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Abstract

We present a novel approach for person identification
based on typing-style, using a novel architecture con-
structed of adaptive non-local spatio-temporal graph con-
volutional network. Since type style dynamics convey mean-
ingful information that can be useful for person identifica-
tion, we extract the joints positions and then learn their
movements’ dynamics. Our non-local approach increases
our model’s robustness to noisy input data while analyzing
joints locations instead of RGB data provides remarkable
robustness to alternating environmental conditions, e.g.,
lighting, noise, etc.. We further present two new datasets
for typing style based person identification task and exten-
sive evaluation that displays our model’s superior discrim-
inative and generalization abilities, when compared with
state-of-the-art skeleton-based models.

1. Motivation

User identification and continuous user identification are
some of the most challenging open problems we face today
more than ever in the working-from-home lifestyle due to
the COVID-19 pandemic. The ability to learn a style in-
stead of a secret passphrase opens up a hatch towards the
next level of person identification, as style is constructed
from a person’s set of motions and their relations, which
are typically indifferent to most scene properties. There-
fore, analyzing style, rather than relying on appearance (or
some other easily fooled characteristic), can increase the
level of security in numerous real-world applications, e.g.,
VPN, online education, finance, etc..

We focus on a typical daily task - typing, as a method
for identification, and present a substantial amount of ex-
periments supporting typing style as a strong indicator of a
person’s identity, as appeared in fig. 1. Now, typing some-
one’s password is insufficient, but typing it in a similar style
is needed. Therefore, our typing style-based identification
approach can offer an elegant and natural solution for both
identification and continuous identification tasks.
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2. Introduction

Biometrics are the physical and behavioral characteris-
tics that make each one of us unique. Therefore, this kind
of character is a natural choice for a person identity veri-
fication. Unlike passwords or keys, biometrics cannot be
lost or stolen, and in the absence of physical damage, it of-
fers a reliable way to verify someone’s identity. Physiolog-
ical biometrics involves biological input or measurement of
other unique characteristics of the body. Such methods are
fingerprint [11], and face geometry [1, 24]. Unlike phys-
iological characteristics, behavioral characteristics encom-
pass both physiological and psychological states. Human
behavior is revealed as motion patterns in which their anal-
ysis forms the basis for dynamic biometric.

Motion analysis is drawing increasing attention due to a
substantial improvement in performance it provides in a va-
riety of tasks [26],[9], [34], [16], [28]. Motion patterns con-
vey meaningful information relevant to several applications
such as surveillance, gesture recognition, action recogni-
tion, and many more. These patterns can indicate the type
of action within these frames, even manifesting a person’s
mood, intention, or identity.

Deep learning methods are the main contributors to
the performance gain in analyzing and understanding mo-
tion that we have witnessed during recent years. Specif-
ically, spatio-temporal convolutional neural networks that
can learn to detect motion and extract high-level features
from these patterns become common approaches in various
tasks. Among them, video action classification (VAC), in
which given a video of a person performing some action,
the model needs to predict the type of action in the video.
In this work, we take VAC one step further. Instead of pre-
dicting the action in the input video, we eliminate all action
classes and introduce a single action - typing. Now, given
a set of videos containing hands typing a sentence, we clas-
sify the videos according to the person typing the sentence.

Over time, researchers in VAC'’s field presented various
approaches, where some use RGB-based 2D or 3D convolu-
tions [26, 3, 6] while others focus on skeleton-based spatio-
temporal analysis [30, 7, 18]. The skeleton-based approach
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Figure 1. t-SNE on late features of 7 out of 60 people appears in 60Typing10 dataset, where some videos went through data augmentation
to simulate changing environmental conditions. Given a video of a person typing a sentence, our model can classify the person according to
its unique dynamic, i.e., typing style, with high accuracy, regardless of scene properties (e.g., lighting, noise, etc.). The model generalizes
the typing style to other sentences, which it never saw during training even when it trains on one sentence type alone, while our non-local
approach provides remarkable robustness to noisy data resulting from joints detector failures. Best viewed in color.

proved its efficiency in cases where the videos are taken
under uncontrolled scene properties or in the presence of a
background that changes frequently. The skeleton data is
captured by either using a depth sensor that provides joint
(z,y, z) location or by using a pose estimator such as [2],
that extracts the skeleton data from the RGB frames. The
joint locations are then forwarded to the model that per-
forms the action classification.

