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Abstract

DeepFakes detection approaches have to be agnostic
across generation type, quality, and appearance to provide
a generalizable DeepFakes detector. Limited generalizabil-
ity will hinder wide-scale deployment of detectors if they
cannot handle unseen attacks in an open set scenario. We
propose a generalizable detection model that can detect
novel and unknown/unseen DeepFakes using a supervised
contrastive (SupCon) loss. As DeepFakes can resemble the
original image/video to a greater extent in terms of appear-
ance and it becomes challenging to secern them, we propose
to exploit the contrasts in the representation space to learn
a generalizable detector. We further investigate the features
learnt from our proposed approach for explainability. The
analysis for explainability of the models advocates the need
for fusion and motivated by this, we fuse the scores from
the proposed SupCon model and the Xception network to
exploit the variability from different architectures. The pro-
posed model consistently performs better compared to the
single model on both known data and unknown attacks con-
sistently in a seen data setting and an unseen data setting,
with generalizability and explainability as a basis. We ob-
tain the highest accuracy of 78.74% using proposed SupCon
model and an accuracy of 83.99% with proposed fusion in
a true open-set evaluation scenario where the test class is
unknown at the training phase. The paper also aligns with
reproducible research by making the code available 1.

1. Introduction
DeepFakes 2 can be used for a variety of purposes, such

as pure entertainment applications to targeted identity at-
tacks [5, 61, 64]. However, the barriers to the creation of
convincing DeepFakes in terms of required computer capa-

1https://github.com/xuyingzhongguo/deepfake_
supcon

2DeepFakes in this article refers to family of different fake creation ap-
proaches such as FaceSwap (FS) [3], DeepFakes (DF) [2], NeuralTextures
(NT) [62] and Face2Face (F2F) [63].

Figure 1: Illustration of DeepFakes detection models as
open-set problem.

bilities, specialised knowledge, and other resources, such as
training data, are constantly decreasing, making successful
use of disinformation attacks ever more likely.

Face manipulation techniques have evolved from ap-
proaches needing manual effort ( for instance, Adobe Pho-
toShop) to approaches needing minimal training [3, 1].
The recent advancements in Generative Adversarial Net-
works (GANs) along with the availability of GPUs have
now led to the creation of completely artificial yet hyper-
realistic content which can highly challenge human ob-
servers [70, 40, 65, 29, 30, 8, 10]. Complementing the ap-
proaches for generation, a number of approaches for detect-
ing DeepFakes have been proposed exploiting artifacts, in-
consistencies in images and discontinuity in video [37, 44,
17, 16, 25, 50, 31, 21, 24, 13, 51, 39].

Despite the high quality of DeepFakes, with careful
scrutiny one can observe that the generated images and
videos present certain artifacts that can help in detecting
the manipulated content. A number of DeepFakes detection
approaches have been proposed using artifact clues from
DeepFakes [37, 44, 17, 16, 25, 50]. Many approaches rely
on looking at inconsistencies of videos [31, 21], change
of temporal and spatial information [54], frequency infor-
mation [24, 13, 51, 39] or audio inconsistencies [47, 34].
Most of these works extract the features using either hand-
crafted mechanism (for instance, texture features like Lo-
cal Ternary Patterns (LTP) [58], Local Binary Patterns
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(LBP) [49], Scale-Invariant Feature Transform (SIFT) [41])
or deep features (Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN)), GAN [28]) followed by
learning a classifier.

DeepFakes detection can be posed as a closed set prob-
lem where the training and testing data are drawn from the
same label and feature spaces, for instance, detecting im-
ages created using FaceSwap [3] based on training with the
same. However, given the rapid progress of generation ap-
proaches, the detectors should be equipped to detect un-
known/unseen testing data which can emerge from differ-
ent labels and feature spaces. In the context of DeepFakes
detection, this can be parallel to detecting FaceSwap when
the detector is trained on Face2Face, making it an open
set problem. DeepFakes detection approaches have focused
heavily on detecting and classifying known attack types in
closed-set classification. However, newer DeepFakes gen-
eration mechanisms make the detection algorithms unreli-
able and non-generalizable by degrading the performance
of the detector [27, 6] as no exception to machine learning
based classifiers. A simple illustration of this problem is
shown in Figure 1. The reasons behind the failure of de-
tection models towards unseen content can, to some extent,
be attributed to different generation principles, which often
result in different data distributions, feature spaces, and ap-
pearance properties of images or videos.

