing inside
the body without exposure to excess radiation, while po-
tentially allowing for better functional imaging than stan-
dards today such as the MRI; (ii) Privacy preserving use
cases, e.g. human-computer interaction systems, where the
agent must observe characteristics of the human but the im-
age of them is obscured to preserve their privacy. Thus, the
agent is able to capture essential information without cap-
turing identifying information; (iii) Sensing through dense
fog for autonomous navigation (driving, flight, etc.) allows
for safe movement in inclement weather; and (iv) Under-
water imaging, where turbulence and particulate matter ob-
scure the line of sight.

Instead of solving for the data-fidelity and regular-
izer by optimization, learning-based methods alternatively
model the forward operator and regularizer simultaneously
through known objects and their images through random
media. A first implementation of this approach [1] used
support vector regression learning and successfully learns
to reconstruct face objects. However, the fully-connected
two-layer architecture fails to effectively generalize from
trained face objects to other non-facial object classes. A
better network architecture is necessary for more generaliz-
able learning and accurate performance. A U-Net was first
proposed for biomedical image segmentation [5]. The skip-
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Figure 1: Experimental setup of the scattering media imaging system. Top: schematic of the optical configuration, with an
example of a speckle pattern (right) that is mapped to the corresponding ground truth object (left). Bottom: the physical
configuration corresponding to the schematic diagram.

connection in the U-Net architecture enables its superiority
in extracting image features over other CNN architectures.

Such a U-Net model has been applied to this problem
[3] taking a speckle pattern as input and using an encoder-
decoder structure to generate high-resolution images. In
order to account for the data sparsity that often accompa-
nies computational imaging, the negative Pearson correla-
tion coefficient (NPCC) is used [3] rather than cross en-
tropy as the neural network loss function. The resulting
network, called IDiffNet, adapts to different scattering me-
dia for sparse inputs, with the NPCC used to learn spar-
sity as a strong prior in the ground truth values. While ID-
ifNet works well on training and testing data from the same
database and distribution, it does not generalize well among
different databases, and suffers from overfitting [3].

In a similar fashion, a U-Net is used [4] to map speckle
patterns to two output images: the predicted object and
background, for a set of different diffusers. Instead of im-
plementing computational imagining as an inverse problem,
recent work learns the statistical properties of speckle in-
tensity patterns in a way that generalizes to various differ-
ent scattering media. Data augmentation may be used to
increase the training set size, for example by simulation
[7]. In this work we use a new experimental setup, us-

ing a digital micromirror device (DMD) instead of a spa-
tial light modulator (SLM) as the pixel-wise intensity ob-
ject, resulting in speckles size of 10 micrometers instead of
16 micrometers as seen in previous work [4]. When test-
ing on speckles from previously unseen objects through un-
seen diffusers (types of scattering media), neural networks
trained on image sets with multiple diffusers perform bet-
ter than ones trained on a single diffuser [4]. While pre-
vious work may be generalized to multiple different dif-
fusers within the same class, a limitation are obvious ar-
tifacts, such as discontinuities, which are observed in the
object prediction.

In this work, we use a U-Net architecture to learn the
forward operator and regularizer that generate high-quality
imaging to show the statistical properties of speckle pat-
terns1. We accomplish this in a manner that allows our
model to adapt to different diffuser microstructures. We
also explore how to make better use of limited experimental
data by comparing the performance, output object accuracy,
and generalizability among different loss functions as well
as data compositions.

1Code available at https://www.dropbox.com/s/rpioiafjxdupz4k/Scattering-
main.zip?dl=0
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2. Methods

2.1. Experimental Setup and Data Acquisition

Our experimental setup is illustrated and shown in Fig-
ure 1. Light from a laser source is first collimated and
then illuminates onto a digital micro-mirror device (DMD,
DLP LightCrafter 6500, pixel size 7.6 micron). The DMD,
placed at a certain angle relative to the illumination beam,
acts as a pixel-wise intensity object. After modulation by
DMD, the beam passes through a thin glass diffuser (Thor-
labs, 220 grits, DG10-220) and gets scattered. The resulting
image is then relayed by a two-lens telescope imaging sys-
tem onto a camera (FLIR, Grasshopper 3, pixel size 3.45
micron). The focal lengths of lens 1 and lens 2 are 150mm
and 100mm, respectively, which provide a magnification of
0.67. The speckle size of the system is calculated by taking
the autocorrelation of a speckle pattern through a diffuser
and measuring the full width at half-maximum, which is
∼ 20µm.

