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Abstract

In action recognition, although the combination of
spatio-temporal videos and skeleton features can improve
the recognition performance, a separate model and bal-
ancing feature representation for cross-modal data are
required. To solve these problems, we propose Spatio-
TemporAl cRoss (STAR)-transformer, which can effectively
represent two cross-modal features as a recognizable vec-
tor. First, from the input video and skeleton sequence,
video frames are output as global grid tokens and skeletons
are output as joint map tokens, respectively. These tokens
are then aggregated into multi-class tokens and input into
STAR-transformer. The STAR-transformer encoder consists
of a full spatio-temporal attention (FAttn) module and a
proposed zigzag spatio-temporal attention (ZAttn) module.
Similarly, the continuous decoder consists of a FAttn mod-
ule and a proposed binary spatio-temporal attention (BAttn)
module. STAR-transformer learns an efficient multi-feature
representation of the spatio-temporal features by properly
arranging pairings of the FAttn, ZAttn, and BAttn modules.
Experimental results on the Penn-Action, NTU-RGB+D 60,
and 120 datasets show that the proposed method achieves
a promising improvement in performance in comparison to
previous state-of-the-art methods.

1. Introduction

Action recognition is a traditional research topic that
classifies human actions using video frames and has been
applied in various applications, including human-robot in-
teraction [3], healthcare [36], and video surveillance [18].
With the recent development of deep learning, action recog-
nition research trends have been divided into three ap-
proaches. First, in a video-based approach [56, 4, 46, 30,
22, 33, 21], deep learning models use only video frames to
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Figure 1. The proposed STAR-transformer takes a multi-class to-
ken as input and transforms it into a class-separable multi-feature
representation. The multi-class token is an aggregation of global
grid and joint map tokens obtained by feeding video and pose se-
quences into a shared CNN.

recognize the action. This approach results in a significant
degradation in performance owing to various noises from
the wild, such as differences in the camera angles and sizes
of the human targets and complex backgrounds. The second
is a skeleton-based approach [41, 6, 12, 17, 43, 19]. Actions
are recognized using human skeletons and joint trajecto-
ries in different time zones as inputs into the deep learn-
ing model. However, an additional deep learning model is
required to extract the human skeleton from an image. In
addition, the action recognition is largely dependent on the
accuracy of the skeleton extractor and the degree of overlap
of the skeleton. The third approach is the use of cross-modal
data, video, and skeletons together [15, 14, 39]. A deep
learning model learns the RGB of the video frames and hu-
man skeletal features together; thus, it generally shows a
high recognition performance. However, combining video
and skeleton data is an ambiguous process and requires a
separate submodel for cross-modal learning.

As a new learning paradigm in the deep learning field,
Vision Transformer (ViT) [16] has recently attracted atten-
tion owing to its excellent performance in various computer
vision fields such as image classification [26], image seg-
mentation [48], object tracking [52], and action recognition
[9]. The self-attention mechanism, which is a key element
of ViT, is specialized for determining the spatial relation-
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ship of each image and is effectively applied to image clas-
sification. However, in action recognition, the features of
long-range frames and multiple features that change over
time must both be considered; therefore, ViT based on the
existing multi-head attention mechanism has limitations in
terms of a high computational cost [27].

In this study, we propose a multi-feature representa-
tion method based on cross-modal learning and a Spatio-
TemporAl cRoss transformer (STAR-transformer) atten-
tion mechanism. For cross-modal learning, we propose
a method of aggregating the cross-modal data of spatio-
temporal video and a skeleton into a multi-class token to
solve the problem of combining cross-modal action data.
STAR-transformer consists of a new cross-attention module
that replaces the multi-head attention of a simple ViT. The
proposed STAR-transformer has demonstrated an excellent
performance through various experiments.

Figure 1 shows the overall operational structure of
STAR-transformer. Two cross-modal features are fed into
the shared convolutional neural network (CNN) model and
separated into multi-class tokens. STAR-transformer con-
sists of an L-layer encoder–decoder output separable multi-
class feature, which is used as input for the downstream ac-
tion recognition network.