Pristine Deepfakes Face2Face FaceSwap NeuralTextures

Figure 2: Sample face images from different attacks of
FaceForensics++ dataset used in this work. The first column
presents the pristine (non-manipulated) frames and four
other columns present from DeepFakes (DT), Face2Face
(F2F), FaceSwap (FS) and NeuralTextures (NT) respec-
tively.

Posing DeepFakes detection as an open set problem and
noting limited works in this direction, we assert the need for
a generalizable detection approach for making reliable de-
cisions on unknown/unseen generation types in addition to
known/seen generation types. While we note that the ma-
nipulation type can influence the feature space based on dif-
ferent approaches, we also assert that the real images exhibit
a different feature space, which often can be trusted to de-

sign a detector 3. Thus, we propose to exploit the contrasts
between non-manipulated images against a set of manipu-
lated images in an attempt to generalize the detector towards
unknown manipulation types or unseen data. We specif-
ically employ Supervised Contrastive (SupCon) Learning
to guide the detector to classify the non-manipulated im-
ages efficiently and at the same time differentiate the ma-
nipulated images using FaceForensics++ dataset [53] con-
sisting of four different manipulation types such as Deep-
Fakes (DF) [2], FaceSwap (FS) [3], Face2Face (F2F) [63]
and NeuralTextures (NT)[62]. Examples taken from this
dataset are shown in Figure 2. The proposed approach is, in
addition, benchmarked against four different state-of-the-
art models such as Convolutional LSTM based residual net-
work - CLRNet [60], Transfer learning-based Autoencoder
with Residuals (TAR) [35], Generalized Zero and Few-Shot
Transfer approach [7] and Xception network [15]. Further,
analyzing the features learnt from each proposed approach,
we look at explaining the efficiency of the model. Trying
to explain the efficiency of the two top-performing models,
we also discover the complementarity of the features, sug-
gesting a solid motivation for fusion. We, therefore, make
three key contributions:

• New Approach: A new approach exploiting the con-
trastive feature space between non-manipulated and ma-
nipulated images is proposed for DeepFakes detection. To
the best of our knowledge, the proposed Supervised Con-
trastive (SupCon) learning is the first work exploring the
idea of contrastive learning tested on the publicly avail-
able FaceForensics++ dataset consisting of four different
types of attacks.

• Generalizability: Considering the generalization aspect
of the proposed approach, we report the results in a true
open-set scenario by using three known manipulation
types for training and one unknown type for testing. The
proposed approach is evaluated on all combinations of
known-training and unknown-testing sets, where the re-
sults positively affirm the proposed approach.

• Explainability: In an attempt to explain the performance
obtained from the model, we analyze the features from
a visual aspect using the Heatmap visualization and Uni-
form Manifold Approximation and Projection (UMAP)
both of which corroborate the initial assertion. Motivated
by the observations, we identify the complementarity of
our proposed model with another top-performing model
based on Xception. We resort to a weighted score level
fusion of the proposed SupCon and Xception models to
provide a generalizable and explainable model.

3The feature space may vary across spatial resolutions and on other
factors such as noise, capture conditions. We treat this as out of scope in
this work as we focus on publicly available datasets.
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In the rest of the paper, we present a set of related works
in Section 2 and a brief explanation of contrastive learn-
ing in Section 2.3. The proposed approach is further de-
tailed in Section 3 and 5 along with the rationale for the
approach. We provide an analysis on explainability in Sec-
tion 4 with the set of experiments and results on generaliz-
ability detailed in Section 6. Towards the end of the article,
we present the limitations of the current work and conclu-
sions with potential future works in Section 7 and 8, re-
spectively.

