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Abstract

It is challenging to derive explainability for unsuper-
vised or statistical-based face image quality assessment
(FIQA) methods. In this work, we propose a novel set of
explainability tools to derive reasoning for different FIQA
decisions and their face recognition (FR) performance im-
plications. We avoid limiting the deployment of our tools
to certain FIQA methods by basing our analyses on the be-
havior of FR models when processing samples with different
FIQA decisions. This leads to explainability tools that can
be applied for any FIQA method with any CNN-based FR
solution using activation mapping to exhibit the network’s
activation derived from the face embedding. To avoid the
low discrimination between the general spatial activation
mapping of low and high-quality images in FR models, we
build our explainability tools in a higher derivative space
by analyzing the variation of the FR activation maps of im-
age sets with different quality decisions. We demonstrate
our tools and analyze the findings on four FIQA methods,
by presenting inter and intra-FIQA method analyses. Our
proposed tools and the analyses based on them point out,
among other conclusions, that high-quality images typically
cause consistent low activation on the areas outside of the
central face region, while low-quality images, despite gen-
eral low activation, have high variations of activation in
such areas. Our explainability tools also extend to analyz-
ing single images where we show that low-quality images
tend to have an FR model spatial activation that strongly
differs from what is expected from a high-quality image
where this difference also tends to appear more in areas
outside of the central face region and does correspond to
issues like extreme poses and facial occlusions. The imple-
mentation of the proposed tools is accessible here 1.

1https://github.com/fbiying87/Explainable_FIQA_
WITH_AMVA

1. Introduction
Face recognition (FR) systems are becoming more

widely used in our daily life, be it for security-relevant areas
such as border control or for unlocking your personal de-
vices such as smartphones. This spread relates highly to the
performance improvements due to advances made in deep-
learning methods for FR [6, 2, 3].

Low utility [18] face samples largely effects the perfor-
mance of FR algorithms [1]. Therefore, to improve the
performance of FR and overcome the aforementioned chal-
lenges, advances have been made to enhance the perfor-
mance and dependability by choosing to use high-quality
face images. Face image quality is also used to weight
face embeddings and comparison scores when perform-
ing multi-frame (video) [21, 5, 20] or multi-spectrum [19]
face verification. Facial image quality assessment (FIQA)
methods have been developed to evaluate this metric for
facial images. Recent advances in the development of
FIQA methods with deep-learning-based approaches al-
ready show good results in improving the FR performance.
Few works focus also on building FIQA methods based on
interpretable reasoning in terms of uncertainty [26], embed-
ding robustness [27], or embedding magnitude that corre-
late to the sample location with respect to its class [21].
However, little effort was put into the explainability of these
methods.

To address this unscouted field, we develop a set of novel
explainability tools. To start with, and to enable our tools to
be deployed to both supervised and unsupervised FIQA ap-
proaches, we do not look into the responses of the FIQA
approach itself, but rather the FR model behavior when
processing images with various FIQ decisions. Given that
the general spatial activation of FR models to low or high-
quality images is rather similar, we take this analysis to the
higher derivative level by looking at the activation map vari-
ation analyses. The newly proposed tools successfully tar-
get answering three questions related to the explainability
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of FIQA decisions. These questions address the following
issues: 1) What makes the face images of high quality (in
comparison to low) in the view of different FIQA based on
the FR model behavior, 2) what makes the decision of high
or low quality different between different FIQAs based on
the FR model behavior, and 3) how do the activation map-
pings caused by face images in the FR model deviate from
what is expected from high-quality images and how does
that reflect in their quality score.

The structure of our work is as follows: we first introduce
the related work in terms of FIQA methods in Section 2. In
section 3, we introduce our proposed explainability tools.
The experimental setup is described in Section 4, while the
analyses based on our proposed tools are followed in Sec-
tion 5. We conclude our paper in Section 6 where we shortly
summarized our main findings.

2. Related Works
The estimation of face images utility with FIQA methods

helps FR systems to improve their performance by avoiding
the processing of low-quality, and thus low-utility captures.

