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Abstract

We propose an efficient neural network for RAW image
denoising. Although neural network-based denoising has
been extensively studied for image restoration, little atten-
tion has been given to efficient denoising for compute lim-
ited and power sensitive devices, such as smartphones and
wearables. In this paper, we present a novel architecture
and a suite of training techniques for high quality denois-
ing in mobile devices. Our work is distinguished by three
main contributions. (1) The Feature-Align layer that mod-
ulates the activations of an encoder-decoder architecture
with the input noisy images. The auto modulation layer
enforces attention to spatially varying noise that tends to
be ”washed away” by successive application of convolu-
tions and non-linearity. (2) A novel Feature Matching Loss
that allows knowledge distillation from large denoising net-
works in the form of a perceptual content loss. (3) Empir-
ical analysis of our efficient model trained to specialize on
different noise subranges. This opens an additional avenue
for model size reduction by sacrificing memory for compute.
Extensive experimental validation shows that our efficient
model produces high quality denoising results that com-
pete with state-of-the-art large networks, while using sig-
nificantly fewer parameters and MACs. On the Darmstadt
Noise Dataset benchmark, we achieve a PSNR of 48.28dB,
while using 263× fewer MACs and 17.6× fewer parameters
than the state-of-the-art network, which achieves 49.12dB.

1. Introduction
Image acquisition is inevitably contaminated by noise

due to various environmental effects. Noisy images are
especially more prevalent in small devices such as smart-
phones and wearables. Often these devices are character-
ized by small sensors and limited light intake ability, lead-
ing to low perceptual quality images. Thus, efficient image

*Equal contribution.
†Affiliated with Facebook at the time of this work.

(a) Noisy Input, PSNR = 18.76 (b) Ground Truth

(c) CycleISP [44], PSNR = 40.44,
702.73 GMACs/MP

(d) Our Model, PSNR = 36.33, 2.67
GMACs/MP

Figure 1. Our efficient denoising method compared to the existing
state-of-the-art denoising method, CycleISP when applied to an
image in the Darmstadt Noise Dataset [30]. PSNR is calculated
in the RAW domain. Our method produces similar results with
263x fewer MACs.

denoising algorithms are highly desirable to restore image
quality in mobile devices.

Image denoising is a classical yet actively studied topic
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in image restoration [9, 6, 10, 13, 42, 43]. Recent at-
tention for the problem focuses on applying deep neural
networks to RAW sensor data or to images obtained after
post-processing with the device’s image signal processor
(ISP) [5, 37, 28, 45, 21, 48, 29, 44]. Several of these net-
works are based on the U-Net [31] architecture. They pro-
duce high quality denoising and leverage large quantities of
training data. They are, however, computationally too ex-
pensive to run at real-time on compute and power sensitive
edge devices.

The success of the U-Net architecture [31] has been cele-
brated in learning complex mappings for several dense pre-
diction tasks, such as semantic segmentation [38], depth
estimation [25] or image synthesis [40]. However, its di-
rect deployment on mobile devices with limited compute-
budget is not optimal. Trivial reduction of U-Net parame-
ters is not sufficient to learn robust models. As such, ef-
forts have been spent on efficient building blocks. Mo-
bileNets [18, 36, 17] proposed a suite of efficient blocks for
efficient learning, starting with a depth-wise convolution,
inverted residuals, and later with optimized blocks searched
via neural architecture search algorithms. Similarly, [19]
introduced squeeze-excitation-networks, and [47] proposed
Shuffle Nets that proved to be effective for mobile applica-
tions.

Another recent phenomenon observed in U-Net is that
successive application of convolutions and non-linearity
tend to “wash away” important image cues in deeper lay-
ers. This phenomenon was first studied in [27] for the task
of conditional image synthesis and shown to lead to sub-
optimal image synthesis outcomes. The same work ad-
dresses this issue with a spatially-adaptive normalization
layer. Specifically, it modulates the U-Net features with
transformations learned from the input semantic layout, and
shows improved learning outcomes in image synthesis. In
our experiments, we observed this phenomenon to be even
more pronounced in light-weight image denoising U-Net ar-
chitectures.