2. Related Works
2.1. DeepFakes Detection

Several types of deep networks have been used for Deep-
Fakes detection over the last few years. A general ap-
proach is to detect visible artifacts in the image or video
of the face, and the methods following this approach high-
light specific failures in the generation process that does
not faithfully reproduce real face details helping in detec-
tion [37, 44, 38, 36, 45, 38, 52]. A number of papers have
employed Convolutional Neural Networks (CNNs) based
methods for detecting such artifacts [42, 43, 68, 53, 23,
48, 22, 9]. Another set of approaches were specifically
designed explicitly taking into account the temporal direc-
tional changes in videos [31, 54, 21]. Two-stream net-
works [71, 11, 56, 66], combining two different kinds of
features for detection and classification tasks, are also gain-
ing more popularity on this topic. Other focuses have been
put on the frequency domain [24, 14, 51], as well as GAN
fingerprints [70, 40, 65, 29, 30, 8].

2.2. Limitations in Generalization of DeepFakes De-
tection

While a number of works are proposed for detecting
DeepFakes, the most noted works in the previous sec-
tion correspond to closed-set experiments where the train-
ing and testing set corresponded. Minimal works have
tried to address the problem of generalization of Deep-
Fakes detection [7, 60, 59, 33, 35]. These works have fo-
cused on domain adaptation and transfer learning to mini-
mize the task of learning parameters in an end-to-end man-
ner [7, 60, 59, 33, 35]. Cozzolino et al. [18] proposed
ForensicTransfer where the generalization aspect was stud-
ied using a single detection method for multiple target do-
mains. Transfer learning-based Autoencoder with Resid-
uals (TAR) [35] proposed recently employs the residuals
from auto-encoders to address the generalizability. Despite
the limited works, we note the best accuracy in an open-
set testing scenario results in 82.73%, 64.69%, 49.74% and
55.59 using Xception network for DF, F2F, FS, and FT
while TAR achieves 75.25%, 72.90% and 51.65% on DF,
F2F, FS. However, the experimental protocols in Lee et
al. [35] do not consider all subsets of DF, F2F, FS, and FT

in training and testing sets, making it not a pure open-set
problem.

2.3. Contrastive Learning and DeepFakes Detection

Contrastive learning focuses on learning the common
features between instances of the same kind and distin-
guishing the differences between different types of sam-
ples. Contrastive learning only needs to learn to distinguish
the data in the feature space of the abstract semantic level,
making the models attractive. Fung et al. [26] used unsu-
pervised contrastive learning to address DeepFakes detec-
tion as an attempt towards generalization across datasets.
However, Fung et al. [26] did not fully exploit the label
information following an unsupervised setting. We, how-
ever, note that using class information to determine whether
images belong to the same category is crucial to make the
features of similar pictures close to each other. With this in
the backdrop, we assert the usefulness of supervised con-
trastive loss [32] as a suitable approach for the generaliza-
tion task. To the best of our knowledge, we explore Su-
pervised Contrastive (SupCon) learning for the first time to
address DeepFakes detection using Efficient-B0 [57] as the
backbone and simultaneously achieve generalization.

3. Generalizable DeepFakes Detection using
SupCon

The key idea of our method is to employ Supervised
Contrastive (SupCon) learning to solve the generalization
problem of DeepFakes detection. We first provide the fun-
damentals of Contrastive Learning for the convenience of
the reader before providing the details of the proposed ap-
proach as illustrated in Figure 3.

3.1. Contrastive Learning

For data point x, the goal of contrastive learning is to
learn features f(x) such that

score(f(x), f(x+)) >> score(f(x), f(x−)) (1)

where x+ is a data point similar to x, referred to as a pos-
itive sample and x− is a data point dissimilar to x, referred
to as a negative sample.

