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Abstract

Applications based on image retrieval require editing
and associating in intermediate spaces that are represen-
tative of the high-level concepts like objects and their rela-
tionships rather than dense, pixel-level representations like
RGB images or semantic-label maps. We focus on one such
representation, scene graphs, and propose a novel scene
expansion task where we enrich an input seed graph by
adding new nodes (objects) and the corresponding rela-
tionships. To this end, we formulate scene graph expan-
sion as a sequential prediction task involving multiple it-
erations of first predicting a new node and then predicting
the set of relationships between the newly predicted node
and previously chosen nodes in the graph. We propose and
evaluate a sequencing strategy that retains the clustering
patterns amongst nodes. In addition, we leverage external
knowledge to train our graph generation model, enabling
greater generalization of node predictions. Due to the in-
efficiency of existing maximum mean discrepancy (MMD)
based metrics standard for graph generation problems, we
design novel metrics that comprehensively evaluate differ-
ent aspects of node and relation predictions. We conduct
extensive experiments on Visual Genome and VRD datasets
to evaluate the expanded scene graphs using the standard
MMD based metrics, as well as our proposed metrics. We
observe that the graphs generated by our method, GEMS,
better represent the real distribution of the scene graphs
compared with baseline methods like GraphRNN.

1. Introduction
Creative photographers are gifted with the ability to

imagine a set of concepts - objects and inter-object rela-
tionships - to capture in a photograph. However, they spend
prohibitively expensive amount of time arriving at the kinds

*The first four authors contributed equally to this work and was done
while authors were at Adobe Research.

of scenes that contain a seed set of concepts they desire to be
present in the photograph. Hence, it is desirable to empower
them with recommendations of a wide variety of diverse and
rich plausible scenes that contain these seed concepts. We
wish to devise algorithms that can be leveraged to provide
the user with effective recommendations of scenes that sub-
sume the seed concepts while ensuring they are richer than
the seeds represent themselves.

To this end, we express the seed concepts in the form
of a scene graph [41, 19] and cast the task of producing
more complete scenes as that of generating plausible novel
scene graphs that contain the input seed graph. Specifically,
we propose a novel scene expansion problem - given a seed
graph, can we enhance it by the addition of objects so that
the new graph corresponds to an enriched scene while sat-
isfying the following requirements: (a) the proposed addi-
tions respects object co-occurrence patterns observed in the
training set; (b) the enhanced scene graph is novel with re-
spect to the existing collection of graphs; and (c) it is possi-
ble to generate diverse graph expansions for the same seed.

The space of generative models for unconditional gen-
eration of molecular graphs has received much attention
[12, 33, 17, 32, 1] recently. Specifically, the auto-regressive
models [10, 42] that have been shown to work well for
molecular graph generation can potentially be repurposed
for our task of scene graph expansion. However, the com-
plexity of the graphs considered in these works tend to
be several orders of magnitude smaller than scene graphs,
in terms of the number of distinct types of nodes and
relationship-edges. Moreover, these methods implicitly re-
quire the graphs to be connected, which is not necessarily
a characteristic of the scene graphs that we deal with. In
addition, scene graphs tend to be more diverse than molec-
ular graphs. For these reasons, the above mentioned auto-
regressive models that are proposed for graph generation
cannot be used as-is for the scene graph expansion problem
that we tackle.
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Motivated by this, we design a novel auto-regressive
graph expansion model, GEMS - Graph Expansion Model
for Scenes, drawing inspiration from [42] that can generate
graphs of various lengths (unlike [8, 33, 2]). We first flatten
the scene graphs into sequences where each node in the se-
quence is connected by relationships with previous nodes in
the sequence. Our proposed sequencing method tries to en-
sure that groups of objects connected in the scene graph oc-
cur close by in the resulting sequence, this ensures that the
model learns an approximate notion of motifs [44]. Graph
expansion then becomes a sequential prediction problem,
where node generation precedes edge generation. Due to
the imbalance in edge-types in scene graphs we use a class-
rebalancing loss that helps produce higher quality graph ex-
pansions by avoiding predictions of degenerate edge-labels.
Further, we incorporate external knowledge derived from
the language domain for better generalization of node pre-
dictions to encourage generation of a diverse set of related
node predictions. Our proposed method is then thoroughly
evaluated using a set of standard metrics for the graph syn-
thesis task (as in [10]). Where existing metrics do not pro-
vide a holistic view of scene graph expansion quality, we
propose novel metrics specifically tailored for the task con-
sidered here. We summarize our key contributions below.