The contributions of this paper can be summarized as
follows.

• Cross-modal learning: It is possible to flexibly ag-
gregate spatio-temporal skeleton features as well as video
frames and effectively learn cross-modal data to create
multi-class tokens.

• STAR-transformer: The existing self-attention mecha-
nism is limited to the application of action recognition be-
cause it focuses on the relation between spatial features.
We therefore propose a STAR attention mechanism that can
learn cross-modal features. The encoder and decoder of
STAR-transformer are composed of zigzag and binary skip
STAR attention.

• Various performance evaluation experiments: A per-
formance evaluation was conducted based on several bench-
mark datasets, and the proposed model showed a better per-
formance than existing state-of-the-art (SoTA) models.

2. Related Work
Video and image-based action recognition : It aims to

recognize actions using only sequential [56, 4, 46, 30, 43,
19] or still images [22, 21]. The general process of video-
based action recognition involves breaking the action into
smaller semantic components and understanding the impor-
tance of each component in action recognition [21]. Be-
cause this method uses video frames, it can be processed
using a simple single model. However, if the video is long,
the recognition speed will be slow and the performance will
be significantly affected by the various noises from the wild.

Skeleton-based action recognition: It aims to recog-
nize actions by applying a list of spatio-temporal joint co-
ordinates of video frames extracted from a pose estimator
to a graph convolutional network (GCN) [41, 12, 7], 3D-
CNN [17], and CNN [6]. A skeleton sequence has an ad-
vantage of being unaffected by contextual disturbances such
as changes in background and lighting [17] but has a dis-
advantage in that the recognition performance is largely de-
pendent on the pose extractor and requires an extra classifier
for recognition.

Video and skeleton-based action recognition: It aims
to achieve a high action recognition performance by fusing
multi-modal (cross-modal) information into an integrated
set of discriminative features [15, 14, 39, 35]. The video-
pose network (VPN) action recognition mechanism [14],
which uses cross-modal features and knowledge distillation
to infuse poses into RGB streams, has proven that cross-
modal features can achieve a better performance than uni-
modal features. Despite its relatively high recognition per-
formance, this method still has problems in the design of a
subnetwork for cross-modal learning and methods for com-
bining cross-modal data.

Transformer-based action recognition: Because a
transformer is a powerful tool in terms of long-range tem-
poral modeling when using a self-attention module [2], an
increasing number of studies in this area, particularly ac-
tion recognition, have been conducted [2, 5, 42]. Most ac-
tion recognition approaches using a transformer apply video
frames as input tokens [45, 20, 47, 53, 50, 33], and rel-
atively few methods use the skeleton [38, 34, 33] of the
transformer. However, transformer-based action recogni-
tion often suffers from high computational costs owing to
self-attention given to the large number of 3D tokens in a
video [27]. Moreover, an approach to coupling cross-modal
information using a transformer has yet to be developed.
Therefore, this study is the first attempt at using spatio-
temporal cross-modal data as input tokens for ViTs without
applying separate sub-models.

3. Approach
Figure 2 shows the overall structure of the proposed

action-recognition model based on the STAR-transformer
module. Sixteen video frames and the corresponding
skeleton sequences were received as input. Each frame
goes through the pre-trained ResNet mixed convolution
18 (MC18) [43] to extract local and global feature maps.
ResNet MC18 models are unsuitable for the proposed
zigzag and binary operations because they reduce the video
frame size after an operation. The global feature map,
which is the output of the last layer of ResNet MC18, is
transformed into a global grid token (GG-token) that rep-
resents the visual features of the images (Fig. 2 (a)). The
local feature map, the output of the middle layer of ResNet
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Figure 2. Overall architecture of the proposed action recognition model. (a) global grid token, (b) joint heat map, (c) joint map token, (d)
STAR-transformer module, and (e) encoder and decoder structure of STAR transformer. An encoder and a decoder have the same structure.

