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Figure 1: We propose a new method for learning semantic local features for unseen-class/domain image retrieval that shows
substantial performance improvements. Left: Our method learns discriminative and domain-agnostic local features (all
classes well separated and cross-domain images close) while also being representative (“circle”- themed classes like donut,
bracelet, and moon grouped close vs. unrelated shoe further apart). Right: Sample retrieval results. Best viewed in color.

Abstract

We consider the problem of image retrieval where query
images during testing belong to classes and domains both
unseen during training. This requires learning a feature
space that has the ability to generalize across both classes
and domains together. To this end, we propose seman-
tic contrastive concept network (SCNNet), a new learning
framework that helps take a step towards class and do-
main generalization in a principled fashion. Unlike existing
methods that rely on global object representations, SCNNet
proposes to learn local feature vectors to facilitate unseen-
class generalization. To this end, SCNNet’s key innovations
include (a) a novel trainable local concept extraction mod-
ule that learns an orthonormal set of basis vectors, and (b)
computes local features for any unseen-class data as a lin-
ear combination of the learned basis set. Next, to enable
unseen-domain generalization, SCNNet proposes to gener-
ate supervisory signals from an adjacent data modality, i.e.,

natural language, by mining freely available textual label
information associated with images. SCNNet derives these
signals from our novel trainable semantic ordinal distance
constraints that ensure semantic consistency between pairs
of images sampled from different domains. Both the pro-
posed modules above enable end-to-end training of the SC-
NNet, resulting in a model that helps establish state-of-the-
art performance on the standard DomainNet, PACS, and
Sketchy benchmark datasets with average Prec@200 im-
provements of 42.6%, 6.5%, and 13.6% respectively over
the most recently reported results.

1. Introduction

We consider the problem of image retrieval where query
images come from both classes as well as domains unseen
during training. This is a natural extension of both do-
main generalization (where test data comes from unseen do-
mains) and open set learning (test data from unseen classes).
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Such a problem is motivated from a practical perspective
since real-world image retrieval systems will need to work
well on both domains and classes unseen during training
[35, 11, 38].

While there is individually much work in both open-set
learning and domain generalization for image retrieval, ex-
tending them to our setting where query samples belong
to both unseen classes and unseen domains is a non-trivial
problem. For instance, while the sketch retrieval line of
work in [36, 3, 5, 19, 7, 31] shows strong performance
on unseen categories, they require model retraining on new
data if the query comes from a new domain (e.g., clipart in-
stead of sketch). Similarly, recent methods in domain gen-
eralization [2, 13, 18] assume domain shift to be the only
kind of data variation and have no mechanisms to handle
test data from unseen classes. This suggests addressing both
unseen-class generalization and unseen-domain generaliza-
tion jointly is key in our context.

Paul et al. [22] was the first work to consider this open-
set (unseen classes) and cross-domain (unseen domains) re-
trieval problem and proposed a method based on mixup [39]
to simulate train-time data samples for training the model.
However, this method has some limitations that motivate
our proposed algorithm. First, instead of real images, they
use samples from the mixup [39] operation for training,
which has been shown in prior work [10, 37] to be very
sensitive to the mixing hyperparameter (which is hard to de-
termine, e.g., multiple trial-and-error rounds). Further, this
also leads to augmented samples colliding with real sam-
ples on the data manifold [10], leading to confusion during
training and underperformance during testing. Next, since
this method uses a global object representation that relies on
per-class image content, they tend to misrepresent out-of-
distribution data. On the other hand, there is recent evidence
in favor of local features [29, 32, 4, 33, 28] since they tend to
capture semantic attributes intuitively common across seen
and unseen data (e.g., wheels in a car vs. ambulance). How-
ever, learning local features for unseen-class and unseen-
domain image retrieval is an open problem. Consequently,
we ask: can we learn semantic local features that can gen-
eralize across both domains and classes for retrieval?

