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1. Noise Modeling

Image noise originates at the Bayer RAW domain. The
observed signal of a pixel is gaussianly distributed about the
noiseless intensity of the pixel. Noise originates from a va-
riety of sources, but can be broken down into two categories
- signal independent noise and signal dependent noise. The
variance of the gaussian distribution of signal independent
noise per-pixel does not vary depending on the intensity of
a pixel. The variance of signal dependent noise per-pixel is
proportional to that pixel’s intensity. Read noise is a promi-
nent example of signal independent noise and shot noise is
a prominent example of signal dependent noise.

y ∼ N (µ = x, σ2 = ax+ b) (1)

Equation 1 models both signal independent noise and
signal dependent noise as a single heteroscedastic gaussian,
treating y as a variable whose variance is a function of the
true signal x, where a and b represent the signal dependent
and signal independent noise respectively [2, 11, 3]. This
description of noise is only partially complete because it
does not account for clipping of the signal. Due to clipping,
the per-pixel distribution of a pixel is a censored gaussian
distribution, and the expected variance at the low and high
ends of the signal are decreased compared to Equation 1 [2].
To accurately model noise for a specific sensor, we choose
realistic a and b parameters, sample the corresponding gaus-
sian distribution for each pixel, add the noise to the ground
truth image, and then clip the image.

To pick realistic as and bs for the target sensor, we con-
duct an empirical analysis. In a lab-controlled lighting en-
vironment, we capture samples of frames of a color checker
in a variety of lighting conditions, holding exposure time
constant. We scale the image’s intensities to a 0-1 range
in accord with the camera’s white and black levels. After
segmenting color boxes in the checker, we approximate the
noise-free intensity of each pixel as the mean intensity of its
corresponding color box. This allows us to observe the rela-

Figure 1. Example of intensity (x-axis) vs variance (y-axis) for a
single image of a color checker.

tionship between noise-free intensity and variance for each
image (see Figure 2).

We use the algorithm proposed by [2] to fit Equation 1
to this plot. Note that while the images used for this anal-
ysis are clipped, the algorithm takes this discrepancy into
account when fitting the theoretical unclipped noise model.
This yields the parameters a and b for the image, which can
be used to generate artificial noise to be subsequently added
to a ground truth image and clipped.

In training, we model the distribution of these a and b
pairs in logarithmic space, randomly choose log a along a
uniform distribution, and then pick log b based on a linear
regression. The resulting regression is unique to each type
of sensor. Our noise modeling was done for target camera’s
sensor, the Sony IMX258. Since the image’s gain is known
at inference, to predict the noise levels at inference we cre-
ate regressions between a and gain and between b and gain.
We find that a linear regression fits the relationship between
a and gain and that a quadratic regression fits the relation-
ship between b and gain. As demonstrated in [11], superior
denoising performance can be achieved by having this in-
formation available to the algorithm.



(a) Linear regression between gain and a (b) Quadratic regression between gain and b

(c) Regression between log a and log b

Figure 2. The regressions in (a) and (b) are used to estimate noise parameters in inference. The regression in (c) is used to randomly choose
noise parameters in training.

2. Full Training and Implementation Details
To train our array of models we use the following con-

figuration:

• The training ground truth images consist of unpro-
cessed MIRFLICKR [5] with modified white balance
gains for our target sensor, SIDD [1], and the Learn-
ing to See in the Dark training dataset [4]. The latter
two datasets are unified into an RGGB pattern with
Bayer Unification [8]. These images are randomly
cropped into 128 x 128 patches.

• Bayer Augmentation [8] is applied to the training data.

• The input to the model is generated by adding artifi-
cial noise to the ground truth image. A description of
our experiments to realistically model artificial noise
is included in supplemental Section 1.

• The k-sigma transform of [11] is implemented in train-

ing and testing. Note that k and σ2 refer to our a and b
noise parameters respectively.

• Training examples are collated into batches of size 16.

• The Charbonnier Loss variant of our models uses a loss
weight of 393.5. The Feature Matching Loss variant of
our models uses a loss weight of 78.7. These weights
were derived from a hyperparameter sweep on RAW
PSNR.

• Models are trained using the Adam [7] optimizer with
the maximum learning rate of 1e-4.

• Training occurs in 2,500,000 iterations scheduled with
cosine learning rate decay.

3. Test Dataset Details
We collect noisy-clean image pairs on the targeted cam-

era of our method which uses a Sony IMX258 sensor. Pairs



are collected by taking a short exposure with a random gain
between 1.0 and 64.0 accompanied by a long exposure of
the same scene with a gain of 1.0. The long exposure’s ex-
posure time is adjusted such that the brightness of both im-
ages are equivalent. The gain and exposure time is selected
programatically so that the camera is not moved slightly
between image captures. Similar to the Darmstadt Noise
Dataset [10], to account for small environmental vibrations
occurring between the short and long exposure that misalign
the pair, we predict and correct for a global 2D translation
estimated by averaging the Lucas-Kanade [9] optical flow
of features detected by the Shi-Tomasi [6] algorithm. Fi-
nally, noise level annotations a and b for the short exposure
are estimated from the regression described in supplemental
Section 1.
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