MC18, is combined with the joint heat map (Fig. 2 (b))
and then transformed into a joint map token (JM-token),
as shown in Fig. 2 (c). The JM tokens represent the lo-
cal features of each skeleton joint. The two tokens are ag-
gregated into a multi-class token and then fed into STAR-
transformer, as shown in Fig. 2 (d), to infer the final action
label.

3.1. Cross-Modal Learning

We first propose a cross-modal learning method that can
combine video frames and skeleton features. The video
frames are fed to ResNet MC18, and two feature maps are
extracted from the middle and last layers. Because the fea-
ture map of the middle layer contains more detailed local
features than the last layer, it is used for JM-token extrac-
tion, and the last layer is applied for GG-token extraction.

Global grid token (GG-token): Let a GG-token Tg

consisting of P tokens be Tt
g = {gt1, ..., gtP } in video frame

t . To extract the element of GG-token gtp from the t-th
frame, the input frame is adjusted to a size of 224×224, and
the global feature map generated through ResNet MC18 has
a size of h × w . The global feature map is again flattened
into a vector of size hw (P ), which becomes the number of
elements of Tt

g . Because a global feature map consists of C
channels, the number of dimensions of each element of Tt

g

is gtP ∈ RC . This process continues for every video frame,
and thus we can obtain T temporal GG-tokens, as shown in
Fig. 2 (a).

Joint map token (JM-token): In each t-th pose corre-
sponding to the t-th video frame, we obtain N joint heat
maps emphasizing joints for each frame and JM-token set
Tt
j = {j t1 , ..., j tN} based on such maps. First, local feature
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Figure 3. Multi-class token aggregation. (a) single class token
generation of pure ViT and (b) proposed multi-token aggregation
based on cross-modal learning.

maps F ∈ RC ′×h′×w ′
of ResNet MC18 are obtained. The

n-th joint heat map hn ∈ Rh′×w ′
is the result of projecting

the n-th joint onto a temporary map with a size of h ′ × w ′

and applying Gaussian blurring at a scale of σ. Because a
local feature map consists of C ′ channels, the number of
dimensions of each joint element of Tt

j is j tN ∈ RC ′
. The

joint element j tn on the t-th pose is obtained through the
concatenation (⊕) of the local feature map F and the n-th
joint heat map ht

n, as shown in the following equation:

Tt
j,n = ⊕C′

c′=1(

h′∑
i

w′∑
j

Fc′(i, j)× ht
n(i, j)). (1)

This process continues for every pose sequence, and thus
we can obtain T temporal JM-tokens, as shown in Fig. 2
(c).
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Figure 4. Proposed spatio-temporal cross attention modules. (a) full spatio-temporal attention (FAttn), (b) zigzag spatio-temporal attention
(ZAttn), and (c) binary spatio-temporal attention (BAttn) modules.

Multi-class token: To aggregate the GG- and JM-tokens
generated using cross-modal data, we propose a multi-class
token aggregation, as shown in Fig. 3. Pure ViT [16], shown
in Fig. 3 (a), focuses on learning the global relationships
between the input tokens using single-class tokens. How-
ever, the proposed action recognition model must coopera-
tively learn the multi-class tokens generated from the cross-
domain data. The proposed aggregation method of multi-
class tokens therefore effectively learns the characteristics
of different feature representations, as shown in Fig. 3 (b).

Multi-class token Z is created by concatenating (⊕)
the class tokens for a GG-token (CLSglob) and JM-token
(CLSjoint) as follows:

Tg = CLSglob ⊕ Tg, (2)

Tj = CLSjoint ⊕ (Tj + pos), (3)

Z = Tg ⊕ Tj ⊕ CLStotal (4)

where CLStotal is the class token for all tokens. Unlike a
GG-token, with a JM-token, the joint position information
pos is important, and thus pos is only added to the JM-
token.