The fundamental working of contrastive learning can be
formulated as a score function. This score is a metric that
measures the similarity between two features. A simple
framework for contrastive learning of visual representations
(SimCLR) [12] was proposed to build a self-supervised con-
trastive model.

This contrastive learning strategy suits our goal of the
generalization problem to discriminate DeepFakes from
non-manipulated real visual media (images/videos). How-
ever, the learning strategy in Equation 1 cannot be directly
employed as it does not consider the category information
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to determine whether images belong to the same class. We,
therefore, reformulate the loss in a supervised manner rather
than a self-supervised approach. Seeking a suitable solu-
tion, we adopt supervised contrastive (SupCon) loss [32] in
our proposed approach, considering the class/category/label
information.

3.2. Learning a Classifier for DeepFakes Detection

Given an input batch N of data x in X ∈ RD, data aug-
mentation is applied twice to obtain two identical copies
of the batch. We employ four different implementations of
the data augmentation module: AutoAugment [19], Ran-
dAugment [20], SimAugment [12], and Stacked RandAug-
ment [67] as recommended in earlier work [32] to make
the learning robust and invariant to noisy data. Both copies
are further forward propagated through the encoder f(·) to
obtain a normalized embedding. During training, this in-
termediate representation h is further propagated through
a projection network g(·) that would be discarded at infer-
ence time. The supervised contrastive loss is computed on
the outputs of the projection network. The learnt represen-
tation from the output of the network is further used to learn
a classifier. Furthermore, we employ Efficient-B0 [57] for

SupCon
Final 

Scores

𝑥!"

ℎ!"

Encoder
𝑓(·)

𝑥#"

ℎ#"
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ℎ#$
...
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Real
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Training 
data

Figure 3: Framework for proposed approach using SupCon
for DeepFakes detection. The intermediate representation
of each input data produced through SupCon is further fed
into a classifier. The score obtained from the classifier is
then used to determine the pristine nature of image.

the encoder network f(·) to significantly reduce the over-
head of computation and yet retain the performance bene-
fits. The normalized activations of the final pooling layer
are used as the representation features for our proposed ap-
proach.

We further train a linear classifier on the learned repre-
sentations using a cross-entropy loss that can differentiate
pristine/non-manipulated images against manipulated im-
ages. For a set of N randomly sampled sample and la-
bel pairs, {xℓ, yℓ}k=1...N , the corresponding batch used for
training consists of 2N pairs, {x̃ℓ, ỹℓ}k=1...2N , where x̃2k

and x̃2k−1 are two random augmentations of xk(k = 1...N)
and ỹ2k = ỹ2k−1 = yk. The loss function for supervised

contrastive learning is defined as:

Lsup =

2N∑
i=1

Lsup
i

Lsup
i =

−1

2Nỹi
− 1

2N∑
j=1

1[i ̸=j] · 1[ỹi ̸=ỹj ]·

log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)

(2)

The supervised contrastive loss is an enlargement of the
self-supervised contrastive loss as seen from Equation 2
where the supervised contrastive loss expands the number
of positive pairs of x̃i such that all sub-data with the same
label are regarded as positive pairs. Equation 2 calculates
the weighted average of the similarities between x̃i and all
positive pairs.

4. Explainable Analysis of DeepFakes Detec-
tion : What makes SupCon Usable?

We analyse the proposed approach founded on theoreti-
cal assertions for explainability. We provide the analysis on
the basis of two different approaches where the first anal-
ysis is conducted using heatmaps [55] and second analysis
is conducted using Uniform Manifold Approximation and
Projection (UMAP) [46]. While heatmaps allow a better vi-
sualization of what has been learned by the network, UMAP
provides topology explanations of the learnt features.