Most recent works of FIQA methods mainly focused on
enhancing the performance of the proposed metric in terms
of the FR accuracy when neglecting low-quality samples.
An example of that is the probabilistic Face Embeddings
(PFEs) proposed by Shi et al. [26] where they represented
each face image as a Gaussian distribution in the latent
space, where the variance of the Gaussian indicates the un-
certainty in the feature space. This uncertainty is used as
a measure of quality. Another example is the SDD-FIQA
[23] where Ou et al. proposed a supervised method using
generated quality pseudo-labels by calculating the Wasser-
stein Distance between the intra-class similarity distribution
and inter-class similarity distributions of sample identities.
With these peseudo-labels, the network trains a regression
network for the quality prediction. Other FIQA metrics us-
ing the trustworthiness as in SER-FIQ [27] or MagFace [21]
by learning a universal feature embedding which magnitude
is a direct measure of quality, are further introduced in Sec-
tion 4.

Recent works have tried to have a detailed look into the
contribution of facial parts to the estimated face image qual-
ity (FIQ). Fu et al. [10] investigated the different face sub-
regions (including eyes, mouth, and nose) and showed their
relative importance towards face utility by comparing gen-
eral image quality assessment (IQA) metrics on these ar-
eas. However, this work only looked at IQA metrics and
thus does not provide many insights on the explainability
of FIQA. Further works have looked into the spatial acti-
vation maps of supervised FIQA and IQA methods and an-
alyzed how they are affected when facing different sample
categories such as low and high-quality [9], or even masked
faces [11]. However, these efforts were limited to the super-

vised FIQA methods and did not address the better perform-
ing unsupervised FIQA methods, as the nature of the unsu-
pervised approaches does not allow for rational activation
map analyses. Moreover, none of the previous FIQA meth-
ods tried to provide an explaination of a quality decision by
looking into the spatial interpretation of the response of FR
models to what is deemed as low or high-quality samples,
rather than just analyzing the FIQA behavior. In this work,
we propose a generalized methodology to enhance the ex-
plainability of the behavior of FR models on low and high-
quality samples, as well as face image quality estimation
decisions, by analyzing the FR activation mappings, rather
than these of FIQA.

3. Methodology
In this section, we propose a novel set of tools to explain

the face image quality and its effect on FR model behav-
ior, independent of the underlying working principles of the
FIQA methods itself, by focusing on the response of the
FR models to samples labeled with different qualities. We
leveraged the process of activation mapping of a visualiza-
tion network to display the scaled activation weighted by the
face embedding of the FR network. This mapping links the
content of face embeddings with the pixels in the input face
image. Based on the activation mapping, we draw statistic
characteristics for images with different face qualities and
thus enable analyses of the response of FR models to low
and high face image qualities and the quality interpretation
of single samples based on FR model responses.

To illustrate our proposed method with a concrete exam-
ple, let us assume that we chose MagFace [21] as the un-
derlying unsupervised FIQA method and used the ResNet-
100 [13] model trained with ArcFace loss [6] as the face
recognition model to extract the face embeddings. We fur-
ther used ScoreCAM [28] as the approach for the activation
mapping process. The activation mapping visualized the
deepest convolution layer of the Res-Net100 and upsampled
it to overlay to the input layer. The scaled version of the
activation measures how the output changes to the face em-
bedding. For each image, the activation mapping (AM) pro-
vided an output activation map with each pixel value noted
as ai,j , i = 1 : 112, j = 1 : 112 of the size 112x112. How-
ever, this concept can be extended to any FIQA method and
CNN-based FR model. More details about the exact mod-
els used in this work and the reason for this selection are
provided later in Section 4.

Using the selected FIQA metric, e.g., MagFace, we
calculate the face image scores for a given face images
database. The calculated face image scores are used as
ground truth to determine the group of low and high-quality
images. In our experiment, we chose the 10% of face im-
ages with the lowest and 10% of face images with the high-
est FIQ scores. For simplicity, these two groups are named
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H and L individually.
For each of these two individual groups of H and L im-

ages, we introduce and define the mean activation mappings
(MAM) and denote them as MAMH and MAML. These
maps have the same dimension as the input with 112x112
pixels. Each element in the MAM is noted as ai,j and it is
derived from equation (1) using the activation value of each
single sample ai,j with the running index i = 1 : 112 and
j = 1 : 112:

ai,j =
1

N

N∑
k=1

aki,j , (1)

where N is the number of images within the H or L groups
respectively. As we aim to measure the variability in the
activation mapping, we introduce and define the activation
mapping variation map (AM-V). We further denote them as
AM-VH and AM-VL respectively, for high-quality or low-
quality samples. These maps also have the dimension of
the input with a shape of 112x112 and each element in the
AM-V is the si,j and is derived according to equation (2):

si,j =

√√√√ 1

N

N∑
k=1

(aki,j − ai,j)2, (2)

where N has the same meaning as in Equation (1) and ai,j
are extracted from elements of the activation mapping.

