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Abstract

Image denoising is a challenging task due to possible
data bias and prediction variance. Existing approaches
usually suffer from high computational cost. In this work,
we propose an unsupervised image denoiser, dubbed as
adaptIve Dual sElf-Attention Network (IDEA-Net), to han-
dle these challenges. IDEA-Net benefits from a genera-
tively learned image-wise dual self-attention region where
the denoising process is enforced. Besides, IDEA-Net is
not only robust to possible data bias but also helpful to
reduce the prediction variance by applying a simplified
encoder-decoder with Poisson dropout operations on a
single noisy image merely. The proposed IDEA-Net demon-
strated the outperformance on four benchmark datasets
compared with other single-image-based learning and non-
learning image denoisers. IDEA-Net also shows an ap-
propriate choice to remove real-world noise in low-light
and noisy scenes, which in turn, contribute to more accu-
rate dark face detection. The source code is available at
https://github.com/zhemingzuo/IDEA-Net.

1. Introduction
Image denoising is arguably one of the most prevalent

problems within the realms of image processing and com-
puter vision [3, 4]. It aims to remove measurement noises
or distortions from noisy images [47]. Fundamentally, im-
age denoising could be treated as a process of leveraging the
data bias [23, 41] and prediction variance [3, 11]. To cope
with data bias, denoisers trained based on a single noisy im-
age tends to be more robust in comparison to those trained
on the entire external dataset [3, 13, 16]. Nevertheless, de-
noisers trained on a single noisy image are suffering two

Figure 1. Performance of a versatile image denoiser could be re-
vealed by not only a full-reference quality metric e.g. PSNR but
also precision in a real-world task e.g. dark/noisy face detection.

major challenges: 1) launching self-supervised learning ef-
ficiently with the lack of ground truth, 2) avoiding the pre-
diction variance reduction [26]. Additionally, existing de-
noisers usually demand high computational cost, especially
with respect to time complexity [43].

Although several methods have successfully incorpo-
rated into image denoising, e.g. (C)DnCNN [44], FDnCNN
[17] and Noise2Self [3], they are usually time-consuming,
thus it still lacks of the computationally efficient denoising
solution in the literature. In image denoising, given a clear
image I P RWˆHˆL, the additive noise-corrupted image
rI P RWˆHˆL is constructed by

rI “ I ‘ N, (1)

where N denotes the white Gaussian s.t. EpNq “ 0 and
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CovpNq “ σ2IWˆHˆL, ‘ denotes element-wise addi-
tion. Motivated by the concepts of the potential of atten-
tion [32] and Region of Interest (RoI) [48], this paper de-
vises a simple yet efficient deep-network-based image de-
noiser with versatility (see Figure 1), in which the training
process requires an end-to-end learned dual-self attention
region A “ tA1, A2u P RRˆCˆL within a single noisy im-
age merely. Equivalently, this paper studies how to train a
region-based image denoiser

Mϕ,ξ : ĂIA Ñ IA, (2)

where IA P RRˆCˆL and ĂIA P RRˆCˆL respectively rep-
resents the clear and noisy image with image-wise dual-self
attention A applied, and RC ď WH . One step further,
A1 and A2 respectively represents the first and second self-
attention that learned via a variant of the unsupervised Cy-
cle Generative Adversarial Network (CycleGAN) [22], de-
noted as Mϕ and termed as Dual Self-Attention Generative
Adversarial Module (DSA-GAM). Built upon the dual-self
attention region A introduced by Mϕ, we design a simpli-
fied Encoder-Decoder Module (DSA-EDM) Mξ for region-
based image denoising in which dropout [28] operations
are performed in line with Poisson distributions due to their
benefits from preventing over-fitting and reducing predic-
tion variance [10]. The objective of IDEA-Net is to min-
imise

L “ argmin
ϕ,ξ

ÿ

k

dist
´

Mϕ,ξpxIAq, ĂIA ´ xIA
¯

, (3)

where distp¨, ¨q represents the distance between the two
images, Mϕ,ξpxIAq represent the denoising result yielded
by the proposed IDEA-Net, and ĂIA ´ xIA denotes the un-
sampled part of A in the input noisy image. Furthermore,
the size of A is varying for each input noisy image, thereby
our denoiser is equipped with adaptive dual self-attention.