Figure 4 presents the heatmaps corresponding to the last
layer of the proposed SupCon overlaid with different kinds
of DeepFakes (DF, F2F, FS, and NT). We note that the Sup-
Con focuses on the silhouette on the face region where the
manipulation exists. Our assertion of the SupCon applica-
ble to DeepFakes detection is corroborated through visual
analysis. Furthermore, we also do a similar analysis on the
Xception network as presented in Figure 4. Noting from
the visual analysis, it is evident that the Xception network
focuses on the regions inside the face region such as fore-
heads, eyebrows, and eyes. The focus of heatmaps on dif-
ferent areas of the face region clearly suggests the comple-
mentarity of the networks. The analysis thus forms the basis
for our proposed approach of fusion as explained further in
Section 5.

We further present UMAP analysis in Figure 5 using
the features extracted from the penultimate layer (before
the classifier). We employ a model trained using pristine
images and images from F2F, FS, and NT to conduct this
analysis. The purple dots correspond to the manipulated
images and the red ones correspond to the pristine images
in Figure 5. As noted from this analysis, the features from
SupCon are mixed and spread across, while the UMAP for
Xception indicates clear boundaries between pristine and
manipulated images. We further concatenate the features
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Pristine DF F2F FS NT

Xception

SupCon

Figure 4: Heatmap for visualization of feature importance
comparison from proposed Xception (top) and SupCon
(bottom) mode.

from both models, which makes the features of the manipu-
lated images to cluster in the middle, indicating the impact
on classification. However, considering the feature spaces
of different networks exhibiting different properties, it can
be asserted that the feature level fusion needs detailed anal-
ysis. We thus resort to fusing the scores from the networks
to benefit from the complementary nature of the two net-
works as discussed in the section below.

5. Fusion of SupCon and Xception

As different architectures learn different features, one
can deduce the complementary nature of the features learnt
and decisions made. Xception [15] has been reported to
perform well for the DeepFakes detection task in the state
of the art while our proposed approach learns different fea-
tures. Motivated by such observations and backed by the
explainability analysis provided in Section 4, we propose to
fuse these two networks to obtain a better decision. We re-
sort to using the decision scores fusion from each network
due to the reasons discussed in the prior section. Further-
more, as the scores may be ideal for different tasks due to
the nature of learning and to maximally use the scores from
each network, we propose to employ a weighted fusion of
the final score from the last activation layer. The architec-
ture of our proposed fusion for DeepFakes detection is pre-
sented in Figure 6.

Considering the final scores [s0, s1, s2, s3] from SupCon

where s0, s1, s2 s3 is the prediction score for pristine (non-
manipulated) and three known DeepFakes. Further, assert-
ing the nature of cross-entropy loss, which provides high
score to a particular class, we select the maximal score from
the set of scores corresponding to manipulated images as a
candidate 4 for fusion as below:

sreal = s0

sfake = max (s1, s2, s3)

Similarly, we obtain the final scores from Xception model
as xreal and xfake. Enforcing a linear combination of
scores to obtain a final score freal and ffake for real
and manipulated images respectively, we formulate the
weighted combination using weights for proposed SupCon
model as ws and Xception model as wx, we get our final
fusion scores freal and ffake.

freal + ffake = 1[
fsreal
fsfake

]
= ws ×

[
sreal
sfake

]
+ wx ×

[
xreal

xfake

]
(3)

We adopt Greedy optimization of weights ws and wx to
maximize the detection accuracy based on empirical trials
as explained in the section below.

6. Experiments
To validate the proposed approach, we employ the Face-

Forensics++ consisting of 1000 original videos and cor-
responding number of manipulated videos consisting of
1000 videos for each of the subsets - DeepFakes (DF) [2],
Face2Face (F2F) [63], FaceSwap (FS) [3] and NeuralTex-
tures (NT) [62]. We choose c23 compression videos for our
experiments balancing the size and quality of the videos 5.
We extract the frames from each of the videos resulting in
150000 total images, first 30 frames for each video.

As our experiments are focused on detecting the manip-
ulated face region alone, we detect and crop the face region
using Multi-task Cascade Convolutional Neural Networks
(MTCNN) [69]. We allow loose cropping of the face region
to capture the entire silhouette of the face region against the
tight cropping. The detected faces were further resized to
a standard size of 224 × 224 pixels for use in SupCon and
299 × 299 pixels for use in Xception network to match the
input sizes of the Efficient-B0 and Xception networks.

