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Figure 1: We propose AVFR-GAN, a novel method for face reenactment. Our network takes a source identity, a driving frame,
and a small audio chunk associated with the driving frame to animate the source identity according to the driving frame. Our
network generates highly realistic outputs compared to previous works like [29] and [30]. Results from our network contain
significantly fewer artifacts and handle things like mouth movements, eye movements, etc. in a better manner.

Abstract

This work proposes a novel method to generate realis-
tic talking head videos using audio and visual streams. We
animate a source image by transferring head motion from
a driving video using a dense motion field generated us-
ing learnable keypoints. We improve the quality of lip sync
using audio as an additional input, helping the network to
attend to the mouth region. We use additional priors us-
ing face segmentation and face mesh to improve the struc-
ture of the reconstructed faces. Finally, we improve the vi-
sual quality of the generations by incorporating a carefully
designed identity-aware generator module. The identity-
aware generator takes the source image and the warped
motion features as input to generate a high-quality output
with fine-grained details. Our method produces state-of-
the-art results and generalizes well to unseen faces, lan-
guages, and voices. We comprehensively evaluate our ap-
proach using multiple metrics and outperforming the cur-
rent techniques both qualitative and quantitatively. Our
work opens up several applications, including enabling low
bandwidth video calls. We release a demo video and ad-
ditional information at http://cvit.iiit.ac.in/

research/projects/cvit-projects/avfr.

1. Introduction
Imagine your favorite celebrity giving daily news up-

dates, motivating you to work out, or interacting with you
on your mobile phone! What if a movie director could reen-
act an actor’s image without actually recording the actor?
Or, how about skilled content creators animating avatars in a
metaverse to follow an actor’s head movements and expres-
sions in great detail? We can also reduce zoom fatigue [11]
by animating a well-dressed image of ourselves in a video
call without transmitting a live video stream! These ideas
seem fictitious, infeasible, and not scalable. But, how about
animating or “reenacting” a single image of any person ac-
cording to a driving video of someone else? Face reenact-
ment, thus, opens up many opportunities in a world that is
becoming increasingly digital with each passing day.

Face Reenactment aims to animate a source image us-
ing a driving video’s motion while preserving the source
identity. Multiple publications have improved the quality of
the generations. Existing works on talking head generation
generally use a single modality, i.e., either visual[12, 29,
39, 40] or audio features[13, 37, 31]. Audio-driven talking
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head generation models are good at generating quality lip-
sync; however, they have a serious drawback in handling
non-verbal cues. The video-driven methods heavily rely on
the disentanglement of motion from the appearance [17].
These methods generally use key points as an intermedi-
ate representation [29, 12, 39] and try to align the detected
key points of source and driving frames. These works learn
key points in an unsupervised manner and fail to focus on
specific regions of the face. This stems from inadequate pri-
ors regarding the face structure or the uttered speech. The
final quality of the generations also suffers from using a ba-
sic CNN-based decoder that fails to capture the sharpness
present in the source image and generates blurred output
video. As a part of this work, we provide a detailed review
of different approaches in Section 2.

In this paper, we analyze the shortcomings of the current
works and add key modules to our network. We introduce
Audio-Visual Face Reenactment GAN (AVFR-GAN), a
novel architecture that uses both audio and visual cues to
generate highly realistic face reenactments. We start with
providing additional priors about the structure of the face in
the form of a face segmentation mask and face mesh. We
also provide corresponding speech to our algorithm to help
it attend to the mouth region and improve lip synchroniza-
tion. Finally, our pipeline uses a novel identity-aware face
generator to improve the final outputs. Our approach gener-
ates superior results compared to the current state-of-the-art
works, as shown in Section 4. We comprehensively evaluate
our method against several baselines and report the quanti-
tative performance based on multiple standard metrics. We
also perform human evaluations to evaluate qualitative re-
sults in the same section. Our proposed method opens a host
of applications, as discussed in Section 6, including one in
compressing video calls. Our work achieves more than 7×
improvement in visual quality when tested at the same com-
pression levels using the recently released H.266 [7] codec.