To address the aforementioned issues, we propose
Semantic Contrastive Concept Network (SC-
NNet) with two key innovations. First, inspired by the suc-
cess of detecting local groups of image pixels as “concepts”
for visual explainability [12, 9], we ask if (a) such concepts
can be trained in an end-to-end fashion without needing
additional steps such as segmentation as done in previous
work [9], and (b) such concepts can be mapped into vector
representations for images of unseen classes unlike exist-
ing work [9] that seeks to compute importance scores for
explainability of seen-class images. We answer both ques-
tions in the affirmative with our novel concept extraction

and representation module (CEM). Our key novelty lies in
training CEM to produce an orthonormal set of basis vec-
tors, corresponding to a set of local visual concepts, that
enables representing an image from a new class as a lin-
ear combination of the basis set, thereby computing local
features and This way, CEM uses the learned concepts in
a principled fashion to compute local features for unseen-
class images, addressing a key limitation of our baselines
[22, 20].

Next, to handle the domain mismatch between training
and testing data for unseen-domain generalization, we ex-
ploit information from adjacent data modalities to mine su-
pervision signals, e.g., natural language in the form of tex-
tual image labels. Since standard text embedding models
are aplenty [21, 24], our key insight is to use this feature
space to map the local features above to a domain-agnostic
space. Unlike related work [25] that seeks to make image
and text features similar, we adopt an ordinal contrastive ap-
proach. Given input image triplets during training, our pro-
posed approach, called the semantic ordinal distance mod-
ule (SOM), seeks to maximize the relative ordinality of dis-
tances in the image and text feature spaces. Specifically,
from the triplet, we sample both inter- and intra-domain
pairs of images belonging to different classes and explicitly
constrain relative image feature distances to be consistent
with those from the text modality, ensuring local features of
same-class-different-domain images are mapped close.

We evaluate SCNNet on the standard DomainNet [23],
PACS [14], and Sketchy [26] benchmarks and demonstrate
significant gains, including establishing a new state of the
art with average Prec@200 improvements of 42.6%, 6.5%,
and 13.6% respectively. Our key contributions are:

• We propose a new approach, SCNNet, for general-
ized unseen-class and unseen-domain image retrieval
with two key modules: a concept extraction and repre-
sention module (CEM) for handling unseen-class im-
ages and a semantic ordinal distance module (SOM)
for handling unseen-domain images.

• CEM’s key innovation includes a data-driven strategy
for learning, end-to-end, an orthogonal set of local vi-
sual concepts that can be used to generate local feature
representations for any unseen-class image.

• SOM’s key innovation includes the use of natu-
ral language in a novel contrastive distance learning
framework to ensure features of same-class-different-
domain images are mapped close in the feature space.

2. Related Work
As discussed in Section 1, our problem of interest, i.e.,

image retrieval where query images come from both unseen
classes and unseen domains, is relatively new, with Paul et
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al. [22] being the first method that tackled this problem.
Since this new problem has flavors of both domain gener-
alization and zero-shot learning, we briefly review work in
these areas below.
Domain generalization. Research efforts under this theme
seek to learn models that can generalize to domains unseen
during training. Much recent work has used classification as
a proxy task (i.e., classifying images from unseen domains)
and proposed techniques based on self-supervised learning
[2], metric learning [30], adversarial learning [17], meta-
learning [15], and episodic training [16] to learn models for
domain-invariant representation learning. However, these
methods do not have handling for unseen-class images dur-
ing testing while also being restricted to the classification
problem. On the other hand, our method is specifically de-
signed for both a different problem (retrieval instead of clas-
sification) while also handling queries from unseen classes
and unseen domains during testing.
Zero-shot retrieval. Much recently published research un-
der this theme [27, 36, 5, 7, 3, 6, 34] has used data from only
two domains (sketch and image), and generally followed a
two-branch architecture design for learning a shared feature
space for the two domains. Such architecture designs, how-
ever, would not scale in the context of our problem where
data can come from any domain (not just that two seen
ones). While Liu et al. [19] proposed a single-branch design
for processing data from both domains, the principle of us-
ing a classification-guided supervision mechanisms where
data from all domains are needed for training limits its abil-
ity to handle unseen-domain data at test time.
Our closest baseline is the work of Paul et al. [22] that pro-
posed a mixup-based [39] training strategy where new sam-
ples were generated using mixup [39]. However, as noted
above, this is shown to be prone to issues like manifold col-
lision [10, 37], leading to model underperformance. Our
method removes the need for this operation by mining su-
pervision signals from large amounts of textual labels avail-
able in the natural language domain. Further, Paul et al. [22]
proposed to use global features that tend to rely on overall
class-specific image content, leading to brittle representa-
tions for out-of-distribution test cases [4, 33, 28]. Instead,
our intuition is that local features can help capture seman-
tic visual concepts that are more generalizable, and propose
a novel concept extraction and representation module that
helps learn these local features.