Combining DSA-GAM and DSA-EDM, we present a
self-supervised attention network, termed as adaptIve Dual
sElf-Attention Network (IDEA-Net), for single image de-
noising, and our contributions are summarised as follows:

1) We propose a self-supervised deep image denoiser
merely requiring a dual self-attention region within a sin-
gle input noisy image to appropriately handle possible data
bias and dramatically reduce the computational cost.

2) We prove that a simplified encoder-decoder with Pois-
son dropout strategy could be better informed by the
learned dual self-attention region in an ensemble learning
manner to reduce the prediction variance.

3) We show that the proposed denoising scheme signifi-
cantly outperforms the existing state-of-the-art methods for
real-world face detection in low-light and noisy scenes.

Though existing denoisers either trained on a single in-
put image or an additional dataset are utilising all the pixels

within each training and/or testing instance, we prove that
the region-based method could achieve better performance
in solving traditional image denoising problem. In addition,
we show that PSNR may not practically sufficient to distin-
guish the performance of denoising methods on real-world
down-stream tasks such as dark face detection. The obser-
vations obtained from this work could also encourage more
promising future work in pervasive healthcare such as med-
ical image denoising [9, 38].

2. Related Work
Since deep learning methods are incorporated into image

denoising, traditional learning-based methods are trained in
a supervised manner using a set of clean and noisy im-
age pairs. Practically, as ground truth is hard to acquire,
learning-based image denoisers mainly use two different
training strategies coping with only noisy images, learning
from a single noisy image or a set of noisy images.
Denoisers learned from a single noisy image. In
the early stage, taking advantage of the self-similarity,
dictionary-based learning methods employ patches from the
noisy image for training. As the icon, KSVD algorithm
[8] is proposed to obtain trained dictionaries, which effec-
tively describe the image content, with patches from the cor-
rupted image. NCSR [7] learns the sub-dictionaries from
the noisy image itself instead of the example clean im-
ages to get a more stable and sparser representation. A
replacement of KSVD [2] designs a fast orthogonal dic-
tionary learning method for decreasing the redundancy of
the dictionary. TWSC [36] also utilises the KSVD dictio-
nary learning scheme and introduces three weight matri-
ces to characterise the statistics of realistic noise and im-
age priors. Besides, with another form of self-similarity,
the non-local approach (C)BM3D [5] increases its robust-
ness using stacks of similar patches of the input noisy im-
age and performs thresholding in frequency space. Thus,
several methods [19, 6] combine the dictionary-based learn-
ing methods and the non-local approaches for better perfor-
mance. However, it is noteworthy that Deep Image Prior
(DIP) [31] is the pioneer work within the realm of sin-
gle image denoising, which inspired the propositions of a
series of methods including Noise2Noise [16], Noise2Self
[3], Noise2Void [13], Self2Self (S2S) [26], etc. Therein a
self-supervised learning method, S2S, is proposed to train
the input noisy image merely with dropout on the pairs of
Bernoulli-sampled instances and achieve remarkable per-
formance enhancement.
Denoisers learned from a set of noisy images. Driven
by the easy access to a large-scale dataset, the convolu-
tional neural networks are training on a set of noisy images
for tackling various vision tasks. For instance, the model-
based optimisation methods can flexibly address different
inverse tasks yet with high time complexity. (C)DnCNN
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Figure 2. Architecture of the proposed IDEA-Net. Upper row present the DSA-GAM and lower row denotes the DSA-EDM.