Recent works in the field of skeleton-based VAC uses
architectures of Spatio Temporal Graph Convolutional Net-
work (GCN) as graph-based networks are the most suitable
for skeleton analysis since GCN can learn the dependencies
between correlated joints. Since Kipf and Welling intro-
duced GCN in their work [15], other works such as [35]
presented adapted versions of GCN that applied for action
classification. These adaptations include spatio-temporal
GCN that performs an analysis in space and time and adap-
tive graphs that use a data-driven learnable adjacency ma-
trix. Recently, a two-stream approach [25, 31] that uses
both joints and bones data is gaining attention. Bones data
is a differential version of the joints locations data since it
is constructed from subtractions between linked joints. The
bones vector contains each bone’s length and direction, so
analyzing this data is somewhat similar to how a human is
analyzing motion. Furthermore, bones can offer new corre-
lated yet complementary data to the joints locations. When

combining both joints and bones, the model is provided
with much more informative input data, enabling it to learn
meaningful information that could not be achieved with a
one-stream approach alone.

Even though VAC is a highly correlated task to ours,
there are some critical differences. The full-body skeleton
is a large structure. Its long-ranged joints relations are less
distinct than those that appear in a human hand, which has
strong dependencies between the different joints due to its
biomechanical structure. These dependencies cause each
joint’s movement to affect other joints as well, even those on
other fingers. Thus, when using a GCN containing a fixed
adjacency matrix, we limit our model to a set of pre-defined
connections and do not allow it to learn the relations be-
tween joints which are not directly connected. Furthermore,
the hand’s long-ranged dependencies that convey meaning-
ful information tend to be weaker than the close-range ones,
and unless these connections are amplified, we lose essen-
tial information. Our constructed modules are designed to
increase vertices and edges inter (non-local) connections,
allowing our model to learn non-trivial dependencies and to
extract motion patterns from several scales in time, which
we refer to as style.

In practice, we use a learnable additive adjacency ma-
trix and a non-local operation that increases the long-range
dependencies in the layer’s unique graph. The spatial non-
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local operation enables the GCN unit to permute forward
better spatial features, and the temporal non-local opera-
tion provides the model with a new order of information
by generating the inter joints relation in time. Now, each
joint interacts with all other joints from different times as
well. These dependencies in time help the model gain in-
formation regarding the hand and finger posture along time
and the typing division among the different fingers. We fur-
ther apply a downsampler learnable unit to sum each chan-
nel information into a single value while causing minimal
information loss. As a result, the refined features result-
ing from the long-ranged dependencies can be reflected as
much as possible in the model’s final prediction layer. Also,
we follow the two-stream approach and apply bones data
to a second stream of our model. We train both streams
jointly and let the data dictate the relationship between
both streams, i.e., we apply learnable scalars that set each
stream’s contribution.

The final model is evaluated on two newly presented
datasets gathered for typing style learning for person identi-
fication (person-id) task. Since this work offers a new task,
we present comprehensive comparisons with state-of-the-
art skeleton-based VAC models to prove our model’s su-
periority. The main contributions of our work are in four
folds:

1. Develop a Spatio-Temporal GCN (StyleNet) for the
task of typing style learning which outperforms all
compared models in all experiments performed under
controlled environmental conditions.

2. Present substantially better robustness to challenging
environmental conditions and noisy input data than all
compared state-of-the-art VAC models.