Our contributions are summarized as follows:
1. We use additional priors in the form of face mesh and
face segmentation mask to preserve the geometry of the
face.
2. We utilize additional input in the form of audio to im-
prove the generation quality of the mouth region. Audio
also helps to preserve lip synchronization, enhancing the
viewing experience.
3. We build a novel carefully-designed identity-aware face
generator to generate high-quality talking head videos in
contrast to the high levels of blur present in the previous
works.

2. Related Work
Talking head generation works can be broadly classified

in three categories based on the type of input they use to
generate a talking head: Text-driven [16, 33, 36], Audio-

driven [9, 13, 18, 31, 37, 43, 45], and Video-driven [12, 27,
29, 39, 44] Talking Head Generation.

Text-driven Talking-head Generation Text-driven nat-
ural image generation [25, 26] has recently seen a lot of
progress in the computer vision community. Inspired by
the recent success of GANs in generating static faces from
text[38], Li et al. [16] proposed a method to use text for
driving animation parameters of the mouth, upper face and
head. Txt2Vid [33] converts the spoken language and fa-
cial webcam data into text and transmits it to achieve low-
bandwidth video conferencing using talking head genera-
tion. However, this method relies heavily on the generated
speech, altering the original speaker’s voice, prosody, and
head movements in the video call. It depends on the quality
of the Speech-to-Text module, which introduces grammati-
cal errors and language dependency. Text as a medium has
very little information about the head and lip movements;
thus, we consider the problem ill-posed.

Audio-driven Talking-head Generation While text-
driven methods suffer from a significant lack of adequate
priors, we now move on to audio, a much more expres-
sive and informative form of input. As the name suggests,
audio-driven methods [9, 13, 18, 31, 37, 43, 45] use only
audio to animate a static face image. The first set of works
like You-said-that? [9], LipGAN [15] and Wav2Lip [24]
achieved lip synchronization with given audio but failed to
generate head movements in sync with the speech. These
works used fully convolutional architectures and generated
a single frame at a time without considering the temporal
constraints. Eventually, a different class of works start-
ing from Song et al. [31] in 2018 and Zhou et al. [43] in
2019, started using conditional Recurrent Neural Networks
to model the temporal characteristics of a talking face. In
2020, Zhou et al. [45] published a landmark work that pre-
dicted dense flow from audio instead of directly generating
the output video. The dense flow was then used to warp
the source image to generate the final output. Several other
well-known works like Emotional Video Portraits [13] add
an additional emotion label as input to create the talking
head in the desired emotion. However, all of these works
lack fine-grained control of the talking head and often con-
tain a loopy head motion, and thus cannot be directly used
in many applications.

Video-driven Talking-head Generation Finally, we
move to video-driven methods, which use a driving video
to get the motion and other facial features required to reen-
act a source image. Please note that the driving video and
the source image may not have the same identity. Owing
to the significant priors in driving video, the final gener-
ation quality of video-driven methods surpasses those of
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Figure 2: The overall pipeline of our proposed Audio Visual Face Reenactment network (AVFR-GAN) is given in this Figure.
We take the source and driving images, along with their face mesh and segmentation masks to extract keypoints. An audio
encoder extracts features from driving audio and use them provide attention on lip region. The audio and visual feature maps
are warped together and passed to the carefully designed Identity-Aware Generator along with extracted features of the source
image to generate the final output.

text-only and audio-only ones. The most influential work
in this area, First-Order-Motion-Model (FOMM), was pub-
lished by Siarohin et al. [29] in 2019. The key idea was
to estimate the motion field from sparse keypoints detected
in both source and driving frames. The motion field was
used to calculate dense flow and warp the source frame in
a latent space. Several other works [39, 12] followed the
same principle and added supplementary components to im-
prove the quality. Face-vid2vid [39] used keypoint infor-
mation in a 3D space, taking care of head rotation, among
other things. DA-GAN[12] further added depth-aware at-
tention to provide dense 3D facial geometry to guide the
generation of motion fields. A similar approach in Motion-
Representation-in-Articulated-Animation [30] uses key re-
gions instead of keypoints to generate the warpable motion
field. Approaches like ICface[34] provide a method to con-
trol the pose and expressions of a face image using head
pose angles and action unit values. Recently, Zhang et
al. [42] proposed using the three-dimensional morphable
face model (3DMM) parameters to reenact a face image.
They demonstrated that motion descriptor parameters for
3DMM can be derived from a driving video and, in turn,
animate a static facial image.