In this work, we build upon the U-Net [31] architecture
and introduce an efficient neural network for high quality
RAW image denoising. We employ a variant of the Mo-
bileNetV2 [36] efficient module in place of normal convo-
lutions. Specifically, our variant MobileNetV2 [36] uses
group convolutions in place of depth convolutions, which
further improves memory efficiency. To alleviate the “wash-
ing away” of features in U-Net, we take inspiration from the
SPADE architecture [27] and propose to modulate the con-
volutional features at each layer with the input noisy im-
ages. This auto modulation of features with transforma-
tions learned directly from the input noisy images allows
our models to attend to spatially varying noise. Experimen-
tal validations suggest the effectiveness of this mechanism
in our efficient U-Net architecture. We refer to our modula-

tion layer as “Feature-Align”.
Student-teacher learning has proven to be effective in

learning efficient models [39]. Knowledge distillation al-
lows the transfer of richer knowledge to light-weight mod-
els. Our experiments also prove the effectiveness of knowl-
edge distillation in image denoising, especially in settings
with limited training datasets. In this work, we build up on
the student-teacher training mechanism and propose a new
Feature Matching Loss that performs knowledge distillation
in the form of a perceptual content loss. Specifically, we
extract deep multi-scale features from our efficient model’s
output image and optimize them to match the features ex-
tracted from the clean ground-truth image, in a method sim-
ilar to the VGG perceptual loss [22]. One distinction of
our features matching loss is that we use a large pre-trained
image denoising network, for instance [5], to perform the
feature extraction, instead of ImageNet [11] trained image
classification networks [34]. Using a task-specific feature
extractor, in our case an image denoiser, allows the transfer
of knowledge at deeper representation levels. As we will
show in experiments, our Feature Matching Loss leads to
more crisp and realistically denoised images than that of
training with standard student-teacher distillation or regular
perceptual losses.

Our work also explores overparameterization. Specifi-
cally, we train multiple networks targeting for specific noise
subranges. Use of an array of light-weight specialized mod-
els allows us to improve output image quality solely by in-
creasing additional parameter count without increasing in-
ference time. Experimental validations suggest the effec-
tiveness of this technique.

In summary, the primary contributions of this paper are:

• The Feature-Align layer that modulates the activations
of an encoder-decoder architecture with the input noisy
images. The auto modulation layer enforces atten-
tion to spatially varying noise that tend to be “washed
away” by successive application of convolutions and
non-linearity.

• A novel feature matching loss that allows knowledge
distillation from large denoising networks in the form
of a perceptual content loss.

• Empirical analysis of our efficient model trained to
specialize on different noise subranges, which opens
the additional avenue for model size reduction by sac-
rificing memory for compute.

2. Related Work
Single-frame image denoising is a fundamental prob-

lem in image processing and computer vision. Prior meth-
ods such as BM3D [9] and non-local means [6] rely on
hand-engineered algorithms [10, 13, 42, 43]. With the
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introduction of data-driven neural network-based meth-
ods [37, 28, 45, 21, 48, 29], datasets with paired noisy
and noise-free images became sought after [1, 8, 2]. To
resolve the scarcity of paired noisy and clean RAW im-
ages, other works proposed to simulate noisy images, in
which clean images are post-processed by a simple addi-
tion of white gaussian noise (AWGN). Recent works ob-
serve that true sensor noise exhibits characteristics unlike
AWGN, and thus they propose robust noise modeling math-
ematics by considering the physical properties of sensors
[5, 30, 41, 4, 15, 14, 12]. The work of [5] and CycleISP [44]
further synthesize RAW images from real-life RGB im-
ages by inverting the ISP pipeline. Public real-life image
datasets, such as MIRFLICKR [20], are leveraged with ar-
tificial noise modeling to scale-up the training dataset. This
approach has been demonstrated in achieving state-of-the-
art performance on public benchmarks, suggesting the gen-
eralizability of the approach.