3. Approach

3.1. Preliminaries

We seek to address the relatively newer problem of
unseen-class and unseen-domain image retrieval first pro-
posed in the recent work of Paul et al. [22]. A certain
set of seen classes and domains are assumed during train-

ing. We denote these as Cseen and Dseen respectively with
the cardinality NDseen ≥ 2 (i.e., labeled data from at least
two domains). We represent an image sampled from a class
c ∈ Cseen and domain d ∈ Dseen as xc,d. Now, during test-
ing, we are given a query image q that belongs to an un-
seen class and unseen domain. The problem is to match this
query image to pre-defined search set of images.

3.2. Semantic Contrastive Concept Network

As noted above, we are interested in image retrieval in
the specific scenario where test-time queries come from
classes and domains unseen during training. To achieve
this, our proposed framework, called Semantic Contrastive
Concept Network (SCNNet, Fig. 2), trains a model to learn
local visual concepts that be used to generate local feature
representations for unseen-class images. Note that this is
significantly different from our closest baseline [22] that re-
lies on global object representations that have been shown
to have relatively (w.r.t. their local counterparts) poor gen-
eralization to zero-shot settings in the context of other prob-
lems, e.g., attribute localization [28]. SCNNet achieves
this with a novel local concept extraction and representation
module (CEM) discussed under Section 3.2.1. While these
local features address unseen class generalization, this is in-
sufficient to handle test-time domain shift. To address this
issue, SCNNet generates and exploits supervision from nat-
ural language as part of the semantic ordinal distance mod-
ule (SOM), discussed under Section 3.2.2.

As can be noted from Fig. 2, during training, the input
to our model is a cross-domain triplet where the anchor
aci,di and positive pci,dj belong to the same class (flower)
but different domains (quickdraw and real). The negative
image ncj ,dj is randomly sampled from a different class
(dog). Note that both (ci, cj) ∈ Cseen and (di, dj) ∈ Dseen.
Given an image x in the triplet, our model first computes,
with its base image encoder, a convolutional feature map
Fx ∈ Rz×w×h, where z is the number of channels in the
feature map and (w, h) represents the spatial dimensions of
each channel. SCNNet operates on these features Fx as part
of the CEM and SOM modules discussed next.

3.2.1 Concept Extraction Module (CEM) for Learning
Class Representations

As noted above, existing work [20, 22] relies on global ob-
ject representations for handling test query images from un-
seen classes. However, such global representations tend to
be brittle under distribution shift and local features have
been shown to generalize better under zero-shot settings in
the context of other problems [32, 28]. Furthermore, recent
work in model interpretability and explainability [12, 9]
shows how one can use the notion of local visual concepts
for explaining images under a wide variety of classes and
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Figure 2: Architecture of our proposed semantic contrastive concept network.

domains, suggesting such concepts can be exploited to com-
pute features that generalize better than global representa-
tions. However, these methods [9] do not currently support
end-to-end training for learning local features contrastively
while also needing additional external models (e.g., pixel-
wise segmentation). To this end, SCNNet proposes a train-
able concept extraction and representation (CEM) module.

Our conjecture is that there exists a set of local con-
cepts represented by a set of orthonormal basis vectors V .
Given such a basis, we are inspired by basic concepts from
linear algebra in representing any new image (e.g., an im-
age from an unseen class) as a linear combination of the
learned concept vectors present in V . Our intuition here is
simple: these local concepts form primitives that are com-
mon across classes, e.g., a concept vector corresponding to
a wheel will be used to build the feature representation for
multiple classes such as car, truck, motorbike etc. and that
these repeating concepts across semantically similar classes
help determine the local features for unseen-class images.