In order to reduce the influence of outliers in the
MAM, we further looked at the median activation mapping
(MDAM). The notation of MDAMH and MDAML are also
noting the MDAM for low and high quality sample sets.
The element of the MDAM is denoted as ãi,j and is derived
as:

ãi,j = Median(aki,j), k = 1..N . (3)

We further introduce the activation mapping Median varia-
tion (AM-MV), called AM-MVH and AM-MVL. The asso-
ciated equation for each element of these maps s̃i,j is given
as:

s̃i,j =

√√√√ 1

N

N∑
k=1

(aki,j − ãi,j)2, (4)

where both AM-MV maps have the same dimension of
112x112 pixels.

Both the defined AM-V and AM-MV maps present a vi-
sualization tool to look into the spatial areas where a rel-
atively large variation in the activation of the FR occurs,
with respect to a set of high or low-quality images. This
will help identify the spatial regions responsible for the cer-
tain quality decision, despite the low consistency of these
areas’ location across different images.

As will be shown later, the differences between the
MAM (or MDAM) of image sets of different qualities do
not uncover a lot of explainability information. Therefore,

to uncover the spatial related differences between these
groups, we rather analyze the differences between the varia-
tions in the activation mapping (AM-V or AM-MV). We in-
troduce these differences as the Differential activation map-
ping variation (D-AM-V) as in (5) and the Differential ac-
tivation mapping Median variation (D-AM-MV), as in (6):

D-AM-V = |AM-VH − AM-VL|, (5)

and

D-AM-MV = |AM-MVH − AM-MVL|, (6)

where both equations (5) and (6) can be extended to look at
the differences of variations of any sets of images, not only
L and H, but also to sets of images determined to be H or L
by different FIQA approaches.

The proposed visualization maps provide a useful tool
to analyze the differences in FR model responses to sets of
facial images belonging to different sets, here sets with dif-
ferent FIQ determined by any FIQA approaches, or sets of a
certain FIQ label determined by different FIQA approaches.

So far we introduced methods to visualize and analyze
the behavior of FR models between sets of images to enable
a better understanding of FR response to images of differ-
ent quality levels and thus understanding the used FIQA. To
further analyze the quality decision of a single face image
using its FR model response, we introduce the activation
deviation from the MAM (AD-MAM). The elements of the
AD-MAM is noted as di, j and is calculated of an image x
with its activation mapping element ai,j and its absolute de-
viation from the mean activation mapping of the high qual-
ity sets aHi,j ,

di,j = |ai,j − aHi,j |, (7)

this can be calculated for different sets of images that build
the MAM, here we focus our analyses on the MAMH , and
thus we note our AD-MAM as AD-MAMH .

4. Experimental Setup
In this section, we first introduce the face image database

used to evaluate the methodology proposed in Section 3.
This was followed by the description of the three recent
deep-learning-based FIQA metrics and one general IQA
metric used as examples in our work. Finally, we used Res-
Net100 trained with ArcFace loss as the basic FR model
used as the backbone of our explainability efforts. A short
experiment overview is provided before introducing the fi-
nal results and more detailed analysis.

4.1. Database

VGGFace2 [4] dataset is a large-scale database contain-
ing face images with a large variety in quality distribution
which makes it a challenging FR database. The images have
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high diversity in poses and complex acquisition conditions.
For the main analysis in this paper, we only used the official
test dataset containing 500 subjects. To reduce heavy com-
putation and a more balanced database, we randomly se-
lected 30 face images of each subject representing the full
database. This made a total of 15000 images, the list of
randomly selected images from each identity will be made
publicly available to enable reproducibility.

Data preprocessing includes face detection, cropping,
and alignment. The Multi-task Cascaded Convolutional
Networks (MTCNN) [30] framework is used to detect faces
from the VGGFace2. The detected faces are further cropped
and aligned using similarity transform to 112x112 pixels,
such that all the face images are standardized for compari-
son.

4.2. FIQA methods

In our experiment, we selected four different quality
metrics, one is an supervised general image quality called
BRISQUE [22] as a baseline and three specifically designed
methods for face image quality assessment, FaceQnetV1
[15], MagFace [21], and SER-FIQ [27], the first is a su-
pervised FIQA and the later two are unsupervised. the fol-
lowing introduces these methods shortly.