The central 512 × 512 DMD pixels are used as the ob-
ject; the corresponding central 750 × 750 camera pixels are
used as the speckle intensity for training and testing. The
objects displayed on the DMD are binary images adopted
from MNIST. In total, we use 600 objects and collect the
speckle images for 8 different diffusers. The data from dif-
fusers 1-4 are used in training, where the images of the first
550 objects are training data and the remaining 50 are val-
idation data. This means that 2200 data pairs are used in
total for training. The data from diffusers 5-8 are used in
testing, where we characterize the output accuracy of the
network by testing on seen objects (object 1-550) and un-
seen objects (object 551-600) from unseen diffusers.

As a pre-processing step, the input and output images are
down-sampled to 128×128 and 256×256 for computational
efficiency. Next, the input speckle images are transformed
to grayscale. The output is a single channel produced by
a sigmoid layer that represents the object. The input and
ground truth pairs are converted to tensors. For each dif-
fuser, our network is trained on 550 images and validated
on 50 images. Data loaders are constructed with a batch
size of 32.

2.2. Neural Network Implementation

A major difference between our U-Net and previous
work [4] is that the later uses a two-channel network that
splits each input image into two tensors: one for the ob-
ject itself and another for the background. In contrast, our
U-Net considers only a single channel outputted through
a sigmoid activation layer. This produces a clearer recon-
struction as shown by comparing Figure 5 to the output of
[4]. In our U-Net, each convolutional layer is replaced with
a dense block. Our U-Net model is separated into an en-
coder and decoder. The encoder uses five layers, each con-

sisting of 2D Convolution-ReLU-Dense Blocks followed by
max pooling, to reduce the lateral size of the image while
increasing the number of tensors in the channel dimension.
The convolutional kernel is size 3 × 3 and the dense ker-
nel is 5 × 5. The decoder uses a similar series of opera-
tions joined by up-sampling and concatenation in the chan-
nel dimension with the corresponding encoder layer. This
re-expands the image lateral size and results in the number
of channel-dimension tensors to be one output image.

Each dense block consists of several subsequent convo-
lutional blocks. During encoding, this convolutional block
series is repeated four times, while decoding has this series
repeated only three times. The basic structure of a convolu-
tional block consists of batch normalization, ReLU, convo-
lutional layer, and conditional drop-out with probability of
0.5. The resulting feature maps from these subsequent con-
volutional blocks are concatenated in the channel dimen-
sion. The up-sampling function consists of three layers:
nearest-neighbor up-sampling, 2D convolution, and ReLU.
The up-sampling is used in the decoding part of the net-
work, which is iteratively followed by concatenation with
the previous dense block outputs in the channel dimension.

Our network is trained using stochastic gradient descent
with momentum. During training, the batch is forward
propagated through the model, the loss is computed and
back propagated, the tracked gradients for the modules are
zeroed, and the step function applied to the optimizer. Dur-
ing evaluation, the model is validated using previously un-
seen validation data. The training loss and validation loss
are computed for each epoch. Commonly used loss func-
tions including mean squared error (MSE) and mean ab-
solute error (MAE) do not promote sparsity since they as-
sume the underlying signals follow Gaussian and Laplace
statistics, respectively. Considering the high sparsity in the
MNIST database, we consider two more appropriate can-
didates for the loss function: the negative Pearson correla-
tion coefficient (NPCC) and average binary cross entropy
(BCE):

LNPCC = −
∑

i (x− x̃) (p− p̃)√∑
i (x− x̃)

2
√∑

i (p− p̃)
2
, (1)

L = − 1

2N

∑
i

(x log (p) + (1− x) log (1− p)) , (2)

where x̃ and p̃ are the average ground truth x and network
output p, and i indexes each of the N pixels of the image.

2.3. Uncertainty Estimates using Dropout

Dropout is commonly used for neural network regular-
ization during training. In this work, we would also like
to learn the posterior over the network weights p(θ|x, y) =
p(y|x,θ)p(θ)

p(y|x) . However, this in intractable. We therefore es-
timate uncertainty using dropout. Specifically, we approxi-
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Loss D1 D1 ∼ D2 D1 ∼ D4

BCE 0.773 0.802 0.815
NPCC 0.746 0.752 0.750

Table 1: Pearson correlation coefficient (PCC) for valida-
tion data sets using different loss functions. Binary cross
entropy (BCE) and negative Pearson correlation coefficient
(NPCC) are two candidate loss functions, while the PCC
measures the output image quality.

mate the posterior by sampling using dropout [2]. We train
the network using dropout and then test each example x by
running multiple forward passes with dropout weights. For
i = 1 . . . n where n = 100, we sample n binary masks
from a Bernoulli distribution with probability p, such that
mi ∼ Ber(p). In this case, we use p = 0.1 to generate
the Bernoulli masks. We then use θi = θ ⊙ mi, where ⊙
denotes point-wise multiplication, to compute the mean:

E(ŷ|x) = 1

n

n∑
i=1

f(x|θi), (3)

and use the mean to compute the variance:

v(ŷ|x) = 1

n

n∑
i=1

f(x)2 − E(ŷ|x)2, (4)

as an approximation of uncertainty.