6.1. Experimental Protocol

The total set of videos from each set of pristine and ma-
nipulated sets are separated into 600, 200, 200 for train-
ing, validation, and test in a disjoint and non-overlapping

4One can also use a linear combination of different scores.
5All the experiments were conducted on Python 3.6 environment with

two GPUs on Ubuntu OS with one NVIDIA GRID V100D-8Q with 8GB
of RAM and another combination of two NVIDIA TU102 with 16GB of
RAM for training SupCon. We adopted the Pytorch framework [4] for
developing Deep Learning models.
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Figure 5: UMAPs of features for Supcon, Xception and fusion models. The purple dots correspond to manipulated images
and the red ones correspond to pristine images.
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weight:	𝑥!"

weight:	𝑠!"

Figure 6: Framework for proposed approach using score
level fusion of SupCon and Xception scores for DeepFakes
detection.

manner. Considering the problem of open-set classifica-
tion where the testing videos are unseen, we employ the
pristine (original) videos and three manipulated videos in
training for each case and retain one unused manipulated
set as the unseen/unknown set. Thus, the results are re-
ported on four different combinations: (i) Original + Deep-
Fakes + Face2Face + FaceSwap referred as (DF + F2F +
FS), (ii) Original + DeepFakes + Face2Face + NeuralTex-
tures referred as (DF + F2F + NT), (iii) Original + Deep-
Fakes + FaceSwap + NeuralTextures referred as (DF + FS
+ NT), (iv) Original + Face2Face + FaceSwap + NeuralTex-
tures (F2F + FS + NT). We, therefore, report the results as
Closed-Set-Classification (CSC) Accuracy and True-Open-
Set-Classification (TOSC) Accuracy where the first metric
is an accuracy metric when the test class is seen during the
training, and the second metric corresponds to a pure open-
set case when the test class is unseen at training. Further-
more, we also report the Open-Set-Classification (OSC) ac-
curacy taking into account the combined accuracy when the
unknown data is tested with known train classes.
• Closed-Set-Classification (CSC) Accuracy: For a set

of n known DeepFakes classes in the training set, say
df1, df2, . . . dfn and real videos r, let TPi, TNi, FPi, and
FNi respectively denote the true positive, true negative,
false positive, and false negative for the i-th Closed Set
Class, where i ∈ {1, 2, ..., C} and C ∈ r, df1, df2, . . . dfn
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Figure 7: CSC and OSC accuracy obtained from proposed
SupCon model.

denotes the number of known classes in training and test-
ing, we can obtain the following CSC as:

CSC =

∑C
i=1(TPi + TNi)∑C

i=1(TPi + TNi + FPi + FNi)
. (4)

• True-Open-Set-Classification (TOSC) Accuracy: A
trivial modification of the above metric in the unknown
test setting can be obtained by simply setting the open
set class to known training classes. Let TPi, TNi, FPi,
and FNi respectively denote the true positive, true neg-
ative, false positive, and false negative for the i-th Open
Set Class, where i ∈ {1, 2, ..., C, C + 1} and C denotes
the number of known classes in training and the test class
is represented by C + 1. As long as the test class C + 1
is classified as a manipulated class when the test class
is manipulated and non-manipulated class otherwise, the
TOSC can be presented as:

TOSC =

∑C
i=1(TPi + TNi)∑C

i=1(TPi + TNi + FPi + FNi)

where ⇐⇒ C + 1 ⊂ {1, 2, ..., C}.
(5)
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Table 1: Classification results (CSC and OSC) obtained from the proposed SupCon model trained on three known attack
classes in the training set and one unknown attack class in the testing set. *Indicates TOSC where the test class is not
employed in the training set.