BRISQUE [22] proposed by Anish et al. in 2012 is
an opinion-aware image quality assessment method trained
with human opinion scores. The assessment of the im-
age is purely based on natural scene statistics learned from
distortion-generic images. The method is built on the find-
ing by Rudermann [24] that natural scene images have a
luminance distribution similar to a normal Gaussian distri-
bution. Handcrafted features were derived to quantify the
deviation from the Gaussian due to image distortions. The
quality estimations by BRISQUE were previously found to
have a strong correlation to face image utility [9].

FaceQnet [15] proposed by Hernandez-Ortega et al. in
2019 is a supervised FIQA method. The BioLab-ICAO
framework was used to label the ground-truth score for
the training image according to the ICAO compliance level
[17]. This score is used to train the regression layer on
top of the feature extraction layers. FaceQnet is based on
fine-tuning a pre-trained FR network (RseNet-50) and the
successive regression layer to associate an input image to a
utility score that determines the appropriateness of the in-
put image to an FR model. In this work, we used the latest
version published in [14], i.e. FaceQnetV12.

SER-FIQ [27] is an unsupervised deep-learning-based
FIQA approach that applies stochastic variations on face
representations learned from a deep-learning-based FR
model by using dropout. This method mitigates the need
for any automated or human labeling. The face image was
passed to several sub-networks of a modified FR network

2https://github.com/uam-biometrics/FaceQnet

Figure 1. Error versus reject curve shows the FNMR at fixed
FMR=0.1% decays with increasing number of worse quality im-
ages are discarded. All four FIQA methods seem to perform well
as a strong decrease in error is observed when the predicted low-
quality images were removed.

by using different dropout patterns. Images with high utility
are expected to possess similar face representations result-
ing in low variance. Thus, this proposed metric linked the
robustness of face embeddings directly with FIQ.

MagFace [21] by Meng et al. is another recently pro-
posed unsupervised FIQA method based on using the adap-
tive loss incorporating the face image quality to the magni-
tude of the face embedding. This method can derive both
the face representation and the face image quality from cal-
culating the magnitude of the face embedding. The loss op-
timizes the inter-class variability and intra-class similarity.
The MagFace version used in this work is trained on MS-
Celeb-1M database and used the ResNet-100 as the back-
bone.

All selected FIQA methods perform well on the VG-
GFace2 database. This can be seen in the error versus reject
characteristic (ERC) presented in Figure 1. The ERC shows
the relative performance of the FR system when rejecting
different ratios of the evaluation data with the lowest qual-
ity according to each FIQA metric. Figure 1 shows the ERC
with the false non-match rate (FNMR) at different ratios of
rejected (low quality) images using a fixed false-match rate
(FMR) at 0.1%. The error clearly decreased as the number
of worst quality samples are discarded.

In the overlapping ratio matrix shown in Figure 2, we see
further that the set of the lowest and highest 10% sample
images are not fully identical for different FIQA methods,
indicating that the proposed metrics in Section 3 are derived
from different base samples. The largest overlap is found
for both unsupervised FIQA methods, i.e. for MagFace and
SER-FIQ.

4.3. Face Recognition Solution

We use the ResNet-100 trained with ArcFace loss as the
main FR solution to visualize the activation mapping of the
input face images. This ArcFace [6] model is trained using
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Figure 2. We displayed the samples’ overlap ratio between the
samples of the highest quality (10% of the data) on the right be-
tween every pair of quality estimation methods, and the same for
the 10% of the lowest quality on the left.

the MS1M dataset [12]. The loss function applied additive
angular margin to improve the discriminative power of the
FR model. We chose this model because of its improved
accuracy on LFW [16] 99.83% and YTF DB [29] 99.02%.

4.4. Activation mapping method

ScoreCAM [28] is used as the activation mapping
method to display the activations of the deepest convolu-
tion layer of the Res-Net100 and upsampled to overlay to
the input layer. This choice is motivated by the extensive
successful use of ScoreCam as an activation mapping tool
in various biometric domains [8, 7]. ScoreCAM provides
a scaled version of the activation for the face embeddings.
The weights of the scale factors are derived from this em-
bedding. We chose ScoreCAM as it seems to provide more
realistic explainability analyses to other methods such as
CAM [31] and Grad-CAM [25].

