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Abstract

Scene graph generation (SGG) methods extract relation-
ships between objects. While most methods focus on im-
proving top-down approaches, which build a scene graph
based on detected objects from an off-the-shelf object de-
tector, there is a limited amount of work on bottom-up ap-
proaches, which jointly detect objects and their relationships
in a single stage.

In this work, we present a novel bottom-up SGG approach
by representing relationships using Composite Relationship
Fields (CoRF). CoRF turns relationship detection into a
dense regression and classification task, where each cell of
the output feature map identifies surrounding objects and
their relationships. Furthermore, we propose a refinement
head that leverages Transformers for global scene reason-
ing, resulting in more meaningful relationship predictions.
By combining both contributions, our method outperforms
previous bottom-up methods on the Visual Genome dataset
by 26% while preserving real-time performance.

1. Introduction
Human perception goes beyond object detection and

recognition. It involves understanding the relations and con-
text of a visual scene. A complete representation of an image
can be described using a scene graph: a structure that extracts
relationships between objects and contains rich semantic in-
formation about the scene. Extracting this structure is known
as Scene Graph Generation (SGG). This structure has proven
to be an effective representation for different computer vi-
sion tasks such as image captioning [85, 86], visual question
answering [24], action recognition [23], and scene synthe-
sis [10, 25]. In a scene graph, objects are represented as
nodes, and the relationships between them are modeled as
directed edges between the nodes. Each edge and its two
corresponding nodes can also be represented by a triplet
<subject, predicate, object>. Both the subject and object are
described by a bounding box and specific object category,
while the predicate is only described by the category.

Figure 1: Our proposed Composite Relationship Fields.
We present a bottom-up scene graph generation method that
leverages Composite Relationship Fields (CoRF) to produce
meaningful relationships. The CoRF visualized in the figure
represent the relationship looking at indicating that the per-
son is looking at the sign.

Researchers have typically tackled this problem with top-
down approaches [84, 12] that require a two-stage pipeline:
(1) an object detector that detects the different objects in
the scene [59], from which a fully-connected scene graph is
built, and (2) a relationship predictor that predicts the rela-
tionship edge between every pair of objects. Since objects
and predicates are not predicted simultaneously, and relation-
ship prediction is performed for every pair of objects, the
computation cost increases quadratically with the number of
objects. This renders top-down approaches inefficient with
low inference speed. Given that SGG is not necessarily the
final task and the scene graphs are often used as a semanti-
cally rich intermediate representation for other downstream
tasks[23, 46], the inference speed of the downstream task is
bounded by the low speed of top-down SGG methods.

Recently, there have been inspiring bottom-up ap-
proaches [55, 47] aiming to address the above limitation
by predicting the complete scene graph in one step. They
eliminate the need to build a fully-connected graph by di-
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rectly predicting the relationships and objects in a single step.
They are based on the success of keypoint-based methods for
human pose detection. Since both object and predicate de-
tection are performed on the whole input image, bottom-up
methods can encode contextual information from the whole
scene. Furthermore, predicting the scene graph in a single
step enables a more efficient method for SGG, which is crit-
ical for accelerating downstream tasks that benefit from a
semantically meaningful representation of a scene. However,
the gap in accuracy between top-down and bottom-up meth-
ods remains high. In this work, our goal is to reduce the gap
by proposing a new bottom-up method that outperforms ex-
isting bottom-up approaches on Visual Genome by 26% on
scene graph detection (SGDet), paving the way to real-time
execution of downstream tasks that rely on SGG.

One crucial observation pertaining to scene-graph con-
struction is that the subject and object are highly indicative
of their corresponding relationship [93]. For example, know-
ing that the subject is a ‘person’ and the object is a ‘horse’,
it is highly probable that the relationship is ‘ride’ and not
‘wear’. This shows that a correlation exists between the
objects and their relationships. To leverage this correlation,
top-down approaches include different refinement techniques
that use the information extracted from the object detector,
such as object categories and bounding boxes, to improve
relationship prediction[81, 38]. Existing bottom-up meth-
ods do not explicitly leverage such correlation since both
objects and relationships are predicted simultaneously rather
than sequentially. Although bottom-up methods can benefit
from contextual information as they can reason on the whole
scene, current approaches [55, 47] rely on convolutional neu-
ral networks (CNNs) that exhibit small effective receptive
fields [51]. By analyzing the contribution of each input pixel
to the receptive field of a CNN’s output, it has been shown
that a specific feature’s response is strongest at the center of
its receptive field and decays quickly the farther the input
signal is from its center [51]. This means that a specific
output location might not be able to capture information that
is far away, and thus, previous bottom-up models can suffer
when relating objects that are far away from each other.