To the best of our knowledge, PC-AVS [44] is the
only work that uses audio and video to formulate a low-
dimension pose and motion code. Unlike FOMM, PC-AVS
does not predict motion fields to calculate dense flow and
warp the source image. Instead, they try to train their net-
work to learn motion in a latent space inherently. While this
allows them to achieve state-of-the-art lip sync, the gener-

ated video’s overall quality is considered inferior to works
like DA-GAN [12]. In this work, we base our approach
on FOMM’s [29] principles and improve it with additional
audio information. We also provide additional structural in-
formation to extract better geometries of the face. This al-
lows us to use the best of both worlds and propose a novel
network AVFR-GAN as described in the next section.

3. Audio-Visual Face Reenactment GAN

We present Audio-Visual Face Reenactment GAN
(AVFR-Gan), which takes a source image and a driving
video plus audio to create high-quality talking head videos
by preserving the source identity. As mentioned previously,
we follow a similar strategy to that of FOMM [29] for our
training pipeline. Instead of generating multiple frames in
the form of a video, we handle the input in a frame-by-
frame fashion. Our main goal is to estimate the motion
between a source and a driving frame and then warp the
source frame accordingly to generate an approximation of
the driving frame. Our model can be broadly divided into
a Generator MGen and a discriminator MDisc as shown in
Figure 2. We first discuss the individual components present
inside the generator.

Additional Structural Priors to the Keypoint Detector
We start with selecting a source frame Fs and a driving
frame Fd both of dimensions h × w. During training,
both of these frames are selected from the same video. We
pass these frames through mediapipe [19] to generate a face
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Figure 3: Illustration of Audio window selector mechanism.
It generates a 200ms spectogram such that the driving frame
remains in the middle of the segment. In case of a 25 FPS
video, a 200ms segment contains 5 frames.

mesh and a face segmentation map. We channel-wise con-
catenate the generated mesh and the segmentation mask
with their respective images and create 5 channel versions
of the same. We term the concatenated source and driving
frames as Is and Id, respectively. We use these concate-
nated inputs to feed into our keypoint detector, Mkp. The
addition of these priors helps us in providing the keypoint
detector with more information about the respective struc-
tures of source and driving frames. Furthermore, the seg-
mentation mask also provides the module with foreground
and background information enabling the keypoints to be
detected only from the foreground. We use the keypoint de-
tector from FOMM [29] in our architecture. The keypoint
detector Mkp detects K keypoints. More concretely, we can
write,

{XT,n}Kn=1 = Mkp(IT ), T ∈ s, d (1)

The difference between the generated keypoints from the
source and driving frames is used to calculate the motion
field following FOMM. The motion field is then used to cal-
culate dense flow and generate a warped feature map. We
denote this feature map as Motion Feature Map, Encmotion

as it captures the motion between the source and the driv-
ing frames. The dimension of this feature map is kept to be
h
4 × w

4 × c. We plot sample keypoints detected in specific
frames in Figure 5 (left). Also, note that each keypoint has a
specific region of interest in the generated motion field. We
plot the heatmaps for each keypoint in Figure 5 (middle).
The heatmaps show that the regions of interest for each key-
points correspond to specific facial features. For example,
the dark blue keypoint attends to the mouth region, green
attends to the jaw, and sky blue attends specifically to the
eye regions. Interestingly both of the eyes are attended by
the same keypoint.