4.5. Experiment overview

Given the methodology proposed in Section 3 and the ex-
perimental setup in Section 4, we intend to show: (1) differ-
ence between high and low-quality decision of FIQA based
on AM-V/AM-MV and D-AM-MV, (2) differences within
the low and high-quality decisions across FIQA methods,
and (3) individual sample quality explainability with its
AD-MAM of the individual FIQA method.

All four FIQA metrics were used to determine the face
image quality of the used database. Out of which we de-
termine the 10% of the face images with the highest and
lowest face qualities to the group H and L, which makes
1500 face images in each of these two groups. ScoreCAM
builds the activation mapping from the FR using ArcFace
model for these input images of both groups H and L. For
the FR model trained with ArcFace loss, we used the official
Pytorch version from the official Github 3.

3https://github.com/deepinsight/insightface

5. Results and Analyses

This section is structured in three main parts related to
explaining FIQ estimation within and across the decisions
of different FIQA methods. The methodologies used as ex-
plainability tools are introduced in Section 3.

1. What makes the face images of high quality (in com-
parison to low) in the view of different FIQA based on
the FR model behaviour? Figure 3 and Figure 4 depict
the results for the MAM and MDAM for each FIQA method
individually, we do not notice major differences between
MAM and MDAM. Taking a look at the distributions for
the mean activation mapping for H and L, no visible signif-
icant differences are noticed. This acts as the major motiva-
tion behind our proposed analyses based on activation map
variation, rather than the activation maps themselves. Even
though the difference for the MAM/MDAM between the H
and L sets is not strongly visible, there are strong variations
in the AM-V/AM-MV. Comparing the value distributions
for AM-VH and AM-VL, we clearly observe that the varia-
tions for L are significantly larger compared to H, the same
can be observed for AM-MVH and AM-MVL. This might
indicate that the variability in activation mapping is stronger
for low-quality face images. Looking at the AM-V/AM-
MV for L and H, we noticed that the values are typically
higher in L on the borders of the images, while it is higher
in the middle face region for H. This indicates that the lower
utility of L is based on the FR model focusing more often
on the border areas rather than the center, in comparison to
the H set. This result is further confirmed by looking at the
D-AM-V mapping, where we can see that stronger devia-
tions are observed on the left and right borders of the face
image.

Generally, all considered FIQA methods lead to simi-
lar MA-V/AM-MV and D-AM-V/D-AM-MV observations,
indicating that the effect of quality differences (as per differ-
ent FIQAs) on the FR model is of the same nature. Based
on these observations and to answer the question driving
this subsection, we can notice that despite the similarity of
the general activation maps of low and high-quality images
(similar MAM/MDAM for L and H), what makes an im-
age high quality is the consistent low activation on the areas
outside of the face center, while low-quality images, despite
general low activation in these areas, have high variations of
activation there. In simple words, low-quality images do at-
tract the attention of FR model in areas outside of the center
face area, however, in different locations and less consis-
tently, which can be caused by the different reasons for the
degradation of quality.

2. What makes the decision of high or low quality dif-
ferent between different FIQAs based on the FR model
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MAMH MAML MAMH vs MAML AM-VH AM-VL D-AM-V AM-VH vs AM-VL

Figure 3. The results are derived from the MAM for each FIQA metric individually. Even though the MAMH and MAML are similar for
both H and L groups, a strong deviation can be observed in terms of AM-V, indicating low-quality images have a stronger deviation from
the mean compared to high-quality images, especially on image borders. It is to be noted that for the visualization purpose, these deviation
maps AM-VH , AM-VL, and D-AM-V are scaled.
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MDAMH MDAML MDAMH vs MDAML AM-MVH AM-MVL D-AM-MV AM-MVH vs AM-MVL