In this paper, we address the limitations of bottom-up ap-
proaches to improve scene graph generation while maintain-
ing their main advantage, efficiency. Inspired by association
fields [30], we first introduce a novel bottom-up approach
that uses Composite Relationship Fields (CoRF) to represent
relationships between objects and generates a scene graph
in a single forward pass. We then propose a new refinement
head for bottom-up SGG methods that leverages the Trans-
former architecture [72] to reason about all objects in the
scene while benefiting from the global image. This provides
a mechanism for bottom-up methods to leverage the correla-
tion that exists between the objects and their relationships.

Specifically, we present the following contributions:

• We show that Composite Relationship Fields (CoRF)
can effectively represent relationships between objects,
leading to richer relationship representations and a sig-
nificant boost in relationship detection.

• We propose a new Transformer-based refinement head
for bottom-up SGG methods that enables global scene
reasoning, further improving relationship prediction.

Our method, Composite Relationship Fields with a
Transformer-based refinement head, outperforms the state-
of-the-art bottom-up methods [47]. It also shows strong
generalization capabilities, outperforming existing bottom-
up methods on zero-shot recall by 50%. Code is available at
https://github.com/vita-epfl/SGG-CoRF.

2. Related Work
Top-down methods for SGG. Top-down methods are
methods that first use an object detector or region proposal
network (RPN) [59] to detect the objects in the scene and
build an initial fully-connected graph where each edge refers
to a relationship. Then, a representation of each edge is used
to predict the relationship or even if a relationship exists.
These methods mostly focus on refining the representations
of the relationships and objects using iterative message pass-
ing [81, 7, 77] and graph neural networks [12, 65, 44]. Subse-
quent methods further introduce other refinement techniques
to include global context of the scene [78]. Some methods
focus on reducing the number of initial edges to improve
efficiency [84, 50] while others focus on dealing with the
biased distribution of scene graph datasets [36, 83, 34, 45].

While the above methods reason on visual information
only, including image segmentation [26], there are also a
range of top-down methods that leverage extra information,
e.g., from language or knowledge graphs [15, 57, 89, 62,
18, 95, 87, 98, 19, 88, 90, 91, 21, 49, 68, 37, 11] or from
prior dataset statistics [93, 96, 63, 52, 17]. GPS-Net [43]
addresses the direction of the relationship and the long-
tailed distribution of relations. Similarly, the Knowledge-
Embedded Routing Network (KERN) [5] creates a knowl-
edge graph and uses message passing to address the predicate
class imbalance. MotifsTDE [67] devises a method that han-
dles biased training data using Total Direct Effect (TDE).
Other frameworks of SGG produce different types of scene
graphs such as 3D scene graphs [2, 79, 94, 73], dynamic
scene graphs [6, 71, 39] and topic scene graphs [76].

Bottom-up methods for SGG. In recent work, FC-
SGG [47] extends the Parts Affinity Fields (PAF) introduced
in OpenPose [3] to encode the relationships between objects.
Our approach extends the association fields [30] that have
shown better performance than PAFs in keypoint estimation
due to their high precision regression as well as their ability
to predict associations between overlapping instances. The
latter is crucial for scene graph generation since some objects
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Figure 2: Model overview. Our method uses Transformers to refine the feature map from a backbone for object and
relationship detection. Relationship detection is done using Composite Relationship Fields (CoRF). The decoder takes as input
the detections and relationships to form the complete scene graph.

such as “eyes” and “head”, or “person” and “shirt” might
overlap at the same output position. The association between
such close objects will not be detected by FCSGG. Pixels
to Graphs by Associative Embedding (Px2Graph) [55] is an-
other bottom-up method that uses a generic embedding space
to form associations between the predicate and the subject
and object. Px2Graph, and other one-stage methods [35, 70],
are still unable to run in real-time which prevents them from
being used for down-stream applications.