3. Introduce two new datasets for typing style learning for
person-id task, which will become publicly available.

4. Introduce an innovative perspective for person-id
based on joints locations while typing a sentence.

3. Background

Al methods entering the game allow for higher accuracy
in various tasks, moving for axiomatic methods towards
data-driven approaches. These models focus on the detec-
tion of minor changes that were missed earlier by exam-
ining dramatically more data. The hardware improvement
allowed us to train deeper networks in a reasonable time
and classify in real-time using these complex models. This
paper’s related works can refer to biometric-based person
identification and skeleton-based action recognition.

Biometrics-based person identification methods using
different techniques and inputs were presented over the
years. [14, 20, 21] presented an approach for person iden-
tification that uses Keystroke dynamics as an indicator for

discriminative purposes. Fong ef al. [10], suggested iden-
tifying a person by geometric measurements of the user’s
stationary hand gesture of hand sign language. Roth et
al. [23] presented an online user verification based on hand
geometry and angle through time. Unlike [23], our method
does not treat the hand as one segment but as a deformable
part model by analyzing each of the hand joints relations in
space and time. Furthermore, our method is more flexible
since it is not based on handcrafted features and does not re-
quire a gallery video to calculate a distance for its decision.

Skeleton-based action recognition methods are going
through a significant paradigm shift in recent years. This
shift involves moving from hand-designed features [4, 17,
32, 13,22, 12] to deep neural network approaches that learn
features and classify them in an end-to-end manner. Most
skeleton-based method uses GCN architectures as well as
joints locations as input instead of the RGB video. Yan et
al. [35] presented their spatio-temporal graph convolutional
network that directly models the skeleton data as the graph
structure. Shi et al. [25] presented their adaptive graph two-
stream model that uses both joints coordinates and bones
vectors for action classification and based on the work
of [19] that introduced adaptive graph learning.

Inspired by the works presented above, this work fol-
lows skeleton-based methods for person-id task based on his
typing style. Unlike full-body analysis, hand typing style
analysis has higher discriminating requirements, which can
be fulfilled by better analysis of the hand’s global features
such as the hand’s posture and the fingers intra-relationships
and inter-relationships in space-time. We claim that all
skeleton-based methods presented earlier in this section fail
to fulfill these discriminative requirements fully. Therefore,
we propose a new architecture that aggregates non-locality
with spatio-temporal graph convolution layers. Overall, we
explored person-id on seen and unseen sentences under dif-
ferent scenarios.

4. StyleNet

The human hand is made from joints and bones that dic-
tate its movements. Therefore, to analyze the hand’s move-
ments, a Graph Convolutional Network (GCN) is the pre-
ferred choice for deep neural network architecture in that
case. GCN can implement the essential joints links, sus-
tain the hand’s joints hierarchy, and ignore links that do not
exist.

4.1. Spatial Domain

Motivated by [35], we first formulate the graph convolu-
tional operation on vertex v; as

S =Y Zl S (0) - wili(vy), (1)
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Figure 2. Diagram of our spatial Non-Local GCN unit. Blue rectangles are for trainable parameters. (X) denotes matrix multiplication and
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Figure 3. Left to right - adjacency matrix of the 1%, 2" and 3"
subset, respectively. Right - The hand as a graph. Each circle
denotes a joint, and each blue line is a bone connecting two linked
joints, i.e., each joint is a vertex, and bones are links in the graph.
Black X marks the center of gravity. Gray blob is the subset B;
of joint v; and its immediate neighbors. The green joint is v;, the
joint in red is the immediate neighbor of v; that is closer to the
center of gravity, and the joint in purple is the immediate neighbor
of v; that is farther from the center of gravity.
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where f is the input feature map and superscript S refers
to the spatial domain. v is a vertex in the graph and B; is
the convolution field of view which include all immediate
neighbor v; to the target vertex v;. w is a weighting func-
tion operates according to a mapping function [;. We fol-
lowed the partition strategy introduced in [15] and construct
the mapping function [/; as follows: given a hand center of
gravity (shown in Figure 3), for each vertex v; we define a
set B; that include all immediate neighbors v; to v;. B; is
divided to 3 subsets, where B} is the target vertex v;, B?
is the subset of vertices in B; that are closer to the center
of gravity and B3 is the subset that contains all vertices in
B; that are farther from the center of gravity. According
to this partition strategy, each v; € B;, is mapped by /;
to its matching subset. Z;; is the cardinality of the subset
BF that contains v;. We follow [5, 15] method for graph
convolution using polynomial parametrization and define a
normalized adjacency matrix A of the hand’s joints by