• We propose a novel scene expansion task that deals
with enhancing a given seed graph by the addition
of new objects and relationships so that the enhanced
graph corresponds to an enriched scene.

• We design an auto-regressive model, GEMS, for con-
ditional generation of scene graphs that generates
nodes and edges hierarchically in a dependent manner.

• We propose a novel graph sequencing method
(Cluster-Aware BFS) aimed at capturing object co-
occurrences, and we subsequently illustrate the ben-
efits of this method.

• To circumvent the drawbacks of traditional evaluation
methodologies, we propose additional metrics to eval-
uate the generated scene graphs to capture the coher-
ence of predicted edges and nodes.

Through extensive experiments on Visual Genome [21]
and VRD [25] datasets, we show that our model outper-
forms the GraphRNN based baseline models comprehen-
sively along most of the metrics, and is competitive with [9]
that introduces complementary ideas to ours.

2. Related Work
The relevant literature is introduced from the following

two aspects: (1) Scene Graph Extraction (2) Generative
Models of Graphs.

2.1. Scene Graph Extraction
The standard task known as scene graph generation [34,

26] involves constructing a graph with nodes as objects
and their attributes, with edges being relationships between
them. This task involves producing a graph from image
input, and is referred to as “extraction” in the rest of this
paper. Broadly, scene graph extraction methods fall into
two categories. First, referred to in this paper as Inter-
nal Knowledge, refers to the works [22, 5, 45, 20] where
the features that are leveraged to produce the graph origi-
nate from only the image of interest. At a high level, scene
graph extraction operates by detecting objects and their re-
gions within the image followed by a relationship identi-
fication model sub-component that labels the connections
between the objects. Subsequent works have attempted to
address the issue arising from biased nature of the training
data caused by the long-tail of infrequently occurring rela-
tionships [7, 35]. The second line of work in scene graph
extraction leverages External Knowledge in the form of
word embeddings [25] for the object and relationship class
names as a prior from the language domain. Scene graph
extraction methods that combine information internal to the
image with external knowledge have shown increased levels
of accuracy [43, 13].

Our work differs from these two lines of works in that we
do not have access to the input image to extract the visual
features. I.e., our input is in the form of a scene graph,
with no access to the image modality. Hence, similar to the
second line of work, we leverage external knowledge – as
representations for nodes and edges, as well as a regularizer
for the nodes and edge prediction tasks. We invoke state-
of-the-art generative models of graphs, described next, to
expand the given seed graph.

2.2. Generative Models of Graphs
Graphs are a powerful and natural representation of the

data in many application settings. And, as with many
other domains, generative models trained over a set of ob-
served graphs have received much recent attention [14].
Most existing work considers molecular graphs, where sam-
pling from a trained model allows the generation of novel
molecules, the core objective of drug design. Variational
Auto-Encoders (VAEs) are a popular method within this
class of models [12, 33, 17, 32], and so are Generative Ad-
versarial Networks (GANs) [1]. In the current paper, we
consider scene graphs derived from images, where spar-
sity [6] needs to be specifically addressed since most object-
object pairs do not have a relationship between them. In ad-
dition, scene graphs tend to be diverse, a characteristic they
share with graphs from few other domains [24, 42].

The closest to our work is SceneGraphGen [9] and
VarScene [37] that both introduce several complementary
ideas. We differentiate our work on three main aspects: (1)
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We define a custom sequencing function that tries to ensure
that groups of objects connected in the scene graph occur
close by in the sequence. (2) Similar to recent work on
scene graph extraction from images, we show how the use
of external information about object-object similarities can
guide the model toward scene graphs that are more coher-
ent. (3) Our exhaustive experimental evaluation also pro-
poses novel metrics for the scene graph expansion task.