Given the convolutional feature maps Fx ∈ Rz×w×h

computed from the base encoder for each image x ∈
{aci,di ,pci,dj ,ncj ,dj}, we first reshape it to obtain a two-
dimensional matrix representation as Fx ∈ Rz×n where
n = w × h. This enables running a singular value de-
composition (SVD) operation on the matrix that helps give
an orthonormal set of basis vectors sorted according to the
inferred singular values. Formally, the SVD operation de-
composes the Fx matrix as Fx = USVT . We only retain
the top-k entries in these matrices to give the feature map
Fk

x = Uz×kSk×kV
T
k×n. The goal of CEM is to learn a set

V = {vj ∈ Rz, j = 1, 2, 3, . . . , C} of C concepts that can
be used to represent any sample in the z−dimensional space
spanned by the concept vectors {vj}. During training, this
is achieved by “assigning” entries in the feature matrix to
each concept vj with appropriate weights, and during infer-
ence, an unseen-class image’s feature matrix is input to the

learned set V to automatically give a vector corresponding
to a linear combination operation over the concepts.

To determine the assignment of entries in Fk
x to V , we

follow standard dictionary assignment practices [8, 40].
Specifically, given each column fi ∈ Fk

x, we compute a
residual vector rij = fi−vj for all values of i and j. Given
this, the assignment weight aij associated with the concept
vector vj is calculated as:

aij =
exp(−bj ||rij ||2)∑K
j=1 exp(−bj ||rij ||2)

(1)

where bj is a learnable parameter corresponding to the
concept vector vj . These parameters are learned during
the optimization of the overall loss function discussed in
Section 3.2.3. Given these assignment weights, the final
feature vector for the image x is determined as: fx =∑n

i=1

∑C
j=1 aijrij , where n = w × h and C is the number

of learned concepts. This process gives feature vectors fa,
fp, and fn for the anchor, positive, and negative images in
the current training triplet. We apply a triplet loss on these
feature vectors to help learn a discriminative feature space
for retrieval. In particular, the loss function is:

LCEM =
1

B

B∑
i=1

max(0, ||f ia− f ip||2−||f ia− f in||2+m) (2)

where B is the number of triplets sampled in the current
training batch and m is a margin parameter.

3.2.2 Semantic Ordinal Module (SOM) for Learning
Domain Representations

The local features fx from CEM above help handle class
shift during testing but they are insufficient when there is
an additional domain gap. While existing work [22] used
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the mixup operation [39] to learn domain-agnostic features,
this requires careful finetuning, via multiple rounds of trial
and error, of the mixup parameter while also being prone
to manifold intrusion where mixed-up samples collide with
real samples [10]. In such a case, a model trained with
classification-type losses of Paul et al. [22] for mixture pre-
diction results in model confusion and underfitting.

To address the aforementioned issues, we are motivated
by the availability of large amounts of labeled data in adja-
cent data modalities. For instance, most labeled classifica-
tion datasets have text labels associated with every image.
To mine supervision signals from this vast trove of data, we
propose an ordinal contrastive training strategy as part of
the semantic ordinal distance module (SOM). Unlike exist-
ing work, e.g., Radford et al. [25], that seek to make image
and text features map to the same point, SOM proposes to
rely on relative distance constraints to ensure inter-domain
consistency. Such an approach is easier to train and general-
izes better since we are only imposing relative constraints as
opposed to hard equality constraints that tend to be domain
specific, leading to out-of-domain underperformance.

Our key insight is that we can sample triplets just like
in Section 3.2.1 to calculate relative pairwise cross-domain
feature distances and make them consistent with those cal-
culated from the text modality. Concretely, given the train-
ing triplet {aci,di ,pci,dj ,ncj ,dj}, we first obtain their CEM
embeddings fa, fp, and fn. Next, given the textual class
labels ci and cj , we use an off-the-shelf word embedding
model to obtain the respective semantic features wi and wj .
Now, if we sample different-class pairs from this triplet, i.e.,
(aci,di ,ncj ,dj ) and (pci,dj ,ncj ,dj ), their distance in the im-
age feature space must be similar to the semantic distance
between wi and wj . Consequently, since SOM explicitly
enforces this during training with our proposed SOM loss
(see below), the model will have learned to map features of
same-class-different-domain features close. This is because
the relative semantic distance in the case of a same class
pair would in principle be zero and the model is trained to
be consistent with this distance. To achieve this, our pro-
posed training objective is:

LSOM = ‖D(fa, fn)−D(wi,wj)‖2+
‖D(fp, fn)−D(wi,wj)‖2

(3)

where D(p,q) is the Euclidean distance metric.

3.2.3 Overall Training Objective

We optimize the parameters of both the encoder and the
concept extraction module with following overall loss:

LALL = λLCEM + (1− λ)LSOM (4)

where λ denotes the loss weights.