Bottom-up methods for Human-Object Interaction.
Human-object interaction (HOI) [27, 16] is a closely-related
task to SGG where the subject of a relationship is a human
and the relationship is restricted to interactions (e.g., rid-
ing, holding). Certain bottom-up strategies in HOI [40, 75]
predict the humans and objects as keypoints in the scene in
addition to a vector indicating the association between them.
Since SGG contains more types of relationships (e.g., spatial,
interaction) and between any two objects, we make use of
the denser CoRF which enables us to reason on different
features in the scene for more complex relationships.

Transformers in vision The Transformer architecture[72]
first proposed for sequence-to-sequence translation has re-
cently seen many applications in computer vision. In partic-
ular, recent works use it either as a standalone backbone [13]
or in a hybrid CNN + Transformer architecture to refine fea-
ture maps [4, 100, 60]. Such architectures have been applied
to many visual tasks, such as classification [13, 48], detec-
tion [4, 14], semantic segmentation [58, 97], tracking [53],
pose estimation [33] and human-object interaction [101, 28].

3. Method

This work focuses on improving relationship prediction
between various objects in the scene. To this end, we propose
a computationally efficient bottom-up method for SGG based
on composite fields for relationship prediction.

Our overall architecture is shown in Figure 2. It consists
of (1) a backbone network that extracts a feature map, (2)
an object detection head, and (3) a relationship detection
head. Each head consists of a Transformer encoder followed
by a 1 × 1 convolutional layer. More specifically, let I ∈
R3×H×W be the input image of width W and height H . The
image is passed to the backbone network (e.g., ResNet-50)
and a feature map F ∈ RC×H

s ×W
s is extracted, where C is

the number of channels and s is the output stride, set to 16 in
our experiments. The extracted feature map is then passed
to the object and relationship detection heads.

3.1. Object Detection

We employ the one-stage anchor-free CenterNet [99] as
the object detector, similar to FCSGG [47]. CenterNet has
shown high performance on the widely-used MSCOCO [42]
object detection dataset. Given feature map F extracted
from the backbone, the object detection head outputs three
feature maps: (1) a heatmap Ĥo indicating the centers and
categories of the objects, (2) a center offset to deal with
the precision error caused by the output stride, and (3) the
objects’ width and height. Details about CenterNet and its
implementation can be found in the appendix.

3.2. Composite Fields for Relationship Detection

The main challenge in bottom-up methods for scene graph
generation is to directly group objects that have a relation-
ship. Px2Graph [55] uses associative embeddings to ob-
tain these groupings, while FCSGG [47] uses affinity fields
inspired from Parts Affinity Fields [3]. Motivated by the
success of composite fields introduced by Kreiss et al. [29]
and their applicability to different tasks such as keypoint
estimation and tracking [30, 92] and attribute detection [54],
we introduce Composite Relationship Fields (CoRF) to de-
tect relationships between objects, illustrated in Figure 3.
For each cell of the relationship head’s feature map, CoRF
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(a) (b)

Figure 3: Illustration of the CoRF for the predicate throwing: (a) shows the confidence of the activated region and (b)
shows the vectors originating from each activated cell. The blue and green vectors are vs and vo pointing to the subject and
object, respectively. The confidence score is high in the area between the two related objects.

predicts the existence of a relationship as well as the position
of the subjects and objects involved if the cell is situated
between the subject and object. To do so, for each possible
predicate, the relationship head outputs a confidence score,
two vectors pointing to the subject and the object, respec-
tively, and a scale for both the subject and the object. Thus,
at every location (i, j) and channel p of the feature map out-
putted by the relationship head, CoRF can be represented by:
apij = [c, xs, ys, xo, yo, ss, so]

p
ij where c is the confidence

for predicate p, (xs, ys) and (xo, yo) are the vector compo-
nents indicating the position of the subject and object relative
to position (i, j) in the feature map, and ss and so are the
scales of the subject and object. The scale is specified as
one-tenth the minimum of the width and height of the cor-
responding bounding box. Therefore, the relationship head
outputs a vector of size 7 · |p| for each cell of the feature map,
with |p| the number of possible predicates. As a result, our
model predicts multiple relationships at the same location.