Audio-conditioned Features Audio (mainly speech in
our case) is an essential source of information that often
accompanies a talking-head video. We decided to use the
speech from the driving video to improve the quality of
mouth movements in the generated video. While works like
MakeItTalk [45] have already generated head movements

Figure 4: Illustration of Audio Visual Attention module.
Attention is generated by taking the dot product between
a learned audio feature and visual features in each location,
followed by a Sigmoid activation.

solely from audio, our goal is to only improve the mouth
movements and transfer head motion directly from the driv-
ing video. Therefore, we follow the same strategy taken by
lip-synchronization works like [9, 15, 24] to handle speech.
We select the 200ms window of speech around our driving
frame Fd such that Fd is the middle frame in the sampling
window. A graphical representation of the audio window
selection is given in Figure 3. We generate melspectrogram
Imel from the speech window and feed it to a 2D CNN-
based encoder. The audio encoder also outputs a feature
map, Encaud, of h

4 × w
4 × c dimension. We concatenate

(Encmotion, Encaud) along with the attention map gener-
ated as described next.

Audio-Visual Attention Apart from improving the lip
synchronization in the generated video, we propose using
audio to specifically attend to the speaker’s mouth region,
enhancing the fine-grained details like teeth in the generated
video. To do this, we pass Imel through an attention encoder
generating an encoding Encquery of dimensions 1× 1× c.
We then take Encmotion of dimension h

4 × w
4 × c and cal-

culate the dot product at each location with Encquery, gen-
erating a h

4 ×
w
4 ×1 matrix. We pass this through a Sigmoid

layer to get the attention map Encattn as shown in Figure 4.
A formal definition of this block is given in Equation 2.

Encattn(i, j) = Sigmoid(Encquery ⊙ Encmotion(i, j)),

i ∈ w

4
, j ∈ h

4
(2)

A visualization of the audio-visual attention can be
found in Figure 5. As we can see, audio not only helps the
model to attend to the mouth region but also helps the net-
work attend to other regions like the eyes, which correlates
to expressions from speech.

Identity-Aware Generator We propose a novel gener-
ator to decode the concatenated feature vector. We an-
alyze the current decoders used in FOMM [29], Face-
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Figure 5: Illustration of keypoints detected (left), colour
coded heatmap corresponding to each keypoint (centre) and
the attention generated by our Audio-Visual Module (right).
The ROI image shows that there are keypoints specific to the
eye and mouth region. Attention image shows the important
facial regions on which AVFR-Gan focuses.

Vid2Vid [39] and DA-GAN [12]. We realize that the
pipelines followed by the current works fail to capture in-
formation from the source image directly. The network
entirely depends on the warped features generated from
the motion estimator to get the identity characteristics of
the source speaker. Unfortunately, the warped features are
forced to encode motion and fine-grained identity informa-
tion, making it tougher to train. This ultimately causes the
outputs to contain major artifacts and lose sharpness. We
improve upon this and design an identity-aware face gener-
ator. We first concatenate Encmotion, Enccon and Encattn
together to get the final warped features, generating Encdec.
Instead of only feeding the warped features, we also feed
in the source image Fs separately to the UNet-shaped [28]
generator. The generator consists of an identity-encoder and
a decoder. Both the encoder and decoder contain residual
convolutional blocks inspired from Spatially Adaptive Nor-
malization [23]. The source image Fs is first passed through
an identity encoder to encode identity information. The
output from the identity encoder is then concatenated with
Encdec and finally passed through the matching decoder
with appropriate skip connections between the encoder and
decoder blocks. The final output from the generator is de-
noted by Fgen. Our generator produces the sharpest out-
put compared to the current state-of-the-art, as shown in the
subsequent sections.

Discriminator To improve the quality of our generated
outputs, we also employ a standard discriminator, which is
trained in a GAN setup along with the rest of the network.
Our discriminator MDisc, consists of a stack of Conv2D

layers each followed by either spectral normalization [21]
or instance normalization [35]. Each convolution block is
followed by a Leaky ReLU activation [20]. The discrimina-
tor predicts a real or fake label and is trained to maximize
the following loss function LDisc given in Equation 3.

max
MDisc

LDisc = Ex∼preal
logMDisc(x)+

EFgen
log(1−MDisc(Fgen))

(3)