3. Problem Description and Model

We are given a collection of observed scene graphs G =
{G} where each G corresponds to an image and is repre-
sented by G = (V,E) - a set of vertices V ⊆ V and di-
rected, labelled edges E ⊆ {(u, e, v)|u, v ∈ V, u ̸= v, e ∈
E} that connect pairs of objects in V . Here, V is the set of
distinct objects found in the collection of scene graphs and
E is the set of unique relationships. Our objective is to take
a graph Gs /∈ G and expand it into Ĝs such that Gs is a
subgraph of Ĝs. Drawing inspiration from [23, 42] we con-
vert the graph into a sequence and transform this problem of
graph expansion into sequential prediction. That is, under a
node ordering π ∈ Π, a graph G is flattened into a sequence
S(G) = {(vi, Ei)}ni=1, where vi ∈ V indexes the ith node
in the sequence induced by π. And Ei = {Ei,j}j<i is a list
containing edge information for node i with every node j
before it in the sequence. Since scene graphs are directed,
we take each Ei,j = (ei,j , ej,i) to be a pair of relationships
- one in each direction - with ei,j denoting the relationship
from vi to vj .

3.1. Cluster-Aware BFS
Critical to being able to train graph generation models

is the role of the process that converts a graph G into a se-
quence S(G). GraphRNN [42] uses a breadth-first strat-
egy (BFS) while GraphGen [10] uses a depth-first traversal.
Both these options require the input graph to be fully con-
nected. The input scene graphs in our context often con-
tain disconnected components, these correspond to natural
scenes where part of the image may not have relationships
with objects in other parts. We have observed that strategies
that artificially convert the given scene graphs into fully-
connected graphs (e.g. with the help of dummy nodes and
edges) exacerbates the problems due to the skewed distri-
butions of objects and relationships. Additionally, as we
might intuitively expect, some sets of objects co-occur fre-
quently across the dataset of observed graphs. In an attempt
to encourage the model to better handle clusters of objects
that occur together, we devise a method that ensures that
objects in the same cluster are close by in the sequence. For
any given scene graph, we first identify its maximal con-
nected subgraphs. We obtain the BFS sequence for each
subgraph with a randomly chosen starting node. The se-
quence for the scene graph is obtained by concatenating

subgraph sequences in random order. Randomizing across
subgraphs before concatenation is aimed at introducing ro-
bustness with respect to the input seed graph.

As previously defined, S(G) can be thought of as a ma-
trix where row i holds information about vi and its relation-
ships with the objects occurring previously in the sequence
(in rows before i). We use the shorthand Si for all informa-
tion about the ith node in the sequence for graph G, and S<i

for all nodes and edges occurring before it. Similarly, Ei
contains information about edges incident on the ith node,
and Ei,<j denotes the edges between vi and all nodes upto
j, i.e. {vk}k<j . A likelihood can now be defined for the
sequence:

P (S(G)) =

nG∏
i=1

P (vi|S<i)× P (Ei|S<i, vi) (1)

P (Ei|S<i, vi) =
∏
j<i

P (Ei,j |S<i, Ei,<j , vi, vj) (2)

3.2. Hierarchical Node and Edge Prediction
The expansion of graph sequence occurs in steps, we first

predict a new node v̂i and then a set of relationships between
v̂i and previous nodes in the sequence. In the current pa-
per, both P (vi|S<i) and P (Ei,j |S<i, Ei,<j , vi, vj) are mod-
eled separately by recurrent neural networks, given by fnode
and fedge respectively, with the corresponding parameters
shared across different steps. Prediction of v̂i is defined as:

v̂i ∼ fnode(Si−1, hnode(S<i)) (3)

That is, the prediction of the ith node in the sequence de-
pends on Si−1 and the hidden state of fnode from the previ-
ous step. Correspondingly, the prediction of the new edge
pair (êi,j , êj,i) is given by:

êi,j ∼ fedge(vi, vj , hedge(S<i, Ei,<j)) (4)

êj,i ∼ fedge(vj , vi, hedge(S<i, Ei,<j , êi,j)) (5)

Note that in our formulation we first predict ei,j and then
ej,i. For edge prediction, we explicitly provide vi and vj
as inputs into fedge because the existence of an edge be-
tween two nodes, as well as its label, is more dependent on
the local context (the nodes) than the rest of the graph. The
objects and relationships are sampled from multinomial dis-
tributions, making our model a Dependent Multinomial Se-
quence Model (rather than Bernoulli sequences as in [42]).
Our training objective is a combination of the losses com-
puted on node and edge predictions:

L(G) =
∑
i∈V

lnode(pvi , pv̂i) +
∑

j<i;(vi,e,vj)∈E

ledge(pei,j , pêi,j )

+
∑

j<i;(vj ,e,vi)∈E

ledge(pej,i , pêj,i)

(6)
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We define the node prediction loss as:

lnode(pvi , pv̂i) = H(pvi , pv̂i) (7)

Where, H is the cross-entropy loss between a 1-hot encod-
ing for the node label of vi (pvi

) and the corresponding pre-
dicted probability pv̂i

for v̂i . Similarly, the edge prediction
is defined as,

ledge(pei,j , pêi,j ) =
1− β

1− βNe
H(pei,j , pêi,j ) (8)

Where, pei,j is the 1-hot encoding of the ground-truth edge
type, pêi,j is the is the probability distribution of predicted
edge type between vi and vj , and Ne is the number of in-
stances of this edge across the dataset. This loss is a class
balanced loss [4] designed to tackle highly skewed distri-
bution across relationship classes [35], so as to produce a
model that is less prone to predicting degenerate edges.

3.3. External Knowledge
Cross-entropy is a very strict loss, in the sense that near

misses (predicting a node that is semantically similar but not
the ground-truth node) are not considered different from ob-
vious errors. To encourage generalization of predicted node
labels, we add an additional loss term H(pv̂i , qi), where,

qi = min
q

KL(q, pv̂i)− Ev∼q[f(v, vi)] (9)

f(v, vi) is the similarity between vi and v̂i as obtained
from external knowledge, and KL is Kullback-Leibler Di-
vergence. qi is a proxy label that is dependent on both -
the model prediction (v̂i) and the ground-truth (vi). Intu-
itively, picking a qi ∝ pv̂iexp(f(v, vi)) provides us with
a node that is similar (but different) to the ground-truth as
captured by the similarity function f . By employing alter-
nate functions (e.g. cosine similarity between word embed-
dings), we reduce the penalisation on the model by effective
use of side information [16, 43]. The node prediction loss
thus becomes:

lnode(pvi , pv̂i) = (1− α)H(pvi , pv̂i) + αH(pvi , qi)
(10)

where α is a hyperparameter.

3.4. Inference
We convert the input seed graph Gs into a sequence

S(Gs). Using GEMS, we extend the sequence by progres-
sively adding nodes and edges. To add a new node, we
compute the distribution over node labels using the network
fnode and sample from this multinomial distribution. To
add a relationship between nodes vi and vj , we pick the
most probable edge label between the two nodes as pre-
dicted by fedge. In this way, the seed graph Gs is sequen-
tially expanded to provide Ĝs (an enhanced scene).

Algorithm 1 Extraction of Seed Graph
Input: Scene Graph G
Parameter: k← Number of seed graphs
Output:
S ← set of maximal connected components in G
seedgraph = []
for g ∈ S do
PR← empty dictionary
for n ∈ nodes(g) do
PR[n] = PageRank(n) in g

end for
subG← set of all subgraphs of g
pr ← empty list
for i in range(len(subG)) do

pr[i] =
1

|nodes(subG[i])|
∑

n∈nodes(subG[i]) PR[n]

end for
X ∼ Normalize(pr)
seedgraph[g]← k samples from X

end for
return seedgraph

4. Experiments
In this section, we provide empirical validation for

the method described earlier. We begin by outlining the
datasets and experiment design used.
4.1. Datasets

Our experiments use two publicly available standard
datasets that have ground truth scene graph information.
For Visual Genome, we utilize the preprocessed version
from [40], containing 150 object classes and 50 rela-
tion classes. The dataset contains human-annotated scene
graphs on 108, 077 images. Each scene graph on average
contains 11.09 objects and 5.01 relationships. We use 70%
of the images for training and validation, and the remain-
ing 30% for testing. Similarly, the Visual Relationship
Dataset(VRD) dataset contains 100 object classes and 70
relation types. The dataset includes 5000 images, of which
we use 80% of the images for training and validation, and
the remaining 20% are retained for testing.
4.2. Implementation Details