3.2. Spatio-temporal cross attention

Inspired by [2], we first propose full spatio-temporal
attention (FAttn), as shown in Fig. 4 (a), which applies
the attention mechanism for all tokens within the spatio-
temporal dimension. When FAttn is applied to all tokens
of time dimension T and spatial dimension S, the complex-
ity increases to O(T 2S 2). However, because FAttn alone
is insufficient to handle spatio-temporal features, we pro-
pose two additional cross-attention mechanisms, i.e., zigzag
spatio-temporal attention (ZAttn), as shown in Fig. 4 (b),
and binary spatio-temporal attention (BAttn), as shown in

Fig. 4 (c). There is no need to pay attention to all tokens of
time dimension T . Instead, all tokens are divided into two
token groups for ZAttn and BAttn. When ZAttn and BAttn
are applied to all tokens of the time dimension T and spa-
tial dimension S, the computational complexity is reduced
by 0.25-fold in comparison to FAttn with O( 14T

2S 2) be-
cause the tokens in the time dimension are divided into two
groups.

We first obtain the same-sized query (Q), key (K ), and
value (V ) ∈ RS×T matrices from the multi-class token Z
and compute the FAttn outputs as follows:

ź = FAttn(Q,K, V ) (5)

FAttn(Q,K, V ) =

T∑
t

S∑
s

Softmax

{
Qs,t ·Ks,t√

dh

}
Vs,t

(6)
ZAttn learns the detailed process of changing actions.

To calculate ZAttn, the odd-numbered vectors in Z are di-
vided into ZQ′ ∈ RS×T/2, and the even-numbered vec-
tors in Z are divided into ZK ′ and ZV ′ ∈ RS×T/2 in
a zigzag manner, as shown in Fig. 4 (b). By contrast,
the odd-numbered tokens in Z are divided into ZK ′′ and
ZV ′′ ∈ RS×T/2, and the even-numbered vectors in Z are
divided into ZQ ′′ ∈ RS×T/2.

We calculate a′ ∈ RS×T/2 and a′′ ∈ RS×T/2 individ-
ually using the two types of matrices extracted in a zigzag
manner using the following formulas, and then concatenate
the outputs a′ and a′′ as the result of ZAttn.

a′ =

T/2∑
t

S∑
s

Softmax

{
ZQ′

s,t · ZK ′
s,t√

dh

}
ZV ′

s,t (7)
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a′′ =

T/2∑
t

S∑
s

Softmax

{
ZQ′′

s,t · ZK ′′
s,t√

dh

}
ZV ′′

s,t (8)

ZAttn(Q,K, V ) = a′ ⊕ a′′ (9)

BAttn is also generated into two groups by dividing the
time-dimensional tokens back and forth, as shown in Fig. 4
(c). Through this process, it is possible to learn the change
at the beginning and end of the action. In the case of BAttn,
after dividing Z into two groups in a binary manner, the
front and rear vectors, BQ ′ ∈ RS×T/2 and BK ′, respec-
tively, and BV ′ ∈ RS×T/2 matrices are calculated. By
contrast, the front vectors in Z are divided into BK ′′ and
BV ′′ ∈ RS×T/2, and the rear vectors in Z are divided into
BQ ′′ ∈ RS×T/2. We calculate the individual b′ ∈ RS×T/2

and b′′ ∈ RS×T/2 using the two types of matrices with the
same formula of ZAttn, and concatenate the output b′ and
b′′ as the result of BAttn.

BAttn(Q,K, V ) = b′ ⊕ b′′ (10)

3.3. STAR-transformer encoder and decoder

The proposed STAR-transformer follows a en-
coder–decoder structure of pure transformer [44] than
pure ViT [16], as shown in Fig. 2 (e). However, the encoder
is composed of a series of FAttn (self-attention) and ZAttn
L layers, and the decoder is composed of a series of FAttn
and BAttn layers. The encoder uses ZAttn to focus on the
learning relationships for detailed changes in action, and
the decoders use BAttn to learn the relationships for large
changes in action.