While these works introduce valuable techniques for de-
noising, they do not study less computationally expensive
variants of their methods. PMRID [41] is the first to address
this disparity in neural denoising. Specifically, it intro-
duces an efficient model architecture using separable con-
volutions. It also builds upon the variance stabilizing trans-
form [3, 26] by introducing the k-sigma transform, which
normalizes data such that per-pixel variance is not depen-
dent on the ISO of the exposure. PMRID also describes a
noise modeling method similar to [5]. The work we pro-
pose here shares similar goals to PMRID. However, a direct
quantitative comparison could not be performed at the time
of this paper’s writing because PMRID’s trained model or
test datasets are not publicly available.

Our proposed technique builds upon previous works and
introduces an efficient denoising neural network and a suite
of training techniques. In particular, it incorporates the fol-
lowing prior techniques:

• Noise modeling of our target camera’s sensor, Sony
IMX258, with a method similar to PMRID and UPI, to
add realistic artificial noise to ground truths.

• Unprocessing [5] the MIRFLICKR-1m [20] dataset to
create a large RAW training dataset.

• Incorporation of Bayer Augmentation [23] in our train-
ing pipeline.

• Use of Bayer Unification [23] to use ground truths
from the sensors in the SIDD [1] and SID [8] dataset.

• Incorporation of the k-sigma transform [41]

Lastly, we combine inspiration from a method tradi-
tionally applied to super-resolution, perceptual loss [22],
and knowledge distillation commonly applied for student-
teacher knowledge distillation to propose a novel Feature

Matching Loss function. As we will show in experiments,
our new loss produces results that are better than using ei-
ther of these established techniques.

3. Method
Given a noisy RAW image In, we aim to learn efficient

neural networks to denoise and produce clean RAW image
Ĩ, in a data-driven way. Mathematically, the denoising prob-
lem is formulated as,

Ĩ = F(In), (1)

where F is an efficient neural network we aim to learn. We
adopt the techniques introduces in [5] to create synthetic
RAW training pairs. Denote the noise sampled from a noise
model n and the the unprocessed “clean” RAW image I.
Note that, the RGB images we present here to visually mo-
tivate or validate our methods are obtained after processing
the denoised RAW image Ĩ with the camera ISP. We use
Ifn and Ĩf to denote the final noisy and final denoised RGB
image, respectively.

3.1. Model Architecture

We realize our neural network F with an efficient U-
Net [31] architecture. We propose techniques to boost the
learning ability light-weight U-Net models. In particular,
we make the following architectural changes: 1) To achieve
efficient learning, we replace the convolutional layers with
a variant of the MobileNet-V2 block [32]. 2) To reduce
the memory footprint of skip layers, we introduce shrinked
skip-connection, implemented with a point-wise convolu-
tion. 3) To minimize the ”washing away” phenomenon of
important image features in deep convolutional layers, as
pointed out in the SPADE architecture [27], we introduce
a new Feature-Align layer. The following subsections de-
scribe each design choice. Figure 4 illustrates our proposed
efficient architecture.
A variant of MobileNet-V2 block: In this work, we use a
variant of the MobileNet-V2 efficient block to realize each
contracting and expanding layer in our U-Net. Specifically,
as illustrated in Figure 2, we replace MobileNet-V2’s depth-
wise convolution with a group convolution. This choice al-
lows efficient memory access.