The two RNNs, fnode and fedge, are implemented as
4 layers of GRU cells. We use teacher forcing [39] dur-
ing training, where the ground-truth of observed sequences
(nodes & edges) are used, but model predictions are used
during inference. Model fitting utilizes Stochastic Gra-
dient Descent with Adam Optimizer and minibatches of
size 32, with the learning rate set to 0.001. α and β are
set to 0.2 and 0.9999 respectively in all experiments. We
use pre-trained GloVe embeddings [29] as inputs into the
model for node and edge labels. For each new predicted
node, GEMS predicts edges with k-previous nodes denoted
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Visual Genome VRD
GraphRNN GraphRNN* SceneGraphGen GEMS GraphRNN GraphRNN** SceneGraphGen GEMS

MMD

Degree (x102) ↓ 47.47 16.44 6.97 2.11 10.94 7.94 4.44 9.91

Clustering (x102) ↓ 18.63 4.05 0.26 0.86 16.08 1.21 2.58 3.96

NSPDK* (x103) ↓ 22.60 5.10 0.73 1.21 6.62 6.57 2.85 4.09
Node Label (x104) ↓ 5.44 5.26 5.92 5.19 30.70 27.01 24.82 25.11
Edge Label (x102) ↓ 22.38 6.19 0.83 1.13 1.06 0.39 0.60 1.97

Node Metrics
Count Reference 11.09 7.01

Count Predicted 29.53 13.84 7.89 10.17 7.24 7.59 6.41 7.81

(Obj)K (x102) ↑ 83.7 86.9 93.1 92.9 87.7 85.9 93.1 91.1

Edge Metrics
Count Reference 5.01 7.11

Count Predicted 57.95 11.86 5.15 7.45 10.64 6.39 7.03 8.52

MEP (x102) ↑ 22.4 24.52 53.50 35.81 17.94 12.40 37.43 27.22

Novelty (x102) ↑ 12.26 57.59 87.37 75.75 20.22 25.39 9.48 12.98

Diversity (x102) ↑ 96.70 98.73 79.62 91.68 90.92 93.73 75.09 88.80

Table 1. Comparison of our method (GEMS) with the baselines [42] and [9] on Visual Genome [21] and VRD [25] datasets. For MMD
metrics, lower is better (↓). For remaining metrics, larger is better (↑). GraphRNN* and GraphRNN** referes to GraphRNN with
max prev node = 6 and 7 for Visual Genome and VRD respectively. Note: red and represents best and blue second best scores.

by max prev node. We set max prev node empirically
by choosing the value which covers 99th percentile of all
graphs in the dataset. Note that this leads to a loss of in-
formation (some relationships are ignored), and is an effi-
ciency trade-off. The value of max prev node for Visual
Genome and VRD used are 6 and 7 respectively. More de-
tails are provided in the supplementary. The GEMS model
is trained on the observed scene graphs in the training set -
the strategy to construct seed graphs is described in Algo-
rithm 1, and the experiments reported here used k = 1.
The groundtruth used for evaluation are seed-graph and
expanded-graph pairs derived from the test set, where the
complete observed test scene graphs are taken to be the de-
sired completions and seed graphs are derived from them
again as in Algorithm 1.

4.3. Baselines

Since scene graph expansion is a novel task there
are no prior baselines. For our purpose, we transform
GraphRNN [42] to work for scene graphs containing bi-
directional edge-relations between nodes. Another variant
of GraphRNN is used as a baseline, GraphRNN* where
max prev node is set to 6 and 7 respectively for Visual
Genome and VRD. We observe that having a smaller value
of max prev node helps the model generate nodes and
edges whose count distributions match that in the reference
training set. We also compare our method against Scene-
GraphGen [9], which, though mainly focuses on the uncon-
ditional generation of scene graphs, can be leveraged for
scene graph expansion. More details of how we transform
GraphRNN to work on scene graphs and SceneGraphGen’s
implementation are provided in the supplementary.

GraphRNN*
GraphRNN*

(w/ CBFS)
GEMS
(α = 0)

GEMS

MMD
NSPDK* (x103) ↓ 5.10 0.47 1.39 1.21

Node Label (x104) ↓ 5.26 5.14 5.16 5.19

Edge Label (x102) ↓ 6.19 1.70 1.07 1.13

Node Metrics
Count Reference 11.09

Count Predicted 13.84 9.70 9.23 10.17

(Obj)K (x102) ↑ 86.9 92.8 92.6 92.9

Edge Metrics
Count Reference 5.01

Count Predicted 11.86 2.74 6.84 7.45

MEP (x102) ↑ 25.52 19.9 35.40 35.81

Table 2. Evaluation of different components of our method
on Visual Genome: GraphRNN with max prev node =
6 (GraphRNN*); GraphRNN* with Cluster-Aware Sequencing
(GraphRNN* w/ CBFS); Our method without the use of exter-
nal knowledge in the node loss (GEMS(α = 0)); The final model
GEMS including all components.