Figure 4. The results are derived from the MDAM for each FIQA metric individually. The same result is obtained as for MAM in Figure3,
where even stronger variations are observed from the median for low-quality images. Low-quality images tend to attract the attention of
FR model in areas outside of the center face area, which can be caused by different reasons like e.g., postures or occlusions. The variation
maps are re-scaled for better visualization.
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behaviour? In Figure 5 we see visualization of our
D-AM-V mapping across FIQA methods. The D-AM-V
here differs than the one presented in Equation (5) by look-
ing across FIQA methods rather than quality sets, here the
D-AM-VH = AM-VH,FIQA−1 − AM-VH,FIQA−2 and
D-AM-VL = AM-VL,FIQA−1−AM-VL,FIQA−2. D-AM-
VH and D-AM-VL show the differential activation mapping
variations for H and L sets individually between pairs of
FIQA metrics. D-AM-VH and D-AM-VL between the un-
supervised MagFace and the supervised methods FaceQnet
and BRISQUE show similar tendencies. Samples selected
to be H by the supervised methods tend to cause higher ac-
tivation variations in the top and bottom of the image when
compared to MagFace. Samples selected to be L by the
supervised methods tend to cause higher activation varia-
tions on the left and right edges of the face image when
compared to MagFace. This consistent activation variation
on areas out of the face center can rationalize the perfor-
mance differences between FaceQnet and BRISQUE on one
side, and MagFace on the other side, see Figure 1. There
are fewer differences in the activation variations caused by
both the H and L set between the supervised (and with
poorer performance) FIQA methods (BRISQUE and Face-
Qnet) both in terms of magnitude (distribution shifts) and
clear spatial distribution. The same can be seen between
the two high-performing unsupervised methods (SER-FIQ
and MagFace). This leads to answering the question behind
this sub-section by stating that compared to high perform-
ing FIQA methods, lower performing FIQA methods have
larger FR activation variation on the edges of the face im-
age.

How do the activation mappings caused by face images
in the FR model deviate from what is expected from high
quality images and how does that reflect in their quality
score? In Figure 6 we depicted sample images of high and
low face qualities. Each sample subject, we provided one
original image with the FIQ score from all four FIQA met-
rics below, one image overlayed with the activation map-
ping from the ArcFace FR solution, and four overlayed with
the AD-MAMH map of each FIQA method. These differen-
tial activation mappings are for BRISQUE, FaceQnet, Mag-
Face, and SER-FIQA in the correct ordering starting from
upper left to bottom right displayed for each sample subject.
These AD-MAMH maps show areas which could cause the
degradation in qualities as they deviate from the mean tem-
plate and is emphasized in the visualization.

From Figure 6, it can be generally concluded that the
AD-MAMH for all FIQA methods contain larger and higher
values for low quality images in comparison to high qual-
ity images. Also in this comparison, the high value areas
in the AD-MAMH for low quality images tend to appear
more in the areas around the face rather than the center of

the face. This is less apparent in the high quality images.
This larger and higher values in AD-MAMH corresponds
to the low quality estimated across the four FIQA methods
and in many cases it is related to less than optimal poses,
face occlusions, and overall low image sharpness. To an-
swer the question motivating this sub-section, our analyses
and proposed explainability tools reveal that low quality im-
ages tend to have a FR model activation map that strongly
differs than that of what is expected from a high quality im-
age. This difference also tends to appear more in the areas
outside of the central face region.

6. Conclusion
Making the face image quality estimation explainable is

a challenging task that goes beyond analyzing the FIQA
network itself. Most recent works put more focus on de-
signing FIQA methods that perform well without looking
into what is the response of an FR model to high or low-
quality face image. In this work, we presented a novel set
of explainability tools to enhance the visual explainability
of FIQ estimation decisions based on the variation analyses
in FR models. The proposed tools can be applied for any
FIQA method with any CNN-based FR solution using acti-
vation mapping to exhibit the network’s activation derived
from the face embedding. By showing the intra-groups and
cross-method inter-groups statistics of the network’s acti-
vation, we try to relate explainability to groups of H and L
face quality image sets for the individual FIQA method. We
demonstrate that even though the MAM between H and L is
small, the variations in activation mapping for L are larger
compared to H. This points out that the low-quality images
tend to cause the FR network to focus on areas outside of
the central face area, however, in an inconsistent manner, as
the reason causing the low quality can vary largely. We ad-
ditionally link this observation to the relative performance
of different supervised and unsupervised FIQA approaches.
Finally, we look at the explainability of the quality deci-
sion of individual face images by analyzing the differences
between their activation maps in FR models and the maps
expected from high-quality images, pointing out consistent
differences in FR behavior between high quality and low-
quality face images.
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AM-VL tend to show stronger and more consistent differences between supervised and unsupervised methods, hinting a link between the
lower performance of FaceQnet and BRISQUE and the focus of the FR model on areas outside of the face center in an unexpected manner
.
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Figure 6. Selected face images with high and low face qualities are displayed. Each sample subject contains one original image with
quality scores illustrated below, one image overlapped with the activation mapping derived from ArcFace FR, and four overlayed AD-
MAMH maps. These differential maps indicate the deviations from the MAMH and show areas which could cause the degradation in
qualities, such as sunglasses, hat, and mustaches.
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