[44] combines residual learning and batch normalisation
to facilitate the training process and the denoising perfor-
mance. While discriminative learning methods have fast
testing speed but are limited within a specific task. FD-
nCNN [17] introduces a module named fusion block in
CNNs to obtain high-quality images in real-time. Inherit-
ing from DIP, Noise2Noise [16] employs pairs of noisy im-
ages with the same content for supervised learning, while
Noise2Void [13] is a self-supervised training method with
any noisy images. Then, Noise2Self [3] provides strong
theoretical guarantees that Noise2Void has not by propos-
ing J -invariant. On the basis of self-supervised learn-
ing, a series of new methods are emerging. Noise2Inpaint
[37] introduces a regularised image inpainting framework,
Noise2Kernel [14] proposes a dilated convolutional net-
work using kernel-based training, and Noise2Sim [24]
utilises non-local mean to leverage self-similarities of im-
age patches in self-learning. Therefore, integrating model-
based optimisation and discriminative learning methods is
a good attempt for further improvement. IRCNN [45] has
trained a set of CNN denoisers and incorporate them into
model-based optimisation method to maintain the good per-
formance in various applications. ISCL [15] combines
cyclic adversarial learning with self-supervised residual
learning to boost the performance via cooperative learning.

3. IDEA-Net
In this section, we present the proposed IDEA-Net in

detail. Briefly, we first explain the IDEA-Net architecture.
This is followed by the introductions of the training and de-
noising schemes.

3.1. Architecture

The architecture of the proposed IDEA-Net is depicted
in Figure 2. Briefly, it contains two consecutive modules: a

Dual Self-Attention Generative Adversarial Module (DSA-
GAM) and its associated simplified Encoder-Decoder Mod-
ule (DSA-EDM). Specifically, DSA-GAM is proposed to
generate an appropriate single attention region in the input
noisy image, while DSA-EDM is devised to conduct de-
noising within the learned single attention region.

Given an input noisy image rI P RWˆHˆL and a black-
out mask 0 P RWˆHˆL (i.e. image in the target domain),
DSA-GAM feeds the noisy image into a subnet of five con-
volution layers, namely 1st Attention Block (A1B), to gen-
erate the first candidate attention sI. The output of the gen-
erator in DSA-GAM is yielded by applying Eq. (5), which
is checked by the discriminator D and its associated Least
Square loss. Such a loss is adopted to force DSA-GAM
to focus on the foreground attention region (i.e. ‘real’)
rather than the background one (i.e. ‘fake’). Once DSA-
GAM reaches the maximum number of training iterations,
the first candidate attention image sI is consequently fed into
the consecutive 2nd Attention Block (A2B). A2B consists of
three parts: detection, aggregation and extraction. In the
detection stage, all the possible bounding boxes bbox are
annotated surrounding each of the attentional sub-regions.
Lastly, all the annotated bbox are aggregated into one sin-
gle bbox (A2), which in turn, extracts the attentional region
ĂIA P RRˆCˆL from rI.

DSA-EDM first obtains xIA by performing the Poisson
dropout operation on ĂIA. Then the sampled image xIA
is mapped to a R ˆ C ˆ 48 feature tube, which connects
with an encoder. The DSA-EDM encoder contains 5 blocks,
each of the first four blocks includes a Partial Convolution
(PConv), a Leaky Rectified Linear Unit (LReLU), and a
max-pooling operation with the stride of 2 and 2-by-2 re-
ceptive fields. The fifth encoder block only contains PConv
and LReLU. Consequently, encoder results in a R{16-by-
C{16-by-48 pixels feature cube when fixing the number of
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channels to 48 throughout all DSA-EDM encoder blocks.
The DSA-EDM decoder contains 4 blocks and each of the
first three blocks includes an up-sampling operation with a
factor of 2 (denoted as up-2), a concatenation operation, a
convolution with dropout, and LReLU. The first three de-
coder blocks have ‘96+48’ channels in which ‘48’ is con-
tributed by its corresponding encoder block via the ‘skip
connection’. In the last DSA-EDM decoder block, 3
convolution layers with LReLUs activation functions are
adopted to map the feature cube back to the resolution of
xIA (i.e. RˆC ˆL). Thereby, the number of resulted chan-
nels of those convolution layers are respectively 64, 32 and
L.