Train Classes
Test F2F + FS + NT DF + FS + NT DF + F2F + NT DF + F2F + FS
Class CSC OSC CSC OSC CSC OSC CSC OSC
DF - 78.74* 90.70 92.59 92.86 94.14 95.24 95.54
F2F 92.03 92.58 - 58.82* 93.11 93.70 95.72 96.14
FS 92.81 92.91 92.26 92.36 - 47.55* 96.52 96.57
NT 86.09 86.86 85.51 87.55 86.24 88.76 - 54.61*

SupCon model trained on three known attacksXception trained on three known attacks Fusion model trained on three known attacks

F2F+FS+NT DF+FS+NT DF+F2F+NT DF+F2F+FS F2F+FS+NT DF+FS+NT DF+F2F+NT DF+F2F+FS F2F+FS+NT DF+FS+NT DF+F2F+NT DF+F2F+FS
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Figure 8: OSC of Xception, SupCon and Fusion model trained with three known attacks.

• Open-Set-Classification (OSC) Accuracy: If TU and
FU respectively denote the correct and false reject for
unknown classes, OSC can be defined as:

OSC =

∑C
i=1(TPi + TNi) + TU∑C

i=1(TPi + TNi + FPi + FNi) + (TU + FU)
.

(6)

6.2. Results: Proposed SupCon Model

We first present the baseline results of closed-set clas-
sification in Table 1, along with the open set classification
accuracy to empirically validate the proposed approach of
SupCon for DeepFakes detection. As noted from Table 1,
the proposed approach performs with more than 93.47% av-
erage accuracy on all closed datasets with an exception to
NT, where the accuracy results in around 85.94% on aver-
age. The same results are also presented in Figure 7 for
the ease of reading. While the results are not surprising,
given that the supervised contrastive learning has shown
its potential in other applications [32], the obtained results
in closed set experiments validate the potential of super-
vised contrastive learning for detecting DeepFakes. Fur-
thermore, as noted from the open set classification results in
Table 1, the accuracy in detecting DF as an unknown class
in 78.74% in the true unknown class setting (TOSC), while
the same accuracy drops to 58.82%, 47.55% and 54.61% for
F2F, FS and NT respectively. However, the combined accu-
racy (OSC) when the unknown test class is combined with
the known training class improves consistently, indicating
no deterioration of the proposed approach for known test
classes. Such a scenario is expected in real-life cases where
the performance of the known classes need to be maintained
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(a)�F2F�FS�NT
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(b)�DF�FS�NT
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Figure 9: ROC curve for fusion model trained on various
combinations (noted on the top) of training classes. AUCs
noted in the brackets in legend.

while detecting unknown classes and the proposed approach
fits the criteria in few potential applications.

We further validate the proposed approach against Xcep-
tion provided in Table 2, and the same is illustrated in Fig-
ure 8 for providing the reader with a state-of-the-art com-
parison 6. As noted from Table 2, we note the accuracy
of proposed approach is comparable against the Xception
model.We exit the training of the proposed approach after
30 epochs and we hypothesize that more epochs would re-
sult in performance gain due to learning better contrasts.
This aspect, however, shall be studied in future works.

6The detailed evaluation of other state-of-the-art approaches are pro-
vided in supplementary materials on this link due to page constraints
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Table 2: Test accuracy (in %) of proposed SupCon model,
Xception and proposed fusion model. Highlighted rows in-
dicate TOSC accuracy where the reported test class is not in
training set and blue arrows denote increase in accuracy as
compared to either of the models trained independently.

Training Test SupCon Xception Fusion
Class Class (Proposed) (Proposed)