A=A"3(A+ A2, )

where I is the identity matrix representing self connec-
tions, A is the adjacency matrix representing the connec-
tions between joints, and A is the normalization matrix,
where A;; = Y j A;j. Therefore, A is the normalized ad-

jacency matrix, where its non diagonal elements, i.e., flij
where ¢ # j indicate whether the vertex v; is connected to
vertex v;. Using eq.l and eq. 2 we define our spatial non-
local graph convolutional (Figure 2) operation as

out - Zkaank?’ (3)

where K, is the total number of subsets and is equal to 3 in
our case. Wy, is a set of learned parameters, and S is the
input feature map. Inspired by [33], we construct Dk by
Dy, = W2 (O (Ap)T - @7 (Ap)GE (Ar)) + A, ¥
where superscript S denotes spatial domain. @3, 07,
and G are trainable 1D convolutions. These convolutions

operate on the graph and embed their input into a lower-
dimensional space, where an affinity between every two fea-

tures is calculated. W,f is a trainable 1D convolution used
to re-project the features to the higher dimensional space
of A,. We use eq. 4 to apply self-attention on the input
signal to enhances the meaningful connections between the
features of its input Ay, especially the long-range ones. To
construct the input signal A, we adopt a similar approach
to [25] and define Ak to be

Ak:AkJerJer, 5)

where A}, is the normalized adjacency matrix of subset k ac-
cording to eq. 2. This matrix is used for extracting only the
vertices directly connected in a certain subset of the graph.
By, is an adjacency matrix with the same size as A initial-
ized to zeros. Unlike flk, By, is learnable and optimized
along with all other trainable parameters of the model. By,
is dictated by the training data, and therefore, it can in-
crease the model’s flexibility and make it more suitable for
a specific given task. C, is the sample’s unique graph con-
structed by the normalized embedded Gaussian that calcu-
lates the similarity between all vertices pairs according to

Ci = softma:z:((Wk1 SL)TW,? Z-i), (6)
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Figure 4. Single stream StyleNet architecture. Input is consists of the 21 coordinates of the hand’s joints, while for each joint, we provide
a 2D location and a confidence level of its location per frame. The blue lines represent the joints’ spatial connections, while the green
lines represent the joints’ temporal connections. (N,Ch,T,V) Placed under the layers denote Batch size, the number of channels, temporal
domain length, and V denotes the joint’s index and represents a vertex in the graph, respectively. As for the fully connected layers, N

denotes the batch size, and C is the dataset’s number of classes.

where W;! and W} are trainable parameters that embed the
input features to a lower-dimensional space, softmax used
for normalizing the similarity operation’s output and super-
script S’ denotes spatial domain. C}, is somewhat related
to Dy, in the way they are both constructed. The main dif-
ference is that C is generated by the input features alone,
while Dy, is generated using the input features, the learned
adjacency matrix By, and the normalized adjacency matrix
fik. We use the non-local operation on the addition of flk,
By and CY, to exploit the information from all three matri-
ces. This information enables the spatial block to permute
more meaningful information forward, which contributes to
the model’s discriminative ability.