4.4. Evaluation Protocol

Evaluation of generative models is a difficult task [36].
Current practice within the graph generation community is
the use of Maximum Mean Discrepancy (MMD) as a way to
characterise the performance of alternative models. Given
two samples of graphs G1 = {G11, G12, ..., G1m} ∼ G
and G2 = {G21, G22, ..., G2n} ∼ G, the MMD between
these two samples – MMD(f(G1), f(G2)) – is charac-
terised by two factors: (1) a descriptor function, referred
to as f , that returns a distribution of some chosen prop-
erty over the set; and (2) a kernel function that computes
the distance between the distributions. We consider three
classes of descriptor functions capturing Structural (num-
ber of nodes, number of edges, node degree, clustering co-
efficient), Label (node and edge types) properties of the
graphs, as well as Sub-Graph Similarities (referred to
NSPDK from [3]).
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(a) (b) (c)

Seed Graph

GraphRNN*

SceneGraphGen

(d)

GEMS

Figure 1. Comparison of expanded graphs generated by our model (GEMS) v/s baseline GraphRNN* (GraphRNN with max prev node =
6) and SceneGraphGen on Visual Genome seed graphs. Our model generates plausible relationships between objects, while GraphRNN*
sometimes predicts irrelevant relationships.

The complexity of evaluating MMD is quadratic with re-
spect to the number of samples in each set [11]. Computing
MMD over subsets of the test set is one way to handle the
computational cost of evaluation. Others [24, 9] propose
alternative faster kernels to achieve the same purpose. The
area of evaluation of graph generation models remains an
open and active topic [27], our future work will look into
the effects of these design choices. In the current work, we
have followed the [10] and for Visual Genome we report the
average value of MMD metrics calculated on 4 independent
test set splits. For VRD, we calculate MMD metrics on the
entire test set. Our choice of kernel for MMD computation
is the commonly used Gaussian kernel. In the results, we
also report Novelty, as defined by [10], which computes the
fraction of expanded scene graphs that are not sub-graph
isomorphic to graphs in the training set. In the next sec-
tion, we describe other metrics customized to the domain of
scene graph generation.

In addition, similar to [9], we evaluate the quality of im-
ages generated from the expanded scene graphs between
our method and the baselines using traditional metrics to
evaluate quality of synthesized images, namely, Fréchet
Inception Distance (FID) [15], Precision (F8) and Recall
(F1/8) [30], and Inception Score (IS) [31]. The images are
generated from the expanded scene graphs using pretrained
models for Visual Genome dataset in sg2im [18] at a resolu-
tion of 64x64. The generated images are compared against
Ground-truth images from the Visual Genome dataset.

4.4.1 Metrics for Scene Completion

In this section, we introduce two new metrics to evaluate the
output of scene graph generation methods. While we are
utilizing them in a conditional setting, they are also valid
for unconditional generation.
Top-K Object Co-occurrence (Obj)K The co-occurrence
of a pair of objects in a set of graphs is calculated as the

conditional probability of observing the pair in a scene
graph given that one of the objects is present in the scene
graph. We compare the co-occurrence of the K-most com-
monly observed pairs of objects in the test set with the co-
occurrence of the corresponding pairs in the generated set
of graphs as follows:

(Obj)K = 1− 1

K

∑
vi,vj ∈

topK(Ptest)

| Ptest[i, j]− Pgen[i, j] | (11)

Here, Ptest (Pgen) is a matrix such that entry (i, j) is the co-
occurrence of the pair of objects (vi, vj) in the test set (and
generated set respectively). In combination with the other
metrics, (Obj)K rewards a model that generates graphs
containing coherent sets of objects.
Modified Edge Precision (MEP) is a metric inspired from
modified n-gram precision [28] popularly used in NLP:

MEP = min(1, exp(1−r/c))︸ ︷︷ ︸
BrevityPenalty

×
∑

e∈GE∩(DE∪TE) 1∑
e∈GE

1︸ ︷︷ ︸
EdgePrecision

(12)

Here, GE , DE and TE refer to the set of directed edges
present in the generated graph G, the training set and the
test set respectively. The variable r is the average number
of edges in the reference graphs, taken to be the set of test
graphs containing the seed graph Gs for which G is the ex-
pansion. c is the number of edges in the expanded scene
graph G. Note that this metric brings information orthog-
onal to the others, as shuffling the edge labels in a scene
graph would yield the same score on the remaining metrics.