The architecture of our IDEA-Net shares similarity with
the ones utilised in some of the existing methods e.g. S2S
[26]. The key differences between IDEA-Net and S2S are
three-fold. Firstly, we introduce the block A1Bwithin DSA-
GAM in which we design an all-black image as the target
domain image (mask) to suit the problem domain of image
denoising rather than image translation [22]. Secondly, we
propose the block A2B in DSA-GAM to further process the
output of A1B and generate the final dual self-attention re-
gion A to contribute the reduction of computational cost for
the consecutive denoising module DSA-EDM. Lastly, we
deploy DSA-EDM with higher Poisson sampling probabil-
ity and shallower encoder/decoder blocks to make a tradeoff
between time complexity (particularly with respect to the
model convergence speed) and performance gain.

3.2. Training Scheme

As problem formulated in Eq. (2), we propose IDEA-
Net by developing two consecutive modules DSA-GAM
(Mϕ) and DSA-EDM (Mξ). Mϕ is a cycle-generative
module to learn an end-to-end dual self-attention region
A from the input noisy image, which in turn, inform the
process of region-based image denoising via an encoder-
decoder module Mξ integrated with Poisson dropout p
strategy.

To obtain the first attention A1, the cycle-generative
module Mϕ is formulated as a special case of attention-
based CycleGAN in which the target domain image ĂIY P

RWˆHˆL is set to be 0, the output image of the generator
is generated in process yet eliminated in operation as it is
not useful for image denoising, and expressed as

Mϕ “ MY ÑX

˜

MXÑY

ˆ

ĂIX
˙

¸

« ĂIX , (4)

where X and Y respectively denotes the source and target
image domain, ĂIX :“ rI, and MXÑY p ĂIXq “ ĂIY .

Practically, A1 could be treated as a combination of fore-
ground and background attention, computed as

ĄIA1
“

ˆ

ĎIX d ĂIX
˙

‘

ˆ

`

1 ´ ĎIX
˘

d 0

˙

, (5)

where ĄIA1
P RWˆHˆL, d represents the element-wise

multiplication, ĎIX :“ A1Bp ĂIXq where A1B denotes the
1st Attention Block. The A1B contains 5 convolution layers
with residual and up-sampling operations in-between (de-
tailed in Section 4.3).

Following the design as of [22], we implement the dis-
criminator D that consists of four convolution layers and
each of which contains zero padding and Leaky ReLU
(LReLU). Given ĄIA1 and rI, DSA-GAM feeds the outputs
of the discriminator D (i.e. foreground feature maps) into
the Least Square loss [20] for minimisation as it helps gen-
erate sharper images.

When the maximum number of training iterations
reached, Mϕ continues to conduct the 2nd Attention Block
(A2B). A2B (as summarised in Algorithm 1) is devised to
generate the final attention region A2 and its associated ĂIA,
which includes attention detection (line 1-2), attention ag-
gregation (line 3-9), and attention extraction (line 10).

Algorithm 1 2nd Attention Block (A2B)

Input: rI, sI, binarisation threshold b, area threshold s

Output: ĂIA
1: Compute the binarised image ĎIb w.r.t. b
2: Detect and count the #contours c in ĎIb
3: for i “ 1 to c do
4: Draw bboxi :“ {xi, yi, wi, hi} for each contour
5: if wihi ą s then
6: {xl Ð xi, xr Ð xi `wi, yl Ð yi, yr Ð yi `hi}j
7: end if
8: end for
9: A2 “ minmaxtxl, xr, yl, yruj

10: return ĂIA “ rIrA2s

Since our IDEA-Net is trained on a dual self-attention
region within a single noisy image ĂIA, thus module
Mξ generates multi-pair of information-preserving images
tpxIu

A,
|Iu
AquUu“1 from ĂIA via Poisson sampling strategy,

which is defined by
#

xIu
A :“ ĂIA d pu,

|Iu
A :“ ĂIA d p1 ´ puq,

(6)

in which an independently Poisson sampled instance xIu
A of

the dual self-attention-based noisy image ĂIA with the sam-
pling probability p is defined by

xIu
Arr, cs “

#

ĂIArr, cs if p,
0 if 1 ´ p.