4. Experiments and Results

4.1. Datasets and Implementation Details

We use three standard benchmark datasets in our exper-
iments. First, we train models and evaluate them on the
DomainNet [23] benchmark dataset. Images in DomainNet
span 345 classes and add up to ∼ 0.6 million. These im-
ages also span six different domains- Clip-art, Sketch, Real,
Quickdraw, Infograph, and Painting. To ensure experimen-
tal and evaluation consistency, we follow Paul et al. [22]
and split images in the DomainNet dataset into three dis-
joint train, validation, and testing sets comprising 245, 55
and 45 classes respectively. For test-time retrieval, we con-
struct the search set with images from the Real domain. In
the evaluation tables below, we refer to this as Unseen-class
search set. As done in Paul et al. [22], we also consider
the scenario where images in the search set can come from
both seen and unseen classes. We refer to this evaluation as
Seen+Unseen-class search set.

Next, we also evaluate our trained models on the PACS
[14] and Sketchy Extended [26] datasets, again following
the protocol in Paul et al. [22]. While PACS consists of
∼10,000 images from 7 classes across 4 domains- Photo,
Art Painting, Cartoon, and Sketch, the Sketchy dataset com-
prises ∼75,000 sketches and ∼75,000 real images. For
PACS, we construct the search set with images from the
Photo domain and perform retrieval with query images from
the Art Painting, Cartoon, and Sketch domains, whereas for
Sketchy, we follow the splits provided in prior work [36, 3].
Please see supplementary material for full implementation
details as well as additional results.

4.2. Evaluation Results

We first present and discuss qualitative results. For a
query from an unseen class and an unseen domain, we re-
trieve images from the search set and rank them based on
similarity to the query image. We collect the top-10 ranked
images and visualize them in Fig. 3. Here, we see three ex-
amples, one each for images from the tooth, rainbow, and
ladder classes. For each example, we show two rows of
ranked retrieval images. The first row corresponds to results
with our proposed method and the second row corresponds
to the baseline SnMpNet method [22]. One can note from
Fig. 3 that there are more images retrieved with our method
that show up at lower ranks (e.g., ranks 1, 2, 3) as desired.

Next, we present quantitative performance on all the
benchmark datasets and compare to both the state-of-the-
art method of Paul et al. [22] and the baselines therein. We
show the numbers in Table 1 for both scenarios: Unseen-
class and Seen+Unseen-class search sets. In each case, we
show both mAP@200 and Prec@200 numbers. The first
two columns in the table show the set of seen domainsDseen
that constitute the training images and the unseen query
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Figure 3: Illustrative examples for improved visual retrieval results with the proposed SCNNet vs. the baseline SnMpNet
[22]. We show query images in the left column and the corresponding retrieval results on the right. Best viewed in color.

Training Domains Query Domain Method Unseen-class Search Seen+Unseen-class Search
mAP@200 Prec@200 mAP@200 Prec@200

Real, Quickdraw, Infograph
Painting, Clip-art

Sketch

EISNet-retrieval [30, 22]
CuMix-retrieval [20, 22]

SnMpNet [22]
SCNNet

0.2611
0.2736
0.3007
0.4075

0.2061
0.2168
0.2432
0.4120

0.2286
0.2428
0.2624
0.3422

0.1805
0.1935
0.2134
0.3534

Real, Sketch, Infograph
Painting, Clip-art

Quickdraw

EISNet-retrieval [30, 22]
CuMix-retrieval [20, 22]

SnMpNet [22]
SCNNet

0.1273
0.1304
0.1736
0.1998

0.1016
0.1006
0.1284
0.1580

0.1101
0.1118
0.1512
0.1698

0.0870
0.0852
0.1111
0.1411

Real, Sketch, Infograph
Quickdraw, Clip-art

Painting

EISNet-retrieval [30, 22]
CuMix-retrieval [20, 22]

SnMpNet [22]
SCNNet

0.3599
0.3710
0.4031
0.4242

0.2913
0.3001
0.3332
0.4409

0.3280
0.3400
0.3635
0.3731

0.2653
0.2751
0.3019
0.3964

Real, Sketch, Painting
Quickdraw, Clip-art

Infograph

EISNet-retrieval [30, 22]
CuMix-retrieval [20, 22]