In addition, we use an alteration to the Neighbourhood
Sub-graph Pairwise Distance Kernel (NSPDK) based MMD
metric. NSPDK computes the distance between two graphs
by matching pairs of sub-graphs with different radii r and
distances d. Since the Node label MMD already does a
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(a) (b) (c)

Seed

Graph

Expanded

Graph

Generated

Image

(d)

Figure 2. Examples of images generated by sg2im [18] using expanded scene graphs from seed graphs using our method (GEMS).

FID (↓) Inception (↑) Precision (F8) (↑) Recall (F1/8) (↑)
GraphRNN* 173.72 4.49 ± 0.06 0.031 0.185

SceneGraphGen 157.80 5.15 ± 0.135 0.040 0.235
GEMS 160.65 5.11 ± 0.1 0.045 0.240

Table 3. Comparison of the quality of images generated using
sg2im [18] on the expanded scene graphs by different models for
the same seed scene graph on Visual Genome dataset. Note: red
represents best and blue represents second best scores.

node-level comparison, we exclude (r, d) = (0, 0) and start
from (r, d) = (0, 1) instead. The altered metric, referred to
as NSPDK* in the results, better captures the contribution
of larger sub-graphs.

4.5. Main Results

Table 1 shows the comparison of graphs generated by
GEMS and baselines methods in different metrics. For Vi-
sual Genome, our model outperforms the GraphRNN based
baseline methods by a significant margin on all metrics
demonstrating that graphs generated by our method are
more meaningful and more closely resemble the observed
scene graph distribution. For VRD our method shows com-
parable results to GraphRNN*, but outperforms GraphRNN
in almost all metrics. We also provide SceneGraphGen
results. A key contributor for SceneGraphGen’s perfor-
mance are the architectural advances that we do not use
in our work. Still our method outperforms SceneGraph-
Gen in terms Node Label and Degree MMD metrics for
Visual Genome dataset, indicating better node predictions
in the expanded scene graphs for Visual Genome. Fig-
ure 1 shows a qualitative comparison of graphs generated
by GEMS and GraphRNN*, and SceneGraphGen. We note
that GEMS is able to produce relationships amongst nodes
that are more semantically meaningful. For e.g., we see re-
lationships of the form surfboard − wearing − arm and
snow − has− pole from GraphRNN*.

Table 3 shows a comparison of the quality of images
generated using the pre-trained sg2im [18] on the expanded

scene graphs by our model and the baselines for the same
seed graph on Visual Genome dataset. Our model performs
better in terms of Precision and Recall compared to all the
baselines. For FID and Inception however, SceneGraph-
Gen slightly outperforms GEMS. From an application per-
spective, it is important for our model to be able to produce
novel and diverse, but plausible, scene graphs that can then
be used as input conditioning for image synthesis models.

Figure 2 shows a few examples of seed graphs, the corre-
sponding expanded scene graphs generated by our method
(GEMS), and the images generated by sg2im [18] using
the expanded scene graphs. We can see that from an ab-
stract seed graphs like roof − on− building or person−
wearing − jacket, we are able to generate complete and
meaningful scenes like a building having a large clock at
the front or a person wearing jacket on a snowy mountain.

4.6. Ablation Study

4.6.1 Cluster-Aware BFS

From Table 2, it can be observed that Cluster-Aware BFS
drastically improves the performance on NSPDK* and
(Obj)k indicating that the generated graphs contain simi-
lar clusters of co-occurring objects as in the set of graphs in
the training set. Figure 3 (last 2 rows) qualitatively shows
the benefits of our Cluster-Aware BFS strategy for convert-
ing graphs into sequences. For e.g., (l) adds the cluster -
window,windshield, bus to the seed graph because these
3 objects would occur together in observed scenes. In (o)
flower, table are added to seed graph vase − on − stand
as flower and table occur together with vase and stand.