3. Results
3.1. Different Loss Functions

First, we compare two loss functions: Binary Cross En-
tropy (BCE) and the Negative Pearson Correlation Coeffi-
cient (NPCC). The reconstruction losses of the validation
data using these two functions are shown in Table 1. For
each loss function, we train with one, two, and four differ-
ent diffusers.

As seen in Table 1, BCE loss achieves higher valida-
tion accuracy regardless of the number of different diffusers
used in training.

We interpret this to be the intrinsic power of the BCE
loss function, where both false positive and false negative
outputs are penalized. In contrast, NPCC only rewards the
true positives, resulting in inevitable false positives. Thus,
for the rest of this work we use the BCE loss for training.
Note that the results in the below table apply to a network
that is trained and tested on the same set of diffusers.

3.2. Predict Unseen Objects From Unseen Diffusers

Our second task is to predict unseen objects from un-
seen diffusers, where the set of objects has never been used

Samples D1 D1 ∼ D2 D1 ∼ D4

550 0.517 0.568 0.633
1100 - 0.607 0.658
2200 - - 0.676

Table 2: Pearson correlation coefficient (PCC) for unseen
objects through unseen diffusers using binary cross entropy
(BCE) as the loss function.

(a) (b) (c) (d) (e)

Figure 2: Multiple diffusers: Training on diffusers D1 ∼
D4 and testing results of reconstructing unseen objects
through unseen diffusers D5 ∼ D8. Despite the differences
across the speckle patterns, the reconstructions are of high
quality. From left to right: (a) Ground truth, (b) D5 test
output, (c) D6 test output, (d) D7 test output, (e) D8 output.

for training. Representative examples are shown in Figure
2, demonstrating that our network is able to make high-
quality predictions of these unseen objects through unseen
diffusers. It is not surprising to see this result since the un-
seen object and training object belong to the same handwrit-
ten digits. The network is able to make predictions of the
same object from different diffusers with equal quality.

3.3. Generalizability

To evaluate the improvement of network performance,
we use a different training data composition and compute
the average PCC of unseen objects from all four unseen dif-
fusers.

Similar to previous work [1], the network is able to re-
construct unseen objects when trained and tested on the
same diffuser. In contrast with previous work, using a dif-
ferent experimental setup and network architecture, our de-
sign also successfully performs the same task as shown in
Figure 4. A U-Net trained on only a single diffuser cannot
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(a) (b) (c) (d)

Figure 3: Increasing the number of training diffusers: Train-
ing on data from one, two, and four diffusers, respectively.
Testing results of unseen objects through unseen diffusers.
Reconstruction quality increases with the number of dif-
fusers used in training. From left to right: (a) ground truth,
(b) test output from network trained on D1, (c) test output
from network trained on D1 and D2, (d) test output from
network trained on D1-D4.

(a) (b) (c)

Figure 4: Single diffuser training: Testing results of un-
seen objects with the network trained on data from a single
diffuser. While the network reconstructs an unseen objects
using the same diffuser that it is trained on, it fails on speck-
les from a different unseen diffuser. From left to right: (a)
ground truth, (b) test results from seen diffuser, (c) test re-
sults from unseen diffuser.

be reliably generalized to other diffusers, since it is tuned to
fit only to the model of a specific diffuser.

Next, we split the training data into different composi-

(a) (b) (c) (d)

Figure 5: Testing results of unseen objects through unseen
diffusers from the network trained with data from D1 and
tested on D2 and D3. From left to right: (a) ground truth
for D2, (b) corresponding network output, (c) ground truth
for D3, (d) corresponding network output.

tions. When training with one diffuser, we use the full size
of the 550 data; when training with two diffusers, we use
data sizes of 550 and 1100; and when training with four dif-
fusers, we use data sizes of 550, 1100 and 2200. Table 2
shows the average PCC of unseen objects in each case. In
general, the performance of the network improves as more
diffusers are used. Performance also improves by increas-
ing the size of the training data, as seen by a comparison
within each column. In addition, using four diffusers with
550 data has better performance than using two diffusers
with 1100 data, which further verifies the effectiveness of
training with multiple diffusers. Additional representative
sample output images are shown in Figure 3.