4.2. Temporal Domain

To better exploit the time domain, we place a temporal
unit after each spatial GCN unit for better processing longi-
tudinal information. We define X to be X = Conv(F5,,),
where C'onv is 2D convolution with kernel size of 9 x 1
and F5, is the spatial unit output. A temporal non-local
operation is applied on X according to

FL, = Wi(07(X)" - 04(X)) - Ga(X) + X, (D)

where 7' denotes the temporal domain. Unlike the spatial
non-local operation, here ®7, © 7, and G 7 are trainable 2D
convolutions, since they process the temporal domain and
not part of the graph. These convolutions are used to embed
their input into a lower-dimensional space. Similarly, W is
a trainable 2D convolution used to re-project the features to
the higher dimensional space of X . The temporal non-local
operation is used for two reasons: First, to better utilize the
temporal information regarding the same joint in different
places in time. Second, to construct the temporal relations
between the different joints through the temporal domain.

4.3. Downsampling Unit

We further apply a downsampling unit before the clas-
sification layer. This unit receives the last temporal
unit’s output and downsamples each channel into a single
value instead of using max or mean pooling. It is con-
structed from [fully-connected,batch-normalization,fully-
connected] layers and shared among all channels. The ben-
efit of using this sampling method is that it enables our
model to learn summarizing each channel into a single value
while minimizing the loss of essential features. StyleNet ar-
chitecture for one stream is presented in fig. 4.

4.4. Joint decision

Encouraged by the work of [25], we adopt their two-
stream approach and introduce StyleNet. This ensemble
model consists of one stream that operates on the joints lo-
cation, and the other that operates on the bone vectors. The
final prediction is constructed according to

prediction = « - OQutput joints + B - Output ones, (8)

where both « and 3 are trainable parameters that decide on
each stream weight for the final prediction. This weighting
method increases the model’s flexibility since the training
data itself determines the weight of each stream. We en-
semble the bones data by subtracting pairs of joints coordi-
nates that are tied by a connection in the graph. Therefore,
the bones data is a differential version of the joints data, i.e.,
the high frequencies of the joints data.

5. Experiments

Since there is no dataset for the suggested task, we cre-
ated 80Typing2 and 60Typing10 datasets for the evaluation
of our model. We compared our model with other skeleton-
based action classification models using these datasets un-
der various test cases, simulating user identification, and
continuous user identification tasks. In 5.1 we present our
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[4,2,4] [3,2,5] [2,2,6]
Model Acc(%) Model Acc(%) Model Acc(%)
HCN [18] 91.98 HCN [18] 84.16 HCN [18] 79.53
STGCN [35] 97.09 STGCN [35] 97.21 STGCN [35] 94.94
3sARGCN [27] 95.8 3sARGCN [27] 93.6 3sARGCN [27] 91.35
PBGCN [29] 98.9 PBGCN [29] 98.6 PBGCN [29] 96.94
2sAGCN [25] 99.04 2sAGCN [25] 98.82 2sAGCN [25] 97.97
StyleNet 99.84 StyleNet 99.77 StyleNet 99.5

Table 1. Test accuracy of user classification on unseen sentences on 60Typingl0. [, 3, ~] denotes number of sentences for train, validation

and test, respectively

new datasets and our main experiments results presented
in 5.2 and 5.3. We evaluate our model under challeng-
ing scenarios such as noisy input data 5.4 and presents
the skeleton-based approach superiority over RGB modal-
ity in 5.5. In 5.6, we provide an additional evaluation us-
ing 3D input data taken from How We Type dataset [§]. In
the supplementary material, we provide our implementation
and training details, and present an ablation study which an-
alyzes the contribution of each of our components.

In all experiments, we split our data between train, vali-
dation, and test sets randomly according to the experiment’s
settings for an accurate evaluation of the models. Each input
video consists of 32 sampled frames from the entire video.
We tested each trained model for tens of times and set its ac-
curacy according to all tests’ mean accuracy. It is crucial to
evaluate each trained model several times since we sample
only 32 frames and not use the entire video.