(7)

4
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Such that r P r1, Rs, c P r1, Cs, and p P p0, 1q. By merging
Eq. (7), Eq. (3) can be rewritten as

L “ argmin
ϕ,ξ

U
ÿ

u“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Mϕ,ξpxIu

Aq ´ |Iu
A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

pu
, (8)

from which we can see that the above loss function is calcu-
lated on those sampled pixels within the learned dual self-
attention region A in each pair of images are randomly se-
lected by pu. Such a loss function provides a fair compari-
son in an ensemble manner, i.e. via accumulations of pixel-
wise differences over varying sized region A in all the U
pairs.

3.3. Denoising Scheme

As introduced above, Poisson dropout operations p
were enforced in IDEA-Net to reduce the prediction vari-
ance. Concretely, IDEA-Net yields the denoised image ŇIA
in an ensemble manner, i.e. via the average over multiple
predictions :Iv

A with model weights associated with inde-
pendently drawn Poisson sampling probability. With the
practical solution proposed in [10], denoising scheme is
conducted by

ŇIA “
1

V

V
ÿ

v“1

:Iv
A “

1

V

V
ÿ

v“1

Mtϕ,ξuv
ĂIA d pU`v. (9)

4. Experiments
In this section, we first evaluate the performance of

IDEA-Net on two denoising tasks: blind Gaussian denois-
ing (i.e. AWGN) and real-world noisy image denoising.
Then, we further measure its practicability of removing
real-world noise in low-light and noisy scenes for face de-
tection. It is noteworthy that we only present partial results
in this section due to space limitation. More experimental
results are available in our supplementary materials.

4.1. Datasets

Datasets for AWGN noise removal. We employ Set14
[42], (C)BSD11, and (C)BSD68 [13, 27] datasets for this
task. In particular, we construct the (C)BSD11 dataset by
including 2 images from the BSD68 dataset and 9 images
from the Colour BSD68 dataset.
Dataset for real-world noise removal. We adopt 40
pairs of noisy images and ground truth images captured by
Canon EOS 5D Mark II camera in the PolyU dataset [35]
and each of which is with the resolution of 512ˆ512 pixels.
Dataset for face detection in low-light and noisy scenes.
In this down-stream task of image denoising, without given
ground truth (clear images), we use all the 100 sample test-
ing images from DARK FACE dataset [40] and each of
which is with resolution of 1080 ˆ 720 pixels, and contains

1 to 34 faces within varying sizes of bounding boxes rang-
ing from 1 ˆ 2 to 335 ˆ 296 pixels. It is a challenging face
detection dataset as it contains a high degree of variability
in scale, pose, occlusion, appearance and illumination.

4.2. Evaluation Metric

Metric for image denoising. Peak Signal-to-Noise Ra-
tio (PSNR), as one of the most common full-reference qual-
ity metrics, is adopted for all the comparisons over the
learned dual self-attention region A with respect to inten-
sity differences. This is measured by

PSNR
´

IA, ŇIA
¯

“ 10 ¨ log10

ˆ

2552

||IA ´ ŇIA||22

˙

. (10)

Metric for face detection in low-light and noisy scenes.
Since human face is the only class in this task, thereby Av-
erage Precision (AP) is adopted as performance metric in
which Intersection over Union (IoU) is fixed to 0.5. The de-
tection precision is yielded by the official evaluation tool1.

4.3. Implementation Details

We train the IDEA-Net with TensorFlow 1.14.0 and
CUDA 10.0 on a NVIDIA Tesla V100 GPU. As such, our
implementation takes „10 minutes to process an image
with the resolution of 256 ˆ 256 pixels. Throughout all the
experiments, the hyper-parameter of LReLU is respectively
valued as 0.2 and 0.1 in Mϕ and Mξ.

In Mϕ, the architecture of A1B is: c7s1-32-IN-R,
c3s2-64-IN-R, r-64, up-2, c3s1-64-IN-R,
up-2, c3s1-32-IN-R, c7s1-1-S. For each of
the five convolution layer, c represents convolution,
s denotes stride, and IN indicates the Instance Normal-
isation [30]. Besides, r-64 indicates residual block
operates on 64 channels and up-2 denotes the nearest
neighbour up-sampling with a factor of 2. R and S
respectively represents the ReLU and Sigmoid activation
function. The discriminator D is constructed with the
following: c4s2-64-IN-LR, c4s2-128-IN-LR,
c4s2-256-IN-LR, c4s1-512-IN-LR, c4s2-1.
In A2B (i.e. Algorithm 1), binarisation threshold b and area
threshold s are set to be 130 and 500, respectively. Mϕ is
trained with 10 iterations.