3.3. Feature Refinement with Transformers

When using CoRF, each cell of the feature map has to
identify objects around it and then reason about the rela-
tionships between them. Cells must also to determine their
relative position to these objects in order to point to them.
This task is further complicated by the fact that some rela-
tionships span the entire image, which requires the cell to
identify far-away objects. For these reasons, we propose
using a Transformer encoder [72] to refine features as it
has several desirable properties: (1) With multi-headed self-
attention, each cell can query its surroundings and attend
to multiple objects at once. (2) Positional encodings can
be used to determine the relative position between objects
and the cells. (3) Unlike convolutional layers, self-attention
layers are global and can thus attend to objects regardless of
their distance from the cell.

Our refinement head works in the following way: we

project the feature map to the Transformer dimension d
and then flatten it. Next, we add positional encodings to
the flattened features to preserve spatial information before
feeding it into the Transformer. Finally, we reshape the
output tokens into an image-like map which is passed to a
1× 1 convolutional layer to obtain the final prediction.

As Transformers have been shown to be effective at refin-
ing features for object detection [4, 66], we add an identical
Transformer encoder to the object detection head.

Transformer architecture. We use a Transformer encoder
with six layers of width d = 256, each with eight attention
heads and a pointwise MLP with one hidden layer of width
8d. This encoder has been shown to be effective at refining
features while still being lightweight [4].

Positional encodings. We use fixed sinusoidal positional
encodings similar to [4, 1], to which we concatenate the
absolute position values. This positional encoding is then
projected to the Transformer dimension d and added to the
input features. We did not observe any performance gains
from using learnable 1D and 2D positional encodings.

3.4. Training Supervision

The confidence heatmaps are trained using a modified
focal loss, while the vectors, offsets, box size, and scales are
trained using l1 loss. The focal loss used is a variant that
modulates the loss based on the ground-truth heatmap [32].
For a ground-truth heatmap H and a predicted heatmap Ĥ ,
the modified focal loss is as follows:

LFocal = − 1
N

∑
c,y,x

{
(1− Ĥc,y,x)

α log(Ĥc,y,x) if Hc,y,x = 1
(1−Hc,y,x)

β Ĥα
c,y,x log(1− Ĥc,y,x) otherwise.

where N is the number of activated feature cells in the
heatmap, and α and β are hyperparameters set to 2 and 4,
respectively. The remaining output maps are trained using
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an l1 loss. The final loss is the equal sum of all the losses
from both the detection and relationship head.

3.5. Scene Graph Decoding

To build the scene graph, we first extract the top 100
objects predicted by our object detector head. Extraction
is done by performing a 3× 3 max-pooling operation over
the predicted heatmap Ĥo to extract the top 100 peaks. The
location of peaks indicates the center of an object. It also
indicates the detection confidence for the category of the ob-
ject. At the location of every peak, we obtain both the offset
and bounding box size (width and height) from the feature
maps predicted by the object detection head. The offset is
used to restore the precision error lost during downsampling.

The second step extracts the relationships between the de-
tected objects using the CoRF predicted by our relationship
head. We first extract the relationships with a confidence
score higher than a specific threshold τ , i.e., only the fields
with c > τ = 0.1 are considered. Given the detected objects,
the next step is to identify which objects form the subject
and object of a relationship, i.e., finding the closest object to
each of the CoRF subject (xs, ys) and object vectors (xo, yo).
This is done by computing a weighted ℓ2 norm between the
location of every detected object and every predicted CoRF
vector. For instance, the object that is located closest to the
subject vector of a specific relationship is considered as the
subject of the relationship. More specifically, at output posi-
tion (i, j), the ℓ2 norm between object b at center position
(xc, yc) and CoRF subject vector (xs, ys) or object vector
(xo, yo) is weighted by the confidence score c as follows:

ℓ2(rij ,b) =
1

c

∥∥(xc, yc)− [(i, j) + (xs/o, ys/o)]
∥∥
2
.

The ℓ2-norm decreases with higher c to favor objects with
higher confidence scores. We add (i, j) to the CoRF vec-
tor components (xs/o, ys/o) in the above equation to con-
vert them from relative to absolute position. Although our
method allows relationships between the same object, we
eliminate such cases since there is no such scenario in the
Visual Genome [31] dataset.