5.1. 80Typing2 and 60Typingl0 datasets

We present two new datasets created for typing style
learning for person identification task. The datasets
recorded using a simple RGB camera with 100 fps
for 80Typing2 and 80 fps for 60Typingl0. No special light-
ing was used, and the camera’s position remained fixed
through all videos. No jewelry or any other unique clues
appear in the videos. Both men and women, as well as right
and left-handed, appear in the dataset. All participants were
asked to type the sentences with their dominant hand only.
We chose sentences that use a large variety of keyboards
letters to encourage hand movement.

80Typing2 dataset consists of 1600 videos of 80 par-
ticipants. Each participant typed two different sentences,
and each sentence was repeated ten times. This setting’s
main purpose is simulating a scenario where a small num-
ber of different sentences and many repetitions from each
sentence are provided. As each person encounters a chang-
ing level of concentration, typing mistakes, distractions, and
accumulated fatigue, the variety in the typing style of each
participant is revealed among a large number of repetitions
of each sentence. Therefore, this dataset deals with classify-
ing a person under intra-sentence varying typing style, i.e.,
changing motion patterns of the same sentence, and inter-

person changing level of typing consistency. Additionally,
this dataset can suggest a scenario in which a model learns
on one sentence and needs to infer to another sentence it
never saw during training.

60Typing 10 dataset consists of 1800 videos of 60 partic-
ipants. Each participant typed ten different sentences, while
each sentence was repeated three times. Unlike 80Typ-
ing2, 60Typing 10 setting’s purpose is simulating a scenario
where a large number of different sentences, as well as a
small number of repetitions from each sentence, are pro-
vided. The large abundance of different sentences, i.e.,
different motion patterns, reveals each participant’s unique
typing style. At the same time, the small amount of rep-
etitions supports each participant’s variance in the typing
style. Therefore, this dataset deals with the classification of
a person under inter-sentence varying motion patterns, and
for the model to generalize well to sentences it never saw
during training, it must learn to classify each person by his
unique typing style, i.e., learn to classify the different peo-
ple according to their unique typing style.

5.2. User classification on unseen sentences

In this experiment, we simulate a test case of continuous
user identification by testing our model’s ability to infer on
unseen sentences, i.e., different motion patterns. We split
our data by sentence type and let the model train on a certain
set of sentences while testing performed on a different set of
sentences which the model never saw during training, i.e.,
different types of sentences the user typed. Therefore, to
perform well, the model must learn the unique motion style
of each person.

The experiment performed on 60Typing 0 as follows, we
split our data in three ways, wherein each split a different
number of sentences is given for training. We randomly
split our data by sentences to train, validation, and test sets
according to the split settings. We applied the same division
to all other models for legitimate comparison. For 80Typ-
ing2, we randomized the train sentence, and the other sen-
tence divided between validation and test where two repeti-
tions were used for validation and eight for test.

Results for this experiment on 60Typingl0 and 80Typ-
ing2 appears in table 1 and 2, respectively. Our model out-
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Model Acc(%) on unseen  Acc(%) on seen

HCN [18] 94.18 99.66
STGCN [35] 93.59 99.64
3sARGCN [27] 91.08 99.44
PBGCN [29] 95.98 99.84
2sAGCN [25] 96.88 99.85
StyleNet 99.57 99.98

Table 2. 80Typing?2 test accuracy of user classification on unseen
and seen sentences.

performs all other compared models by an increasing mar-
gin as less training sentences are provided, which indicates
our model’s superior generalization ability.

5.3. User classification on seen sentences

In this experiment, we simulate a test case of user iden-
tification (access control by password sentence) by test-
ing our model’s ability to infer the same movement pat-
terns, i.e., sentences, he saw during training and other repe-
titions of these patterns. We use a large number of sentence
repetitions to test the robustness to the variance in the typ-
ing style by simulating a scenario where a small amount of
different motion patterns, i.e., sentence type, is given along
with a substantial variance in these patterns resulting from
a large number of repetitions.