Losses used to train the Generator We use multiple loss
functions similar to [29]. We use the L1 reconstruction loss
between Fd and Fgen. We also use the LPIPs [41] percep-
tual similarity loss (denoted by Lper) to improve the per-
ceptual quality of the generated outputs. Finally, we employ
the equivarience constraints Leq as described in the original
FOMM paper. We refer the reader to [29] for information
regarding these constraints. While training the generator we
also minimize the discriminator loss given in Equation 3.
Therefore, we present our final loss function, Equation 4.

min
MGen

LGen = ||Fd − Fgen||1+

Lper + Leq + EFgen
log(1−MDisc(Fgen))

(4)

Inference Setting While we sample both Fs and Fd from
the same video during training, our training strategy en-
sures that identity and motion information are well distilled.
Therefore, our method allows for cross-identity face reen-
actment. During inference, we select a single image of a
person as the source image Fs. Given a driving video of N
frames, Vi...N , we pass each frame separately through our
network along with Fs and the corresponding audio seg-
ment of Vi (denoted by Ai) to generate the final output as
shown in Equation 5.

F i
Gen = MGen(Fs, Vi, Ai), i ∈ 1...N (5)

Implementation Details In our experiments, we set h =
256, w = 256 and predict K = 10 keypoints for train-
ing all our models. The model is trained using the Adam
optimizer[14] with a learning rate scheduler set at 60 and 90
epochs. The initial learning rate is set to be at 0.001. The
training time taken by model on 4 NVIDIA RTX 3080Ti
GPUs with a batch size of 10 is around 10 days. We train
our model on the VoxCeleb [22] dataset, which contains 25
FPS videos. Thus, the 200ms audio window consists of 5
frames, of which the 3rd frame is selected as the driving
frame Fd. Any other random frame from the same video
is selected as Fs during training the network. More details
about the network structure and other training characteris-
tics are provided in the supplementary material.
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Same-id Reenactment Cross-id Reenactment
L1↓ PSNR↑ SSIM↑ FID↓ LMD↓ AED↓ Sync↑ FID↓ Sync↑

FOMM[29] 0.046 28.890 0.740 11.04 1.294 0.142 5.17 11.93 3.17
Face-vid2vid [39] 0.062 29.160 0.690 11.47 1.620 0.153 4.96 10.81 4.19

MRAA [30] 0.040 23.351 0.64 11.36 1.280 0.135 3.10 15.61 3.96
PC-AVS [44] 0.081 23.750 0.620 14.32 1.843 0.180 6.76 16.78 6.39
DA-GAN [12] 0.036 31.220 0.804 9.10 1.278 0.129 5.01 9.40 4.71

AVFR-GAN (Ours) 0.034 32.20 0.824 8.48 1.280 0.127 5.45 9.05 4.99

Table 1: Comparison with state-of-the-art methods on Same-identity Reenactment and Cross-identity reenactment on
VoxCeleb[22] dataset. ↑ indicates larger is better, and ↓ indicates smaller is better.

4. Experiments and Results

We provide a comprehensive set of evaluations to mea-
sure the performance of our proposed method. We per-
form the quantitative assessment by following the standard
benchmarks set by the previous works. We also perform
extensive human evaluations to provide a qualitative assess-
ment of the generated results.

Evaluation Set We use the public test set of the Vox-
Celeb [22] dataset. The dataset contains videos of celebri-
ties. All the videos are preprocessed to 256 × 256. The
test set contains 465 number of videos of different identi-
ties making up a total of 76 minutes.

Evaluation Metrics To provide an extensive evaluation
of video reconstruction, we use several metrics to measure
the performance of different works. We use the following
metrics to measure various aspects of our generation. L1:
It checks the average L1 distance between the generated
and ground-truth video. LMD: Landmark Distance calcu-
lates the distance between detected key points of ground-
truth and developed video using a pre-trained facial land-
mark detector[8]. Please note that this metric was denoted
by Average Keypoint Distance in [29]. However, we re-
named it Landmark Distance to avoid confusion with the
keypoint detector module used in this work. AED: Average
Euclidean Distance is used to evaluate the identity informa-
tion. We use Openface[6] to find the feature vectors of gen-
erated and ground-truth video and then take the L2 distance
between them. PSNR: Peak Signal to Noise Ratio is used
to evaluate the reconstruction quality of the generated image
compared to the ground truth image. SSIM: Structural Sim-
ilarity Index evaluates the perceived changes in structural
information of an image. We use it along with PSNR as it
can also handle global illumination changes. FID: Fréchet
Inception Distance is used to compare the distribution of
generated images with the ground truth image using the
features extracted from an InceptionV3 model [32]. Sync:
Syncnet confidence score is used to measure the amount of
lip sync [10].