3.6. Discussion

RAF vs. CoRF. Composite Relationship Fields are used
to associate the subject and object involved in a relationship.
Compared to the Relationship Affinity Fields (RAF) used
by FCSGG [47], CoRF does not suffer from discretization
error since it predicts a real-value vector pointing towards the
components in a relationship. To illustrate, Visual Genome
(VG) has 150 object categories, including the ‘nose’, ’hair’,
and ‘head’ category. The center of these categories can be
very close in the image. Since the backbone downsamples
the input image, the center of these categories might overlap
at a specific cell in the grid-based output feature map. If

a relationship ‘on’ exists between the ‘hair’ and ‘head’ in
an image, RAF will point from the ‘hair’ center to the cell
where both the center of the head and nose lie. This leads
to a wrong relationship prediction between ‘hair’ and ‘nose’
(<hair, on, nose>). CoRFs can accurately point to either the
nose or head since the vector does not point to a specific cell
but to a real-value point which is the object’s exact position
in the input image. Consequently, CoRF allows association
between objects in the same output cell, such as the nose
and head. This enables CoRF to work with low-resolution
feature maps.

4. Experiments
4.1. Dataset & Training Details

Visual Genome dataset. We evaluate our method on Vi-
sual Genome (VG) [31], a publicly-used dataset for scene
graph generation. We use the most common preprocessed
subset of VG-150 [81], which includes the most frequent
150 object categories and 50 predicate categories.

Technical details. We report results with a convolutional
backbone: ResNet-50 [20], and a Transformer backbone:
Swin-S [48]. These backbones are pretrained on ImageNet
[61] and modified to output a feature map of stride 16. De-
tails about the architecture and training procedure are pro-
vided in the appendix.

4.2. Evaluation

We follow the standard evaluation protocols used to mea-
sure the performance of an SGG method:
• Scene Graph Detection (SGDet): detect object bounding

boxes, categories, and relationships.

• Scene Graph Classification (SGCls): given object bound-
ing boxes, detect the categories and relationships.

• Predicate Classification (PredCls): given object bounding
boxes and categories, detect relationships.

Since the ground-truth annotations are incomplete, Re-
call@K is adopted as the evaluation metric, where only the
top K relationship predictions are considered. We also report
the results following the No-Graph Constraint setting (ng-
R@K) [93], where multiple relationships can exist per object
pair. We further report the mean recall@K (mR@K) [5, 69]
since the distribution of relationships has a long tail. To
study the generalization capabilities of our model, we also
report the zero-shot performance, which evaluates the recall
on subject-object relationships not found in the training set.

In PredCls and SGCls settings, the relationship head
should only be evaluated for its ability to classify the rela-
tionship and both object and relationship, respectively. Our
relationship head not only predicts the categories of rela-
tionships but also the locations of the subject and object,

56



PredCls SGCls SGDet

Method Backbone GT AP0.5 R@50 ng-R@50 R@50 ng-R@50 R@50 ng-R@50 img/sec

To
p-

do
w

n Graph R-CNN [84] VGG16 [64] ✓ 23.0 54.2 – 29.6 – 11.4 – 5∗

Seq2Seq [50] VGG16 [64] ✓ – 66.4 83.6 38.3 46.9 30.9 30.9 –
BGNN [36] RNXt101-FPN ✓ – 59.2 – 37.4 – 31.0 – 1.8

B
ot

to
m

-u
p Px2Graph [55] Hourglass-104 [56] ✓ – 54.1 68.0 21.8 26.5 8.1 9.7 0.2

CoRF + T+ [Ours] RN50 ✓ 21.9 60.5 78.8 28.6 36.1 16.5 20.2 22
CoRF + T+ [Ours] Swin-S ✓ 24.7 60.2 78.5 30.5 38.8 18.6 22.9 15

B
ot

to
m

-u
p

FCSGG [47] HRNet-W48 [74] ✗ 25.0 31.0 40.3 17.1 19.6 15.5 18.3 13
FCSGG [47] HRNet-W32 [74] ✗ 21.6 34.9 46.3 15.5 19.3 15.1 18.2 14
FCSGG [47] RN50-FPN×2 ✗ 23.0 35.8 44.7 17.7 20.6 15.7 18.0 25

CoRF [Ours] RN50 ✗ 19.6 42.3 53.9 14.8 18.3 14.5 17.6 30
CoRF + T [Ours] RN50 ✗ 21.9 44.4 56.8 17.2 21.3 16.5 20.2 22

CoRF [Ours] Swin-S ✗ 23.8 44.8 56.9 17.5 21.6 17.9 22.0 20
CoRF + T [Ours] Swin-S ✗ 24.7 45.4 58.1 18.7 23.4 18.6 22.9 15