This experiment is performed by dividing 80Typing2’s
ten repetitions of each sentence as follows: five for train,
one for validation, and four for test. We trained each model
on the train set and tested its accuracy on the seen sentences
but unseen repetitions.

According to the experiment’s results, which appears in
table 2, it is clear that this specific task is not complex and
can be addressed by other methods. However, it proves
that our models’ extra complexity does not harm the per-
formance in the simpler “password sentence” use cases.

5.4. Noisy data

The skeleton-based approach is dependent on a reliable
joints detector that extracts the joint’s location from each in-
put frame. To challenge our model, we experimented with a
scenario similar to 5.2 (the more challenging task simulat-
ing continuous user identification), where during inference,
the joints detector is randomly failing and providing noisy
data, i.e., incorrect joints location.

We trained all models as usual, while during test time, we
randomly zeroed (z,y, score) data of a joint. The amount
of joints that zeroed is drawn uniformly among [0,1,2],
while the decision of which joint values to zero is random,
but weighted by each joint tendency to be occluded, e.g.,
the tip of the thumb’s joint has a higher probability of be-
ing drawn than any of the ring fingers which tend less to be
occluded while typing.

@24 [B25] [22.0]
Model Acc(%)  Acc(%)  Acc(%)
ACN 18] 5787 5346 45.06
STGCN [35] 7003 683  60.61
3SARGCN [27] 7136 6935  67.92
PBGCN [29] 8396 8275 804

2sAGCN [25] 73.33 71.34 68.83
StyleNet 91.79 87.57 85.24
Table 3. Test accuracy for noisy data experiment on 60TypingI0.
Training conducted as usual, but during test time, we randomly
zeroed joint (x, y, score) to simulate a situation where the data is
noisy or some joint’s location is missing. [a, 3, ] denotes number
of sentences given for train, validation, and test, respectively

According to the experiment’s results in table 3, our
model is much more robust to noisy data. The non-local
approach helps the model rely less on a particular joint and
provides a more global analysis of the typing style, which
increases the model’s robustness in cases of noisy data.

5.5. Uncontrolled environment

In this experiment, we compared our method with VAC
RGB-based methods in an uncontrolled environment sce-
nario. Even though RGB based methods perform well in
a controlled environment, their performance tends to de-
crease severely under alternating scene properties such as
lighting and noise. Even though data augmentation can
increase these methods robustness to challenging environ-
mental conditions, it is impossible to simulate all possible
scenarios. Therefore, using an RGB-based approach in real-
world scenarios tends to fail in the wild. Therefore, we
explored our method’s robustness under challenging envi-
ronmental conditions to verify the skeleton-based approach
superiority in the task of typing style learning for person
identification.

We performed this experiment in a similar manner to 5.2,
but with some differences. We trained each model using
data augmentation techniques such as scaling, lighting, and
noise. Later, during test time, we applied different data aug-
mentations, e.g., different lighting, and noise models, than
those used during training on the input videos.

Results for this experiment appear in table 4. While all
the compared methods achieved a high accuracy rate under
a controlled environment, their accuracy rate dropped in an
uncontrolled environment scenario. Our method’s perfor-
mance did not change except for a slight decline of less than
0.5% in its accuracy rate. It is much easier to train a joint
detector to operate in an uncontrolled environment since it
locates the joints by the input image and the hand context
altogether. Unlike the image appearance, the hand context
is not dependent on the environment. Therefore, the joints
localizer can better maintain its performance under varying
conditions, making our pipeline resilient to this scenario.
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[4,2,4] Acc(%) [3.2,5] Acc(%) [2,2,6] Acc(%)