Comparison with State-of-the-Art Methods We com-
pare our work with the current methods published for the
same task. To have a fair comparison, we use the official
pre-trained models of FOMM [2], MRAA [3], PC-AVS [5]
and DA-GAN [1] from their respective open-source imple-
mentations. For Face-Vid2Vid, we use an unofficial imple-
mentation in [4]. All the pre-trained models and AVFR-
GAN were trained on the same train split and evaluated on
the test split of VoxCeleb[22] using two inference strategies
defined below.

Same-identity Reenactment We perform the face reen-
actment task where the source frame and the driving video
are of the same person. In this setting, we take the first
frame of any video as the source frame and consider the rest
of the video as the driving video. The audio chunks corre-
sponding to each driving frame are also fed to the network
as input. In this case, we expect the generated output to be
as close to the original video as possible. We can therefore
calculate metrics like L1, LMD, PSNR, and SSIM, which
requires ground truth. We also calculate AED, FID, and
Sync metrics for the generated outputs from all the models.
From Table 1, it is evident that our method outperforms all
the other competing methods. The superior L1 and AED
show that our model preserves identity information better.
The improvement achieved by our model in terms of LMD
indicates the improved structure of generated faces. Inter-
estingly, our model generates improved eye movement in
much more detail compared to the previous methods. We
got state-of-the-art PSNR, SSIM, and FID scores, corre-
lating with better visual quality. Finally, the sync quality
achieved by our algorithm is superior to all the methods ex-
cept PC-AVS, which performs slightly better in this metric.

Cross-identity Reenactment In this setting, we take a
driving video for a different identity and animate a source
image. The audio from the driving video is also given as in-
put to the network, as usual. However, since the generated
output does not mimic any specific ground truth, we use
metrics that do not directly need the same. We use FID,
which measures the distance between real and generated
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Figure 6: Qualitative comparison on Cross-identity reenactment. Our method gives fewer artifacts, preserves facial structure
and handle motion in a better way.

distributions and does not require one-to-one ground truths.
We also use Sync to measure the quality of the lip sync in
the generated video. As seen in Table 1, we achieve the best
FID results and the second-best results in sync trailing only
to PC-AVS.

Human Evaluations Since our algorithm generates out-
puts directly meant for human consumption, we perform
extensive human evaluations to ascertain the quality of the
generations from our model from a human’s perspective.
We perform a study enrolling 20 users. Each user is shown
generated samples from the state-of-that-art method along
with Ours. The users are also shown the source image and
the driving video. We select 30 samples from Cross-identity
generations. Our user study shows corresponding results
from each algorithm side by side, along with the source im-
age and the driving video. The users are asked to rate each
generated output based on three characteristics. The users
rate the quality of 1. Head pose matching the driving videos,
2. Expressions matching the driving videos, 3. Identity
preservation between the source image and the generated
videos. The ratings are between 1 to 5, where 1 corresponds
to the worst and 5 corresponds to the best. As seen in Ta-
ble 2, our model consistently yields better results across all
the criteria. Our model can enact a better head pose and
match expressions of the driving video while preserving the
source identities.

HPMS↑ EMS↑ IPS↑
FOMM[29] 3.40 3.16 2.80

Face-vid2vid [39] 3.70 3.12 2.66
MRAA [30] 3.26 3.06 2.50
PC-AVS [44] 1.58 1.64 1.92
DA-GAN [12] 3.98 3.82 3.10

AVFR-GAN (Ours) 4.56 4.22 3.94

Table 2: User Study quantitative comparison. ’HPMS’
represents Head Pose Matching Score, ’EMS’ represents
Expression Matching Score and ’IPS’ represents Identity
Preservation Score. ↑ shows higher is better.