Table 1: Recall@50 for graph (R@50) and no-graph constraint (ng-R@50) on Visual Genome [31] The top section shows
the performance of methods that use ground-truth information in the model under the PredCls and SGCls protocol. Methods in
the bottom section do not use ground-truth information. GT: ground-truth detections used in the model under PredCls and
SGCls. RN50 = ResNet50[20]. RNXt101 = ResNeXt101[80]. FPN = Feature Pyramid Network [41]. FPN×2: separate FPNs
are used for detection and relationship. +: GT detections given as tokens to the Transformer. We report the best performing
top-down visual only method (Seq2Seq) and a few others for compactness. A complete table is included in the appendix.
CoRF + T has a Transformer encoder in both heads. Inference speed is measured on a Nvidia GeForce GTX 1080 Ti GPU,
with images of resolution 512× 512 and a batch size of 1 under SGDet protocol. ∗: input resolution is 800× 1024.

represented by the CoRF vector components. To compare
with previous work, especially top-down methods, we need
to provide our model with ground-truth object annotations.
We do this by providing ground-truth (GT) detections as
additional tokens to the Transformer modules in both the de-
tection and relationship head. For the SGCls protocol, only
the location and size of the objects are provided, while for
PredCls, we provide the location, size, and category. Details
on the implementation are in the appendix.

5. Results

Recall performance. We report Recall@50 performance
in Table 1. The top section of the table shows the perfor-
mance of methods that use ground-truth annotations in the
model under the PredCls and SGCls protocol, while the bot-
tom section includes models that do not. We further divide
the state-of-the-art models into bottom-up and top-down ap-
proaches. We report the performance of methods that are
relevant for comparison and only rely on visual information,
similar to our method. A complete table with other top-
down methods that also use external knowledge is available
in the appendix. The complete table also reports results for
Recall@20 and Recall@100 showing similar improvements.

As observed in the bottom section of Table 1, our method,
Composite Relationship Fields with Transformers (CoRF
+ T), significantly improves performance on both ResNet-

50 and Swin-S. First, we compare it to the state-of-the-art
bottom-up method, FCSGG with HRNet-W32, and show
our performance is 23% and 26% better for PredCls ng-
R@50 on ResNet-50 and Swin-S, respectively. This shows
that our relationship head with the Transformer refinement
learns better representations for relationship detection. Our
method and FCSGG do not use ground-truth annotations
under PredCls and SGCls. Moreover, our method achieves
a gain of 10% (ResNet-50) and 26% (Swin-S) on SGDet
ng-R@50 compared to FCSGG.

Since Px2Graph passes GT annotations to the model as
input when reporting performance under PredCls and SGCls
(Section 4.2), we also pass these annotations as tokens to the
Transformer module to fairly compare to it (top section of
Table 1). We outperform it by a large margin on the three
protocols going from 68.0 to 78.5 on PredCls (ng-R@50)
and 9.7 to 22.9 on SGDet (ng-R@50).

As shown in the top section of Table 1, our model (CoRF
+ T+) is on par with and even outperforms certain top-down
methods on PredCls while running in real-time. It is impor-
tant to note that the relationship head of top-down methods
only needs to perform classification without any regression
task since the objects are initially extracted, and the pre-
diction is performed for every pair of objects. Performing
such pairwise prediction simplifies the role of the head but
is the main reason why top-down methods are inefficient
and cannot be used in real-time applications. On the other
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PredCls SGCls SGDet

Method Backbone mR/ng-mR mR/ng-mR mR/ng-mR

To
p-

do
w

n

KERN [5] VGG16 17.7/– 9.4/– 6.4/–
MOTIFS-TDE [67] RNXt101-FPN 25.5/– 13.1/– 8.2/–
Seq2Seq [50] VGG16 26.1/– 14.7/– 9.6/–
PCPL [82] VGG16 35.2/50.6 18.6/26.8 9.5/10.4
DT2-ACBS [9] RN101-FPN 35.9/– 24.8/– 22.0/–

B
ot

to
m

-u
p

FCSGG HRNet-W32 5.5/9.7 2.5/4.4 2.4/3.6
FCSGG HRNet-W48 5.2/9.5 2.9/6.3 2.6/4.7
FCSGG RN50-FPN×2 5.7/11.3 2.9/6.0 2.7/4.9

CoRF RN50 8.1/17.0 2.7/5.4 2.7/5.8
CoRF + T RN50 9.5/20.0 3.4/6.8 3.5/7.6

CoRF Swin-S 9.3/19.2 3.3/6.9 3.5/7.9
CoRF + T Swin-S 10.1/21.7 3.9/8.3 3.9/9.2

Table 2: Mean recall performance. We compare mean
recall@50 for graph (mR) and no-graph (ng-mR) constraint
on Visual Genome [31]. CoRF has convolutions in both
heads. CoRF + T has a Transformer encoder in both heads.