F2F
+ FS
+ NT

DF 78.74 82.73 83.99 ↑
F2F 92.58 93.21 94.36 ↑
FS 92.91 93.31 94.74 ↑
NT 86.86 91.88 92.45 ↑

DF
+ FS
+ NT

DF 92.59 94.71 95.44 ↑
F2F 58.82 64.69 64.69
FS 92.36 94.71 95.39 ↑
NT 87.55 90.17 91.82 ↑

DF
+ F2F
+ NT

DF 94.14 94.26 95.31 ↑
F2F 93.70 93.49 94.69 ↑
FS 47.55 49.74 49.77 ↑
NT 88.76 90.88 91.82 ↑

DF
+ F2F
+ FS

DF 95.54 97.79 97.95 ↑
F2F 96.14 97.91 98.04 ↑
FS 96.57 98.20 98.29 ↑
NT 54.61 55.59 55.59

6.3. Results: Proposed Fusion

Table 2 presents the results obtained from the proposed
fusion approach in comparison to the proposed SupCon
model and Xception model. As it can be noted, our fu-
sion model consistently performs better than a single model,
while reaching at-least the lower bound of the performance
of Xception model in three cases (not accompanying ↑).
The obtained results with a consistent gain indicate the com-
plementarity of our proposed approach in improving the
generalizability. We further present the Receiver Operating
Characteristic (ROC) curves of the proposed fusion model
to indicate the overall performance in Figure 9.

6.4. Comparison with State-of-the-art Methods

We further benchmark our proposed approaches against
four other state-of-the-art works which address the open-set
problem in DeepFakes detection to provide a fair bench-
mark. Specifically, we benchmark our approach against
a convolutional LSTM based residual network - CLR-
Net [60], Transfer learning-based Autoencoder with Resid-
uals (TAR) [35], Generalized Zero and Few-Shot Transfer
approach [7] and Xception network [15]. As noted from
the Table 3, the proposed approach provides either better
performance or, in some cases, provides comparable per-
formance compared to existing works. While a higher accu-
racy is noted from Lee et al. [35], they adopt a different pro-
tocol by using one known class for training and testing one
unknown class. While our proposed method is promising
as they have a consistent performance with other state-of-
the-art methods, our approach performs better than existing
methods. For instance, FS has the lowest accuracy results
on all of these models, while DF obtains the highest detec-

tion accuracy. The lower performance of FS is worse than
the random guess, and this needs to be further investigated
in future works.

Table 3: TOSC Accuracy obtained on the unknown classes
from various state-of-the-art approaches against proposed
approaches.

Model DF F2F FS NT

CLRNet [60] 50.12 53.73 50.00 69.75
TAR [35]
(Lowest
/Highest)

75.25
(50.8/

99.70)†

72.90
(50.0/

75.30)†

51.65
(50.1/

52.20)†
-

DDT [7] 78.82 - - 64.10
Xception [15]* 82.73 64.69 49.74 55.59
SupCon(Ours) 78.74 58.82 47.55 54.61
Fusion(Ours) 83.99 64.69 49.77 55.59

* Our implementation of the method. † indicates the results not directly
comparable to our approach as the best accuracy is reported on one-known-
training-class and NT was not employed in any training.

7. Limitations of Current Work
While simple score level fusion provides promising re-

sults in our work, it is necessary to study the feature level
fusion and feature selection approach in future works to
mitigate the shortcomings in generalization performance.
Specifically, the proposed approaches, along with the Xcep-
tion model fail to generalize well in three cases of true open
set protocols (F2F, FS, and NT, with the performance of
FS being the lowest). This can be, to a certain degree, at-
tributed to the fact that the FS works on swapping the face
region including the silhouette (as shown in Fig 4). Em-
ploying the complete scene information, the background, or
looking at temporal differences in the video frames can fur-
ther improve the performance and this has to be studied in
future works.

8. Conclusion
There is an imperative need for a generalized DeepFakes

detection method to deal with the newer manipulation meth-
ods in visual media. We have presented a DeepFakes de-
tection method based on supervised contrastive learning
to provide a generalizable and explainable model. Using
the explainability as the basis, we have further proposed
a fusion model using Xception architecture. Experiments
conducted on publicly available FaceForensics++ dataset
demonstrate the potential of our method and show compara-
ble performance against state-of-the-art generalized Deep-
Fakes detection algorithms. Future works on developing the
idea need to investigate the cross-database performance for
DeepFakes detection, analyse different architectures for the
SupCon model, and investigate the feature level fusion of
the complementary networks.
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