Figure 2. ARNet-block, a variant of MobileNet-V2 [32]
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Shrinked Skip Connections: Skip-connections in a U-
Net architecture allow joint processing of multi-scale fea-
tures. High-resolution features from the contracting layers
are combined with low-resolution features from the expand-
ing layers in the decoder layer. In memory constrained de-
vices, storing encoder activations until their processing by
decoder layers could be memory inefficient. To alleviate
this, as illustrated in Figure 4, we apply a point-wise convo-
lution to shrink the encoder features. At the decoder layer,
we replicate the contracted features to match the size of the
expanding features to fusion the features.
Input Feature-Align Layer: Prior neural network-based
denoising techniques take in noisy inputs and directly pro-
cess them with a stack of convolutions and non-linearity.
While this is also a common technique for various dense
prediction tasks, in our experiments, we observed such di-
rect processing to bias our light-weight models to exhibit
global over- or under-denoising. As shown in our experi-
ments, we attribute this to the recently studied phenomenon
of ”washing away” of input details during processing with a
stack of multi-scale layers. In our case, we tightly integrate
the input noisy information at each layer of our network
with a Feature-Align layer, to enable our models to learn to
denoise images in a spatially adaptive manner.

Figure 3. Input Feature-Align Layer, inspired by the SPADE ar-
chitecture [27]

Let Fi ∈ RN×Ci×Hi×W i

denote the feature map of
layer i, with N,Ci, Hi,W i being the batch size, channel
count, height and width, respectively, of the feature map.
Our Feature-Align layer, in a similar way as a Batch Norm
layer, or the Spatially-Adaptive De-normalization (SPADE)
layer, applies a scale and a bias to affinely transform the
inputs, guided by the noisy input image. Specifically, we
compute the pixel-wise scale and bias parameters based on
the noisy input image, as illustrated in Figure 3. Mathemat-
ically, the affine transformation of a feature map is given by

Gi = γi · Fi + βi, (2)

with γi ∈ RN×Ci×Hi×W i

and βi ∈ RN×Ci×Hi×W i

being
the scale and bias parameters that are a function of the input
noisy image.

3.2. Loss functions

Charbonnier Loss: Our primary loss function is the Char-
bonnier Loss [7] over the denoised image, given by

Lcharb =

√
(̃I− I)2 + c2 (3)

where c is a constant parameter (1e− 6 in our implementa-
tion).
RGB Perceptual Loss: UPI [5] describes a variant of their
network in which training loss is computed after postpro-
cessing the predicted image and ground truth with a mini-
malist ISP implementation. This incentivizes the network to
predict RAW images that after postprocessing, yield RGB
images that closely match the ground truth after postpro-
cessing, rather than to optimize for RAW signal fidelity.
We expand upon this idea with the RGB Perceptual Loss,
in which a perceptual loss such as that described in [22] is
computed upon the predicted image and ground truth after
postprocessing. After the postprocessing step, the imple-
mentation is identical to that of [22]; the loss is defined as
the difference between Ĩf and If in content and style in ac-
tivations of a VGG16 classification network [35] pretrained
on ImageNet.
Simple Knowledge Distillation: The additional layers of
conventional larger networks can enable the model to en-
code image features at a higher, more perceptual level and
make imaginative judgments to ”fill in the blank” of a miss-
ing texture obscured by noise. Since this capability is di-
minished with smaller networks, image outputs from ef-
ficient networks are prone to appear oversmoothed. As a
result, knowledge distillation [16] is applicable to the chal-
lenge of creating an efficient model with perceptually pleas-
ing image outputs.

Another observation from experimenting with a large de-
noising model (the same U-Net architecture used in [5]) is
that a denoising network can learn to perform the identity
transformation as desired - that is, if a noise-free image is
fed to the network as an input, the output is virtually unal-
tered. This observation enables a simple implementation of
knowledge distillation in the form of a loss function defined
as the difference between the student network’s predicted
image, Ĩstudent and the large teacher network’s predicted
image, Ĩteacher:

Lk.d. = |̃Istudent − Ĩteacher| (4)

Feature Matching Loss for Knowledge Distillation: Ex-
panding on Simple Knowledge Distillation and perceptual
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Figure 4. Our U-Net-based model architecture. Shrinked skip-connections combine high-resolution features in encoding layers with low-
resolution features in decoder layers. A Feature-Align layer combines the original input features at different resolutions with the output for
each efficient ARNet block.

loss, our novel Feature Matching Loss implements knowl-
edge distillation in the form of a perceptual loss function.
The Feature Matching Loss is defined as the difference in
content and style between the activations of the teacher net-
work on the predicted image and the ground truth image.
The implementation is identical to [22], except the classifier
model is substituted for the teacher network. By combining
knowledge distillation with perceptual loss, the capability
of large networks to recover fine details obscured by noise
is specifically targeted for distillation.