Model Controlled env. Uncontrolled env. Controlled env. Uncontrolled env. Controlled env. Uncontrolled env.
13D [3] 99.68 63.12 99.75 59.16 99.7 62.30
T3D [6] 98.85 56.89 99.01 54.67 98.64 54.06
StyleNet 99.84 99.59 99.77 99.57 99.5 99.17

Table 4. Test accuracy for uncontrolled environment experiment on 607ypingl0. RGB models trained with data augmentation while during
test time, a different set of augmentations applied. [«, 3,~] denotes the number of sentences for train, validation, and test, respectively.
env. denotes environment

Model [5,10,35] Acc(%) [10,10,30] Acc(%) [15,10,25] Acc(%) [20,10,20] Acc(%)  [25,10,15] Acc(%)
HCN [18] 92.46 96.27 97.3 98.32 93.82
STGCN [35] 95.72 97.92 98.24 98.79 98.96
3sARGCN [27] 94.7 97.76 98.08 98.56 98.89
PBGCN [29] 98.51 99.07 99.48 99.61 99.7
2sAGCN [25] 97.75 98.33 98.73 98.96 99.01
StyleNet 99.46 99.48 99.51 99.58 99.79

Table 5. Test accuracy of user classification on unseen sentences on How We Type using 3D input data. [a, (3, ] denotes the number of

sentences for train, validation and test, respectively

Model [5,10,35] Acc(%) [10,10,30] Acc(%) [15,10,25] Acc(%) [20,10,20] Acc(%) [25,10,15] Acc(%)
StyleNet 2D 99.41 99.47 99.54 99.59 99.78
StyleNet 3D 99.46 99.48 99.51 99.58 99.79

Table 6. Test accuracy of user classification on unseen sentences on 60Typingl0 when using 3D or 2D input data. [«, 3,] denotes the

number of sentences for train, validation, and test, respectively.

5.6. 2D Vs. 3D data

In this experiment, we evaluate our model using 3D in-
put data, and explore the trade-off between 3D and 2D input
data. We used How We Type dataset [8] that contains 3D
coordinates of 52 joints from both hands and a total of 30
different persons, where each person typed 50 sentences.
Overall, we tested five different splits of the data, where
each split contains a different number of training sentences.
We randomly divided the data between training, validation,
and test in a similar manner to 5.2 according to the parti-
tioning setting of each split. We repeated this scheme sev-
eral times for an accurate assessment of the model’s perfor-
mance.

(c) 3" subset

(b) 2" subset

Figure 5. Adjacency matrices of two hands. Each matrix is built
by diagonally concatenating two replicas of its one-hand version.

(a) 1% subset

We used 21 out of 26 joints for each hand for consis-
tency with all other experiments and followed [35] partition
strategy, which was mentioned in the paper. Figure 5 con-

tains the adjusted adjacency matrix that enables our model
to learn the unique dependencies between the joint of both
hands. When we tested our model with 3D coordinates as
input, z axis data replaced the score input. Therefore, each
frame data consist of 42 (x, y, z) coordinates of joints from
both hands.

The results for this experiment appear in table 5, where
we can see that even though our model trained on only 10%
of the entire data, it achieved a high accuracy rate and out-
performed all other models. Results for the trade-off be-
tween 2D and 3D input data appear in table 6. According to
the results, we can see that our model achieves similar per-
formance when provided either with 2D or 3D input data.
Unlike other tasks where the model benefits from the 3™
dimension, it seems unneeded in this task.

6. Conclusions

We introduced StyleNet, a novel new architecture for
skeleton-based typing style person identification. Moti-
vated by [33], we redesigned the spatial-temporal relation-
ships allowing for a better longitudinal understanding of
actions. StyleNet evaluated on the newly presented 80Typ-
ing2 and 60Typingl0 datasets and outperformed all com-
pared skeleton-based action classification models by a large
margin when tested in the presence of noisy data and out-
performed when tested under controlled conditions.
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