PredCls SGCls SGDet

Method Backbone zsR/ng-zsR zsR/ng-zsR zsR/ng-zsR

To
p-

do
w

n VTransE-TDE [67] RNXt101-FPN 13.3/– 2.9/– 2.0/–
Motifs-TDE [67] RNXt101-FPN 14.4/– 3.4/– 2.3/–
VCTree-TDE [67] RNXt101-FPN 14.3/– 3.2/– 2.6/–
VCTree-TDE-EB [65] RNXt101-FPN 15.1/– 6.4/– 2.7/–

B
ot

to
m

-u
p

FCSGG RN50-FPN×2 8.2/11.7 1.3/2.4 0.8/1.0
FCSGG HRNet-W32 8.3/12.9 1.0/2.3 0.6 /1.2
FCSGG HRNet-W48 8.6/12.8 1.7/ 2.9 1.0/1.8

CoRF RN50 10.5/16.3 1.5/3.2 0.4/1.1
CoRF + T RN50 11.6/18.2 1.8/4.0 0.8/1.4

CoRF Swin-S 11.1/18.0 1.9/3.5 1.1/2.2
CoRF + T Swin-S 11.3/18.8 1.9/3.8 1.2/2.6

Table 3: Zero-shot performance. We compare zero-shot
recall@50 for graph (zR) and no-graph (ng-zR) constraint on
Visual Genome [31]. CoRF has convolutions in both heads.
CoRF + T has a Transformer encoder in both heads.

hand, the relationship head of bottom-up methods needs not
only to classify the type of relationship between objects but
also to output a representation indicating which objects are
related, similar to our CoRF or Px2Graph’s associative em-
beddings [55]. Nevertheless, our model successfully reduces
the gap between bottom-up and top-down methods without
compromising efficiency. We note that improving the de-
tection performance (AP0.5) by adding a Transformer to the
object head leads to further improvements in both SGCls
and SGDet. Nonetheless, assuming perfect object detection,
the significant improvements in PredCls compared to other
bottom-up methods show that our model, specifically our
relationship head, is able to encode relationships better.
Mean recall performance. We report the mean recall
results in Table 2. We significantly outperform previous
bottom-up approaches under all metrics, especially for Pred-
Cls. Our best model obtains a 77% and 92% improvement on
mR@50 and ng-mR@50 PredCls, respectively, compared to
FCSGG [47]. Similarly, we achieve a 44% and 88% increase
in SGDet performance. These results show that our model

can better deal with the long-tail distribution of the dataset
and still output relationships that do not frequently appear
in the training set. Our model better uses visual features to
understand the relationship between objects instead of mem-
orizing the most common relationship triplets. A complete
table with top-down methods is included in the appendix. It
is important to note that top-down methods in Table 2 apply
techniques such as sampling strategies, external knowledge,
etc., to specifically improve mean recall. These strategies
aid in distinguishing between visually close relationships,
such as laying on and lying on. These relationships are chal-
lenging for methods relying on visual-only input, similar to
our method and FCSGG [47].

Zero-shot performance. We report zero-shot performance
in Table 3. The results further motivate our method for its im-
proved generalization capabilities. CoRF paired with Trans-
formers allows the model to attend to and relate objects it has
not observed during training. Our method on Swin-S leads
to a 20% and 44% increase in SGDet for graph and no-graph
constraint, respectively, compared to FCSGG. Previous top-
down methods apply a debiasing technique (TDE [67]) to
improve their zero-shot metric, leading to unfair comparison.
We report these numbers for completeness. A complete table
is included in the appendix.