3.3. Noise Subrange Model Array

The number of parameters in our efficient model archi-
tecture is limited in comparison to large model architec-
tures traditionally used for neural denoising. In contrast, the
problem space encountered in photography on mobile de-
vices that typically have cameras with small aperture sizes
widely ranges from minimal noise to extreme noise, re-
quiring vastly different denoising strategies depending on
the noise level. With a limited number of parameters, it is
challenging to create an efficient network that optimally re-
sponds to every possible noise level. Thus, we offer the
method of a Noise Subrange Model Array (NSMA), in
which the range of noise levels is partitioned into n sub-
ranges where an individual model is trained for each noise
subrange. To partition the noise levels, we refer to the re-
gression between log a and log b in Figure 2 of the sup-
plemental material and partition the x-axis into n parts.
Given the global minimum signal dependent noise parame-
ter, amin, and global maximum signal dependent noise pa-
rameter amax, Equation 5 and 6 describe the minimum and
maximum a parameters for artificial noise in training for the

zero-indexed ith model in the array of n models.

log amini
= log amin + i/n · (log amax − log amin) (5)

log amaxi
= log amin + (i+ 1)/n · (log amax − log amin)

(6)
In testing, we observe the annotated a noise parameter of

the image as described in supplemental Section 1 and select
the corresponding model from the model array.

3.4. Training and Implementation Details

Our models are trained via adding synthetic noise to
ground truths sourced from [1], [8], and the unprocessing
method described in [5]. Bayer Augmentation and Unifica-
tion [23] and the k-sigma transform [41] are incorporated
into our method. A full description of training and imple-
mentation details is provided in supplemental Section 2.

3.5. Test Dataset

While our denoising network is trained with artificial
noise, we test our network with real noise. We contribute
the publicly available Feature-Align Paired Test Dataset of
noisy RAW images paired with corresponding noise-free
ground truths. This dataset consists of carefully aligned
pairs of noisy short exposures that correspond to noise-free
long exposures. The method used to collect this dataset is
provided in supplemental Section 3.
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4. Results

4.1. Experiments

In this section we evaluate denoising results of various
experiments using the paired noisy and ground truth test set
described in Section 3.5. We evaluate our results using tra-
ditional metrics for image quality, PSNR and SSIM, both
before and after processing the images using the minimalist
ISP pipeline from [5] with modified white balance gains for
our sensor. We also evaluate our results qualitatively against
the ground truth image. To display texture preservation, all
images are zoomed in to the same highly textured region of
an image in the test set. We quantify the computational ef-
ficiency of networks by the number of multiply-accumulate
operations (MACs) required by the network.

Table 1 compares our Feature-Align method against a
similarly sized model that uses the wavelet transform in up-
sampling and downsampling as a baseline to approximate
the prior state-of-the-art [24, 33]. To simplify the com-
parison, the Noise Subrange Model Array is not used in
this experiment. A plain U-Net that does not include the
wavelet transform or the Feature-Align layer, along with
the Feature-Align model with shrinked skip connections re-
moved are also included in the comparison. With traditional
metrics, the Feature-Align model performs virtually equiv-
alently to the wavelets model. Qualitatively, the Feature-
Align model shows sharper edges and less blurring of fine
details. To show additional generalization of the Feature-
Align layer, we compare the wavelet transform model to
the Feature-Align model on collected noisy RAW Google
Pixel-4 inputs in Figure 5. We note that the qualitative ben-
efits of the Feature-Align layer are more easily observed on
our Pixel-4 inputs than our paired test dataset. Furthermore,
the Feature-Align model without shrinked skip connections
performs the worst among the 4 networks. This indicates
that the Feature-Align layer is not redundant to the shrinked
skip connections despite the similarity of these techniques.