SnMpNet [22]
SCNNet

0.1878
0.1931
0.2079
0.2737

0.1512
0.1543
0.1717
0.2476

0.1658
0.1711
0.1800
0.2369

0.1323
0.1361
0.1496
0.1983

Real, Sketch, Painting
Quickdraw, Infograph

Clip-art

EISNet-retrieval [30, 22]
CuMix-retrieval [20, 22]

SnMpNet [22]
SCNNet

0.3585
0.3764
0.4198
0.4843

0.2792
0.2911
0.3323
0.4664

0.3251
0.3428
0.3765
0.4322

0.2496
0.2627
0.2959
0.4016

Average

EISNet-retrieval [30, 22]
CuMix-retrieval [20, 22]

SnMpNet [22]
SCNNet

0.2589
0.2689
0.3010
0.3579

0.2059
0.2126
0.2418
0.3449

0.2315
0.2417
0.2667
0.3108

0.1829
0.1905
0.2144
0.2981

Table 1: Evaluation results on the DomainNet benchmark dataset [23].
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Query Domain mAP@200 Prec@200
SnMpNet [22] SCNNet SnMpNet [22] SCNNet

Art Painting 0.7403 0.7615 0.6507 0.7353
Cartoon 0.7167 0.7410 0.6462 0.6691
Sketch 0.5925 0.6045 0.6225 0.6395

Average 0.6832 0.7023 0.6398 0.6813

Table 2: Evaluation results on the PACS dataset [14].

Method mAP@200 Prec@200
Doodle-SingleNet [3, 22] 0.3980 0.3508

SAKE [19] 0.5484 0.4880
SnMpNet [22] 0.5781 0.5155

SCNNet 0.6122 0.5854

Table 3: Evaluation results on the Sketchy dataset [26].

domain. Apart from the SnMpNet baseline [22], we also
compare to results obtained with the encoders of EISNet-
retrieval [30] and CuMix-retrieval [20]. As can be noted
from Table 1, our proposed SCNNet results in substantial
performance gains; in particular, we establish a new state
of the art for this problem on DomainNet [23] with aver-
age mAP@200 and Prec@200 values of 0.3579 and 0.3449
respectively (for unseen class search). These numbers
represent respective relative performance improvements of
18.9% and 42.6% over SnMpNet. Furthermore, these re-
sults represent substantial gains over the CuMix-retrieval
method [20, 22] (18.9% and 62.6%). Both these baselines
use the mixup [39] technique to generate training samples,
helping validate the efficacy of SCNNet’s local features.

In Table 2, we report results on PACS [14] where im-
ages from the photos domain constitute the search set and
the other three domains are used in leave-one-out fashion
to test. One can note that SCNNet outperforms SnMpNet
with average mAP@200 and Prec@200 improvements of
2.8% and 6.5% respectively. Finally, in Table 3, we report
results on Sketchy Extended [26] where as above, SCNNet
substantially outperforms Paul et al. [22] with mAP@200
and Prec@200 improvements of 5.9% and 13.6%.

4.3. Ablation Study, Insights, and Discussion

We next extensively analyze the contribution of the var-
ious components in the proposed SCNNet architecture to-
wards the final perfomance, and provide associated insights
and discussion. In Table 4, we provide results of an abla-
tion study to understand the impact of each of the proposed
modules. First, as expected, with only the base encoder not
supported by either CEM or SOM, the performance is low.
Next, on training with CEM (Equation 2), the Prec@200
number jumps to 0.1369 (from baseline 0.0924). It is im-
portant to put this in the context of the corresponding num-
bers for CuMix [20] and SnMpNet [22] from Table 1 (they
are 0.1006 and 0.1284 for Quickdraw query). Note that the
Prec@200 value of 0.1284 for the SnMpNet [22] method
is with their full model (i.e., with handling for both unseen

classes and domains), whereas the 0.1369 Prec@200 value
for our method here is only with the CEM module (that
handles only unseen-class images, not the unseen domain
ones). These results clearly show the local features learned
with our CEM outperform the mixup-based global features
learned in these methods [20, 22].

Network Variant Quickdraw Sketch
Prec@200 Prec@200

Base Encoder 0.0924 0.2621
Base Encoder + CEM 0.1369 0.3652
Base Encoder + SOM 0.1380 0.3704
SCNNet Full Model 0.1580 0.4120

Table 4: Evaluating the impact of CEM and SOM.