5. Ablation Study

Our proposed approach comprises addition of several
key priors and the use of a better image generator. We check
the contribution of each of these novel blocks in this section.
For setting a baseline (very similar to FOMM), we remove
Face Mesh, Face Segmentation, Audio Encoders, and used a
basic CNN-based decoder architecture[29, 12, 39]. We add
one module at a time to this baseline and train them on the
same train-test split. We first add only face mesh and face
segmentation to the baseline. We separately also check the
effect of adding audio to the baseline. Finally, we combine
the structural priors and audio to train a model without the
novel identity-aware generator. We calculate SSIM, FID,
and Sync metrics and report them in Table 3.

As we observe clearly, the structural priors improve the
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Figure 7: Qualitative results on same-identity face reenactment. Upper row: Driving Video, Lower row: Generated Results

SSIM↑ FID↓ Sync↑
Baseline 0.74 11.04 5.17
+ Structural Prior 0.801 8.98 5.19
+ Audio Prior 0.79 8.69 5.48
+ IAG 0.812 8.51 5.13
AVFR-GAN 0.824 8.48 5.45

Table 3: Ablation Study. The baseline represents the model
without face mesh, segmentation, audio, and identity-aware
decoder. ’+ Structural Prior’ represents Baseline with face
segmentation and face mesh. ’+ Audio Prior’ represents
Baseline with Audio encoders. ’+ IAG’ represents Baseline
with Identity Aware Generator. ↑ indicates larger is better,
and ↓ indicates smaller is better.

SSIM significantly over baseline while audio improves the
lip sync quality. We also observe that audio improves
the visual quality (measured using FID) of the generations
marginally. Finally, the identity-aware face generator gives
a significant boost in terms of visual quality improvement.

6. Applications
Our work opens up several applications in the digital in-

dustry. Our method can revolutionize multiple industries.
We can potentially replace recording famous celebrities in
a studio environment costing thousands of dollars; we can
animate a single picture of them based on home-recorded
driving videos. Similar advances can also be made in the
education sector, where online lectures are integral part of
education. News readers can reduce their commute and
present news from the comfort of their homes by animating
their characters. We can also make video calls simpler in
more than one way. We can replace the live video feed with
a generated one reducing zoom fatigue. More importantly,
this can lead to huge bandwidth reduction due to the com-
pact keypoint-based representation, as already noted in [39].

Low-bandwidth Video Conferencing Face reenactment
methods can be easily extended for video compression. In
the case of a video call between a sender and a receiver,
we can first send a single high-resolution frame between
the two and follow it up with sending keypoints detected
by the keypoint detector for each frame. Our model can
then generate the output frames at the receiver’s end by con-
sidering the high-resolution frame as the source and key-
points from each of the driving frames, similar to the results
shown in Figure 7. The 10 keypoints each consist of x and
y coordinates and four jacobians, all of which are repre-
sented as float values. Therefore, the total bits required to
represent a 256 × 256 frame using FP16 representation is
10× 6× 16 = 960 bits. Therefore, the Bits-per-Pixel(BPP)
achieved by our model is 960

256×256 = 0.014. We use the
latest H.266 codec [7] released in September of 2021 and
compress the VoxCeleb test set at the same BPP. While the
results generated by our algorithm achieve a FID of 8.48,
the H.266 lags by a large margin at 58.32. This indicates the
superior quality of the results generated using AVFR-GAN
and provides a proof-of-concept for compressing video calls
in future work.

7. Further Discussions
In this work, we propose a novel face reenactment net-

work, Audio-Visual Face Reenactment GAN. Our network
uses audio-visual cues to reenact a source image according
to a driving video. We provide the network with additional
structural priors and speech to improve lip synchronization.
The final output quality also benefits from a novel identity-
aware generator. The improvement in the quality of the gen-
erative networks has also led to concerns over its potential
misuse. We, therefore, urge the users of any such works to
use it ethically. We also encourage users to clearly mark
the generated videos with a watermark. We believe these
works will benefit and reduce manual effort in professional
content creation.
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