In Table 2 we examine the effect that the NSMA has
on the Feature-Align model. The NSMA, which is com-
prised of 4 models, improves performance in every metric
and demonstrates superior recovery of texture.

Using the Feature-Align model and NSMA, in Table 3
we compare the effect of altering the loss function. Since
RGB Perceptual Loss, Simple Knowledge Distillation, and
Feature Matching Loss are targeted at perceptual image
quality rather than pure signal fidelity, for a fair compari-
son we include the perceptual metric, LPIPS [46]. A lower
LPIPS score indicates greater perceptual similarity. Simple
Knowledge Distillation performs the best in the traditional
PSNR and SSIM metrics, while Feature Matching Loss per-
forms the best in the LPIPS metric. Qualitatively, the out-
puts from the Feature Matching Loss models are sharper
and have the most texture present. Charbonnier Loss out-

Figure 5. Left: Source image from Google Pixel-4. Red box high-
lights selected crop for comparison. Middle: Model output with
wavelet transform. Right: Model output with our Feature-Align
layer. Middle and right images are brightened for clarity.

Figure 6. Summary of our improvements. Left: Source image.
Red box highlights selected crop for comparison. Middle: Model
output with wavelet transform, no NSMA, and Charbonnier Loss.
Right: Model output with our Feature-Align layer, NSMA (n=4),
and Feature Matching Loss. Middle and right images are bright-
ened for clarity. Our method shows improved texture restoration.

performs Feature Matching Loss in the traditional metrics,
further demonstrating that the traditional metrics tend to fa-
vor oversmoothing over texture reconstruction.

Figures 6 and 7 display a summary of our denoising im-
provements.
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Model Architecture Comparison
Method RAW PSNR RAW SSIM RGB PSNR RGB SSIM GMACs/MP

Input 36.616 0.80509 27.581 0.51557 -
Plain U-Net 45.485 0.97711 34.519 0.93481 2.2840

Wavelet 45.576 0.97892 34.591 0.93157 1.9800
Feature-Align 45.520 0.97780 34.565 0.93491 2.6688

FA w/o connections 45.395 0.97769 34.487 0.92534 2.5688
Input Plain U-Net Wavelet Feature-Align FA w/o connections Ground truth

Table 1. Model with a Feature-Align layer shows a sharper image compared to a baseline wavelet transform model.

Effect of Noise Subrange Model Array
Method RAW PSNR RAW SSIM RGB PSNR RGB SSIM

Input 36.616 0.80509 27.581 0.51557
No NSMA 45.520 0.97780 34.565 0.93491

NSMA (n=4) 45.668 0.97936 34.869 0.94014
Input No NSMA NSMA (n=4) Ground truth

Table 2. NSMA substantially improves the image quality of our efficient model.

Effect of Loss Function
Method RAW PSNR RAW SSIM RGB PSNR RGB SSIM RGB LPIPS

Input 36.616 0.80509 27.581 0.51557 0.53680
Charbonnier 45.668 0.97936 34.869 0.94014 0.28882

RGB Perceptual 45.519 0.97685 34.665 0.92168 0.32448
Knowledge Dist. 45.813 0.98217 35.499 0.94079 0.27009
Feature Matching 45.483 0.97828 34.607 0.93685 0.24603

Input Charbonnier RGB Perceptual Knowledge Dist. Feature Ground truth

Table 3. Charbonnier Loss is outperformed by both Simple Knowledge Distillation and Feature Matching Loss. Simple Knowledge
Distillation has the best performance in traditional metrics, while Feature Matching Loss has the best performance in the perceptual LPIPS
metric. The model output with Feature Matching Loss appears to have the most detail.
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Figure 7. Our improvements in order: the effect of using the
NSMA (n=4) on our Feature-Align method, followed by the ef-
fect of replacing Charbonnier Loss with Feature Matching Loss in
the NSMA of Feature-Align models. Images are brightened for
clarity.