4.6.2 Subject-Object Context & Class-Balancing Loss

Adding subject-object context to EdgeRNN for edge pre-
diction enables the model to predict more meaningful re-
lationships. Additionally, Class-balancing Loss is required
to tackle the skewness in our scene graph dataset such that
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GEMS w/ External Knowledge Loss
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Figure 3. The behavior brought by each component of our model
in isolation (Middle and Right column results are without and with
using a component respectively). 1st two rows show the benefits
of Subject-Object addition to edge prediction model, the use of
GloVe embeddings and class-balancing edge loss. 3rd depicts ad-
vantage of using external-knowledge for node prediction. The last
two rows show the advantage of Cluster-Aware BFS.

model produces a more diverse set on relationships. The
Edge Metrics in Table 2 show significant improvement in
MEP and edge count compared to models without these
components, thereby validating our hypothesis. Via our
qualitative examples, we notice that the expanded graphs
are not dominated by the on and with relations that oc-
cur very frequently in the Visual Genome dataset. Instead,
a richer and more diverse set of edges (e.g. parked on,
wearing, riding, walking on, walking) are generated.

4.6.3 External Knowledge Loss

Adding external knowledge helps in the addition of rela-
tively similar but diverse nodes and not repeated node la-
bels. This evident from the middle coloumn of Figure 3 .
In (h) the model adds window several times to bus, but in
(i) the models adds both window and windshied (different
node labels but similar in terms of glove embeddings used
in the external-knowledge loss). From Table 2, it can be
seen that adding external-knowledge loss improves (Obj)k.

4.6.4 Multiple Outputs

At every step of GEMS, a node is first sampled from the
multinomial distribution over node labels (output of fnode),
and edges are added from previous sampled nodes to the
new one (by fedge). This process continues until an end-of-
sequence node token is obtained. Our model can be used to
generate M alternative expansions of the same seed scene
graph by invoking the sampling process multiple times with
different seeds – Figure 4 provides qualitative examples.

For quantitative evaluation, we define a diversity metric,
from a set of M(= 3) expansions, we exclude the expansion
that is sub-graph isomorphic to one of the other expansions,

Seed
Graphs

Expanded
Graphs

(a) (b)

Figure 4. Three different scene graph expansions produced by our
model (GEMS) for the same input seed graph. GEMS not only
adds diverse objects to the seed graph but also generates diverse
visual scenarios.

and compute the percentage that remains. The results pro-
vided in Table 1 suggest a bias-variance trade-off. Across
datasets, GraphRNN* has higher diversity, indicating that
the predicted distribution over node labels at every step is
flatter. Encouraging our GEMS model to produce diverse
variations, while still respecting the training set distribution
remains a topic for future work.

5. Discussion and Conclusion
In this paper, we considered the novel task of scene

graph expansion – given an input seed scene graph, we en-
hance it by the addition of objects and relationships. The
output, representing a more complex scene, is expected to
respect co-occurrence patterns between objects and their re-
lationships, while being novel with respect to the training
set. Doing so automatically is enabled by the use of genera-
tive models of graphs, which provide a scalable mechanism
to model real world graphs in multiple domains.

Our extensive experimental section illustrated that the
standard MMD based evaluation does not highlight all be-
havioral characteristics of the models. In particular, we
confirm the observation made by others that while mod-
els achieve satisfactory results on object-centric prediction
tasks, modeling relationships is harder [38]. We propose
new metrics specifically focussed on this aspect, and com-
pare our models and baselines on the new metrics. How-
ever, evaluation of conditional and unconditional generation
of scene graphs remains challenging. In particular, the de-
sign of metrics that capture the semantic plausibility of a
generated scene graph is an important future direction.

From an application perspective, we have shown that the
graph expansion mechanism allows us to generate candidate
enriched scenes that can be provided as recommendations
to creatives composing complex scenes. Leveraging exter-
nal knowledge via embeddings from the linguistic domain
allows our model to produce semantically realistic scene
graph completions. Our autoregressive model also allows
us to produce multiple diverse completions for the same in-
put. Future work will aim to couple the graph and image
domains, towards the end goal of scene synthesis.
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