We also trained our network on an image size of 256 ×
256. In this case, for efficiency, our network is trained on
a single diffuser, D1, with batch size 32 and image size
256× 256 and tested on two unseen diffusers (D2 and D3).
While the network in previous work [4] exhibits exception-
ally poor imaging quality on unseen diffusers, our network
is able to output images of much higher quality: generally
high enough to be meaningfully identified as shown by sev-
eral representative output samples in Figure 5 for both D2

and D3. We compare the results to those in [4]. The con-
tinuous nature of our network output, as compared to the
previous model, is be explained by the fact that previous
work uses a two-channel output from a softmax layer. In
contrast, our U-Net architecture uses only a single channel
of output with a sigmoid activation.
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(a) (b) (c) (d)

Figure 6: Uncertainty results from model output. The dif-
ference images in (b) and (d) are computed by subtracting
the model output minus the output variance. From left to
right: (a) model output, (b) corresponding difference be-
tween output and variance (c) model output, (d) correspond-
ing difference between output and variance.

3.4. Uncertainty Estimates

In order to visualize the uncertainty of the network’s out-
put, we perform the computations detailed in Section 2.3.
We train the U-Net with a dropout rate of p = 0.1 to cal-
culate n = 100 forward passes through the network. The
U-Net’s parameter matrix is point-wise multiplied with a
Bernoulli mask according to mi ∼ Ber(p). These forward
passes are then averaged and subtracted from the average
square of the forward propagation in the original model to
yield a matrix of variances. Figure 6 depicts several exam-
ples of network outputs followed by the differences between
the output and its corresponding variance.

Following the notation in Section 2.3, f(x) is the net-
work output, x is the input image, and v(ŷ|x) is the model
variance. In Figure 6, columns (a) and (c) are the network’s
output, f(x), while columns (b) and (d) are the difference
between the model output and variance f(x)− v(ŷ|x).

3.5. Changing the Dropout Rate

It is important to note that the results up until this point
have all assumed a dropout rate of p = 0.5. However,
this high of a dropout rate gives rise to significant noise
in the network output and thus the model was retrained
with a lower dropout rate in order to improve its accu-
racy, as measured by the PCC. Given the updated dropout
of p = 0.1, the figure below shows sample outputs from a
network trained on D1 and tested on D2. Furthermore, low-
ering the dropout rate raised the average PCC for the model
output from 0.517, as given in Table 2, to 0.749.

(a) (b) (c) (d)

Figure 7: Sample output from a network trained on D1 and
tested on D2 with dropout rate p = 0.1. From left to right:
(a) model output, (b) corresponding ground truth, (c) model
output, (d) corresponding ground truth.

(a) (b) (c) (d)

Figure 8: Comparison of predictions on an unseen difuser
between previous work and our work. (a) Previous work
results by Li et al. [4] prediction with an unseen difuser and
ground truth (b). (c) Our prediction result with an unseen
difuser and ground truth (d).

3.6. Comparison with Previous Work

Figure 8 compares our work with previous work, specif-
ically the generalization quality when training on one dif-
fuser and testing on another. The Figure shows a side-by-
side comparison. Our work demonstrates the ability to ac-
curately reconstruct speckle patterns from diffusers that the
network was not trained on. The network trained on one dif-
fuser accurately reconstructs speckle patterns from another
diffuser. Figure 8 shows that this represents a significant
improvement over previous work.
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3.7. Limitations

Inherent limitations of our setup are threefold: our model
(i) assumes a linear imaging system, (ii) only applies within
the context of planar imaging, and (iii) requires an active
laser source [6]. Next, we elaborate on each of these lim-
itations. First, our imaging model assumes that the model
output is determined by convolving an object with a point
spread function that both vary across the image’s horizon-
tal and vertical dimensions with added noise. The object is
determined by how the media interacts with incoming light,
and the point spread function is determined by the proper-
ties of the imaging system. In this case, the object is the
speckle pattern and the point spread function is represented
by the U-Net weight matrix. While this offers a relatively
simplified model of the imaging process, it is commonly
assumed in practice [6]. Second, our model only applies to
imaging in planar regimes. Finally, our model makes use
of an active laser source. Acquiring, calibrating, and cor-
rectly positioning such a laser source may be expensive and
complicated.

4. Conclusions

Current methods of imaging through scattering media
have a difficult time generating consistently accurate results
across multiple unseen scattering media. Instead of concep-
tualizing highly-scattered computational imaging as a linear
inverse problem, this work creates and trains a network that
is able to generalize and perform accurately even when the
scattering medium changes. Using an encoder-decoder U-
Net architecture with a binary cross entropy loss function,
our implementation is able to generate accurate outputs for
seen objects through unseen diffusers. Perhaps more im-
portantly, our network is also able to generate accurate out-
puts for unseen objects through unseen diffusers given train-
ing on multiple different diffusers. In addition, our net-
work trained on a single diffuser D1 is able to generalize
to unseen diffusers D2 and D3 with relatively high image
quality, which demonstrates the robustness of the encoder-
decoder U-Net architecture for imaging through highly scat-
tered media.
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