Inference speed. We show the inference speed of our
model in Table 1 (rightmost column). All models are tested
on a Nvidia GeForce GTX 1080 Ti GPU with an image size
of 512 × 512. Unlike top-down methods, all our models
maintain a real-time speed while improving performance
compared to previous bottom-up approaches. The inference
speeds of more top-down methods are reported in the ap-
pendix and show their inability to run in real time.

6. Ablation Studies
Impact of CoRF. We study the effect of CoRF by replac-
ing the Transformer in both heads with four 3 × 3 convo-
lutional layers, each separated by a Batch Normalization
layer [22] and a ReLU activation. The results are reported in
Table 1 (CoRF). For this ablation study, we do not provide
ground-truth annotations as tokens in PredCls and SGCls.
Since the fields mainly affect relationship prediction, we
report PredCls and observe an improvement of around 16%
in ng-R@50 with the smaller model, ResNet-50, compared
to the best performing FCSGG model. A significant im-
provement of 26% and 50% is also observed in zero-shot
and mean recall performance, respectively. This indicates
that CoRF, with its denser connections, allows the model to
better generalize to new relationships and is less affected by
the long-tail distribution of predicates in the training set. A
larger improvement is also observed when using Swin-S.

Impact of different relationship refinement heads. To
verify the benefits of Transformers for feature refinement,
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Figure 4: Attention maps of the relationship head’s Transformer. For a given reference point (yellow box), the attention
maps from all heads of the last self-attention layer are shown. Order of heads is arbitrary. Attention heads are able to attend to
the surroundings of the cell as well as far-away objects.

PredCls SGCls SGDet

Method AP0.5 R/ng-R R/ng-R R/ng-R

CoRF 19.6 42.3/53.9 14.8/18.3 14.5/17.7

CoRF + Deform 18.1 41.4/53.5 12.9/16.1 12.7/15.7
CoRF + S.Deform 19.2 41.5/53.4 14.2/17.9 14.3/17.4
CoRF + TR 19.4 43.5/56.0 14.9/18.7 14.3/17.5

CoRF + T 21.9 44.4/56.8 17.2/21.3 16.5/20.2

Table 4: Performance of different relationship refinement
heads. Ablation study showing the recall@50 of different
relationship refinement heads with ResNet-50 for graph (R)
and no-graph (ng-R) constraint. The different heads are
described in Section 6 and the appendix.

we replace the Transformer encoder in the object detection
head with four 3 × 3 convolutional layers, each separated
by a Batch Normalization layer [22] and a ReLU activa-
tion, and replace the Transformer encoder in the relationship
heads with different refinement heads. Table 4 shows the
performance when using deformable convolutions [8] and
supervised deformable convolutions, where the offsets of
three deformable convolutions are trained to attend to the
subject, object, and predicate of every relationship. CoRF +
TR uses a Transformer encoder only in the relationship head.
The different heads are detailed in the appendix.

As observed, using a Transformer encoder only for the
relationship head (CoRF + TR) leads to a gain of ∼ 2%
in PredCls, indicating its benefits to improving relationship
prediction. Adding the Transformer encoder to the object
detection head improves AP0.5 leading to improvements in
various metrics, specifically SGCls and SGDet.

Furthermore, in Figure 4, we show the attention maps of

the last self-attention layer of the relationship head, focusing
on specific locations in the image (yellow box). When con-
sidering a specific point (yellow box), the attention heads
focus not only on its local surroundings but also on different
objects in the scene, even distant objects. These qualitative
results further validate the usefulness of Transformers for
relationship detection, as they are able to effectively attend
to multiple objects to predict the relationships between them.
We note that these attention maps are specific to the Trans-
former in the relationship head, as such attentions maps are
different from the maps of the Transformer of the object
detection head, shown in the appendix, and the Transformer
of DETR [4], despite using similar architectures.

7. Conclusion

Scene graph generation enables a rich semantic and con-
textual understanding of a visual scene. Our work presents
a novel bottom-up SGG method representing relationships
as Composite Relationship Fields (CoRF). We further pro-
pose a Transformer-based refinement that can directly attend
to the subjects and objects involved in a relationship. Our
method outperforms other bottom-up approaches on the Vi-
sual Genome dataset. It is also on par with or even outper-
forms certain top-down methods while being more efficient.
Our contributions also help deal with rare or even unseen
relationships by the gain in mean and zero-shot recall. As
our method is able to perform in real time, our scene graph
representation can be leveraged to improve other real-time
tasks such as action recognition and image generation.
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