Network Variant Quickdraw Sketch
Prec@200 Prec@200

Radford et al. [25] 0.0590 0.3040
SOM 0.1380 0.3704

Table 5: Proposed SOM module vs. baseline CLIP [25].

Embedding mAP@200 Prec@200
Word2Vec [21] 0.1998 0.1580

fastText [1] 0.1923 0.1547
GloVe [24] 0.1906 0.1533

Table 6: Comparing various semantic knowledge sources.

Next, adding the SOM module also improves the base-
line encoder’s performance from a Prec@200 of 0.0924 to
0.1380. Note that whereas SnMpNet [22] used the mixup
strategy to learn domain-agnostic features, our SOM out-
performs this method (Prec@200 of 0.1284 as noted above),
helping show one need not use mixup (which leads to is-
sues like manifold collision as discussed above) to handle
unseen-domain queries. Furthermore, in Table 5, we com-
pare these results to that of Radford et al. [25]. As discussed
in Section 3.2.2, the use of relative ordinal constraints where
SOM proposes to ensure pairwise distance consistency is
easier to train models as opposed to related work [25] that
seeks to make the image and text features map to the same
point. From Table 5, this gives substantially better results
on both Quickdraw and Sketch. Finally, from Table 4, the
full model, with CEM and SOM, outperforms both the com-
ponents, helping demonstrate their complementary impact.

In Table 6, we compare various sources of semantic
knowledge (see Equation 3). We use queries from the
Quickdraw domain and follow the same protocol as above.
One can note Word2Vec [21] (which we use for all results
reported above) outperforms fastText [1] and GloVe [24].
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(d) (e) (f)

Figure 4: t-SNE plots to demonstrate CEM and SOM’s impact. Best viewed in color.

In Fig. 4, we provide additional results to further sub-
stantiate the impact of the CEM and SOM components.
In Fig. 4(a), we take images from two unseen classes
(Rainbow and Dolphin) and unseen domains (Sketch and
Clipart), compute their features from our CEM module,
and generate the t-SNE plot. One can note a clear clus-
tering of the cross-domain features from the same class
(e.g., Rainbow from Sketch and Clipart are grouped to-
gether and Dolphin from Sketch and Clipart are grouped
together and separate from the first group). Fig. 4(b)
shows another example along the same lines (Moon and
Ladder classes from Sketch and Clipart domains). Both
these pictures clearly show the discriminative power of the
representations- features of different-class images cluster
separately and features of same-class-different-domain im-
ages cluster together. Fig. 4(c) further demonstrates this for
four unseen classes, where we see clear clustering.

To show how CEM learns transferable local features, in
Fig. 4(d), we take images from two classes that share some
semantic attributes (Bicycle and Motorbike share notions of
wheel) and one very different class (Shoe). Further, here,
Bicycle is a seen class and Motorbike is an unseen class. As
expected, from Fig. 4(d), there is clear discrimination be-
tween Shoe and the other two. The features for Bicycle and
Motorbike, while separated themselves, are closer to each
other than Shoe. This shows while CEM representations
are discriminative, they generate are some concepts that
are shared across these classes, helping generate unseen-
class representations (Motorbike here). Fig. 4(e) shows an-

other similar example. In Fig. 4(f), we take images from
four related but different classes (Circle, Donut, Moon, and
Bracelet) that share some semantic concepts (e.g., the cir-
cle theme) and a completely different class (Shoe). We can
see all the circle-themed classes are clustered in the same
larger region (although each class has its own separate sub-
region) when compared to Shoe, providing further evidence
that CEM is indeed learning transferable local features.

5. Summary

We considered the relatively underexplored problem
of generalized unseen-class and unseen-domain image re-
trieval and proposed a new framework, Semantic Con-
trastive Concept Network (SCNNet), comprising two key
innovations. First, unlike existing work that used global ob-
ject representations, we proposed a trainable local concept
extraction and representation module that uses the learned
concepts to produce local representations for unseen-class
images. Next, to help generalize across domains, SCN-
Net proposed to leverage freely available textual data from
the natural language modality to mine supervision signals.
Here, our key novetly was to use relative semantic ordinal
distance constraints as opposed to mapping image-text fea-
tures to the same point. We conducted extensive experi-
ments on standard datasets to demonstrate both state-of-the-
art performance.
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