4.2. Comparison to State-of-the-Art

For a standardized comparison of our method against ex-
isting state-of-the-art methods, we apply our method to the
Darmstadt Noise Dataset public benchmark [30]. In train-
ing the noise parameters are tweaked to fit the DND test
dataset and the white balance gains used to create the un-
processed MIRFLICKR dataset are tweaked to match [5]
to be representative of DND. Table 4 shows our method
compared to the top 3 submissions on the benchmark. Our
method achieves a RAW PSNR of 48.2756, a compara-
ble metric to that of CycleISP [44] 49.1251 RAW PSNR,
while using 263.32 times fewer MACs per megapixel. Our
network uses 89,696 bytes of learned parameters, and the
NSMA of 4 of our networks takes 4 times 89,696 bytes,
which is 358,784 bytes. This is 22.7% the size of learned
parameters used by CycleISP, 1,578,624 bytes.

Darmstadt Noise Evaluation
Method RAW PSNR RAW SSIM RGB PSNR RGB SSIM GMACs/MP
Noisy - - 29.836 0.7018 -

CycleISP 49.1251 0.983 40.4987 0.9655 702.73
UPI Raw 48.8905 0.9824 40.1728 0.9623 74.305
UPI RGB 48.8824 0.9821 40.3545 0.9641 74.233

Ours 48.2756 0.9808 39.5061 0.9572 2.6688
Table 4. Our method achieves comparable results to the computa-
tionally expensive state-of-the-art methods.

Reduced Baselines vs. Our Method
Method RAW PSNR RAW SSIM RGB PSNR RGB SSIM GMACs/MP Params

CycleISP-Lite 44.992 0.97868 34.728 0.92853 2.8568 11,063
UPI-Raw-Lite 44.222 0.94095 29.954 0.82964 3.1894 347,733

Ours 45.813 0.98217 35.499 0.94079 2.6688 239,304
Table 5. Scaled baselines versus the simple knowledge distillation
variant of our method on our test set

To compare against UPI and CycleISP when the compu-
tational cost of methods are similar, in Table 5 we report
the performance of UPI and CycleISP when these meth-
ods are scaled down by trivial means. UPI-Lite’s con-
volution blocks contain 1 convolution rather than 3, and
the number of hidden channels is multiplied by a factor
of 0.3. CycleISP-Lite contains 1 RRG rather than 8, 1
DAB rather than 4, and 16 hidden channels rather than 64.
When all methods are normalized to the same compute, our
method demonstrates superior performance in the conven-
tional metrics. While CycleISP-Lite has much fewer pa-
rameters, this is not practically relevant when running the
network on a typical CNN accelerator. In int8 format, our
model consumes 239KB which is within the SRAM size
of a typical CNN accelerator (usually in megabytes). A
network’s latency and power-consumption arise from the
amount of compute (MACs) and the activation memory
footprint rather than number of parameters. Our method
reduces MACs the most while retaining the highest image
quality.

5. Conclusion
In this work we propose three innovations that enable

high quality image denoising in an efficient model architec-
ture: a Feature-Align layer, the use of an array of models
tuned to different regions of the problem space, and a loss
function for knowledge distillation that maximizes texture
recovery. We combine these innovations along with exist-
ing state-of-the-art techniques and prove their efficacy by
evaluating the method on a public benchmark. In addition,
we propose a new public dataset of carefully constructed
pairs of noisy and ground truth images with noise level an-
notations. The low computational cost of our method in
comparison to existing state-of-the-art methods enables a
variety of new applications for learning-based denoising in
edge devices.
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