In Mξ, all the Conv and PConv layers in the five-block
encoder and four-block decoder are with 3ˆ3 kernels, stride
of 1, as well as zero-padding of length 2. All the Conv
and PConv layers are activated by LReLU activation func-
tion except the last Conv layer in which Sigmoid activation
function is applied. The dropout rate and probability p
of the Poisson sampling process are valued as 0.3 and 0.4,
respectively. For training Mξ, Adam optimiser is adopted

1https://github.com/Ir1d/DARKFACE_eval_tools

5
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Dataset σ
Single-image learning/non-learning Dataset-based learning

KSVD (C)BM3D NCSR TWSC S2S Ours (C)DnCNN IRCNN FDnCNN

Set14 25 20.96 28.31 21.99 23.18 30.13 30.36 30.03 30.82 30.22
50 16.45 25.02 16.51 19.42 27.72 27.92 27.51 27.80 27.61

(C)BSD11 25 20.76 29.42 20.11 22.32 29.52 29.65 28.58 30.35 30.15
50 15.89 25.57 15.42 18.14 26.56 26.86 25.95 27.03 26.59

(C)BSD68 25 26.25 28.71 20.32 23.44 29.78 29.92 30.33 30.26 30.31
50 23.15 25.46 20.16 19.56 26.97 27.25 26.32 27.18 27.20

Table 1. Quantitative evaluation of various methods of removing AWGN on the Set14 and BSD68 datasets with different noisy (σ) levels.
The metrics are averaged over PSNR (in dB) within our attentional region. The best results in each category of methods under each
image-wise noisy level (σ) are marked in bold.

Figure 3. Comparisons of denoising results with respect to PSNR in the case of AWGN with σ valued as 25, 50, and 75. ˝ denotes the
selected image region for comparison and ˝ indicates the attention A drawn by IDEA-Net. Best viewed in colour and zoomed mode.

with learning rate initialised as 10´5 with 3ˆ104 steps. For
testing, the number of dropout operations is valued as 30.

4.4. Removing AWGN Image Noise

In this task, the noisy level σ is valued as 25 and 50 for
each of the three publicly available datasets. The compar-
ative experimental results is quantitatively summarised in
Table 1 and one particular example demonstratively visu-

alised in Figure 3.
In comparison with single-image based learning or non-

learning methods, the observations are three-fold: 1) our
method significantly outperforms KSVD, which reveals the
benefits of deep learning compared against dictionary learn-
ing; 2) the proposed method is slightly better than existing
single-image-based denoisers such as S2S on all the noisy
levels; 3) our method still outperforms the leading non-

6
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(C)DnCNN IRCNN FDnCNN MSRResNet FFDNet S2S Ours
36.45 36.29 36.19 36.00 36.22 36.73 36.69

Table 2. Quantitative evaluation of various methods of removing
real-world noise on the PolyU datasets. The metrics are averaged
over PSNR (in dB) within our attentional region. As a reference
for comparison, PSNR of the noisy images is 35.47.

learning method (C)BM3D over all the two noisy levels.
In comparison with dataset-based learning methods, this

is mainly attributed to the fact that (C)DnCNN has been
proved outperformed those methods in [26]. In this experi-
ment, (C)DnCNN, IRCNN and FDnCNN are all pre-trained
on BSD300 [21] and (C)BSD300 [13] datasets using noisy
levels σ “ 25, 50. Quantitatively, our method outperformed
major dataset-based methods and close to the leading one
with tiny performance margin.

4.5. Removing Real-World Image Noise

The real-world noisy images are usually resulted from
varying camera exposure times [25]. The performance eval-
uation on real-world noisy image denosing is conducted on
the PolyU dataset [35]. All results are summaried in Ta-
ble 2 and an intuitive comparison is visualised in Figure
4. For the dataset-based methods, the (C)DnCNN, IRCNN,
FDnCNN and FFDNet [46] are pre-trained on DND [25]
dataset, whereas the super-resolution method MSRResNet
[34] is pre-trained on DIV2K [1], Flickr2K [29] and OST
[33] datasets. In Table 2, we can observe that our method
outperforms all the dataset-based methods and the super-
resolution-based one (i.e. MSRResNet), and slightly less
competitive compared to the state-of-the-art S2S.

4.6. Ablation Study

Time complexity comparisons. As one of the objec-
tives of this paper, we propose IDEA-Net as for the par-
tial sake of reducing the image denoising time. Noting
that dataset-based learning methods are incomparable in
this study, as they required much different degree of time
complexity. In Figure 5, we show that our method requires
the shortest time to denoise a total of 11 images in the
(C)BSD11 dataset while yields the most competitive PSNR
results in both noisy levels.
Convergence rate comparison. To better understand
the model stability, we compare IDEA-Net with pioneer
single image denoisers DIP and S2S in terms of model con-
vergence rate. Concretely, comparisons are performed in
line with optimal PSNR performance obtained with respect
to not only its corresponding iteration number but also the
time required. Figure 6 confirms that our method required
the smallest number of training iterations and the shortest
amount of time to reach the optimal PSNR performance.
Downstream task on dark face detection. We use 100

Figure 4. Comparisons of denoising results in terms of PSNR on
a real-world noisy image. ˝ denotes the selected image region for
comparison and ˝ indicates the attention A drawn by IDEA-Net.

Figure 5. PSNR versus time required for image denoising on the
(C)BSD11 dataset under two AWGN levels.

sample testing images from DARK FACE dataset [40]. In
particular, given a dark and noise image, the lighting condi-
tions were enhanced by MSRCR [12]. And then, the noises
were denoised by selected methods. Finally, face detec-
tion was conducted using RetinaNet [18] that pre-trained
on WIDER FACE dataset [39]. Note that this dataset does
not provide referencing ground truth (i.e. clear images).
Thereby, dark face detection precision could be treated as
a performance metric of image denoising methods. Since
no clear images are provided in the DARK FACE dataset,
thus blind (C)DnCNN, IRCNN, FFDNet are pre-trained on
BSD300 and (C)BSD300 datasets with noisy level within

7
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Figure 6. PSNR versus the number of training iterations and time
(in seconds) on three images with σ “ 25.

the range of r0, 55s. Super-resolution methods MSRRes-
Net, SRMDNF and USRNet are pre-trained on DIV2K,
Flickr2K as well as OST datasets. The performance of face
detection is summarised in Figure 7. In addition, we also
visualise several testing results in Figure 8. In accordance
with the summarised results, our method achieves the best
face detection precision even though the face detector is pre-
trained on the WIDER FACE dataset with normal lighting
conditions.

5. Conclusion
In this paper, we proposed a self-supervised denoiser

IDEA-Net for image denoising. The IDEA-Net requires a
noisy image merely for the training process, thus reduces
the possible data bias in comparison to those trained us-
ing additional datasets. In addition, the learned dual self-
attention region in conjunction with Poisson dropout op-
erations collectively contribute to the reduction of compu-
tational cost and prediction variance. The experimental re-
sults show that the proposed IDEA-Net outperforms the
non-learning and learning denoisers based on a single im-
age, and is competitive to those trained on datasets. The
efficiency and efficacy of IDEA-Net has been further con-

Figure 7. Precision-Recall curves on DARK FACE sample testing
subset. Performance is measured by AP (top-right) in %. Super-
resolution methods are marked in italic. Best viewed in colour.

Figure 8. Performance comparisons of dark face detection. ˝ indi-
cates the attention region A yielded by IDEA-Net in Figure 2.

firmed on the task of face detection in low-light and noisy
conditions. Experimental results also inspire further in-
vestigations on the spatio-temporal property of dual self-
attention-based learning techniques for video denoising.
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