The structure of the STAR-transformer layer is as fol-
lows.

z̄l = LN{FSTA(zl−1) + zl−1}, l ∈ {1, 2, ..., L} (11)

z′l , z
′′
l = Decoupling(z̄l) (12)

z̃l = LN{(STA(z′l) + z′l)⊕ (STA(z′′l ) + z′′l )} (13)

zl = LN{MLP(z̃l) + z̃l} (14)

Here, l is the number of transformer layers, LN is
the layer normalization, and FSTA is the multi-head self-
attention for FAttn. Decoupling refers to zigzag or bi-
nary grouping. STA represents spatio-temporal attention for
ZAttn and BAttn, and MLP is a multi-layer perceptron.

The multi-class tokens output by STAR-transformer are
combined into a single class token by averaging and feeding
into the MLP to infer the final action label.

Method Pre-train
Feature

Acc.
RGB Annot Pose (%)

3D Deep [8] ✗ ✓ ✓ 98.1
PoseMap [29] ✗ ✓ ✓ 98.2
Multitask CNN [32] ✗ ✓ ✓ 98.6
HDM-BG [55] ✗ ✓ 93.4
Pr-VIPE [40] ✓ ✓ 97.5
UNIK [49] ✓ ✓ 97.9

STAR-Transformer ✗ ✓ ✓ 98.7

Table 1. Performance comparison with other state-of-the-art meth-
ods on the Penn-Action dataset (Annot, annotated pose(skeleton);
Acc, accuracy).

4. Experimental Results
In this section, we describe the implementation details,

including the dataset and training hyperparameters applied.
After conducting a quantitative analysis based on SoTA ap-
proaches, ablation studies and a qualitative analysis were
applied on the effectiveness of multi-expression learning,
the number of transformer layers, and spatio-temporal cross
attention.

4.1. Experiment Setup

Dataset Description: The experiment was conducted
using the representative action recognition datasets, Penn-
Action [54], NTU-RGB+D 60 [37], and 120 [28]. The
Penn-Action dataset includes 15 different action classes,
such as baseball swings, jumping jacks, and pushups, for
a total of 2,326 RGB video sequences. The NTU-RGB+D
60 dataset is a large dataset used for human action recog-
nition containing 56,880 samples of 60 action classes col-
lected from 40 subjects. Actions are divided into three cat-
egories having 40 daily actions (e.g., drinking, eating, and
reading), 9 health-related actions (e.g., sneezing, stagger-
ing, and falling), and 11 mutual actions (e.g., punching,
kicking, and hugging), respectively, based on multi-modal
information of the action characterization, including depth
maps, 3D skeletal joint positions, RGB frames, and infrared
sequences. NTU-RGB+D 60 has two evaluation proto-
cols, cross-subject (XSub) and cross-view (XView). NTU-
RGB+D 120 extends this version of NTU-RGB+D 60 by
adding another 60 classes and containing 114,480 samples
in total. NTU-RGB+D 120 has two evaluation protocols,
XSub and cross-setup (XSet).

Implementation details: The proposed STAR-
transformer was implemented using PyTorch, and ResNet
MC18 pre-trained with Kinetics-400 was applied as the
backbone network. When training the model, the Penn-
Action and NTU-RGB+D datasets used 16 fixed frames.
For all datasets, we utilized a batch size of 4, 300 epochs,
an stochastic gradient descent (SGD) optimizer, a learning
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Method Pre-training
Feature NTU60 NTU120

RGB Est. Pose Annot. Pose XSub XView XSub XSet

PoseMap [29] ✗ ✓ ✓ 91.7 95.2 - -
MMTM [35] ✗ ✓ ✓ 91.9 - - -
VPN [14] ✗ ✓ ✓ 95.5 98.0 86.3 87.8
DualHead-Net [10] ✗ ✓ 92.0 96.6 88.2 89.3
Skeletal GNN [51] ✗ ✓ 91.6 96.7 87.5 89.2
CTR-GCN [11] ✗ ✓ 92.4 96.8 88.9 90.6
InfoGCN [13] ✗ ✓ 93.0 97.1 89.8 91.2
3s-AimCLR [23] ✓ ✓ 86.9 92.8 80.1 80.9
PoseC3D [17] ✓ ✓ ✓ 97.0 99.6 95.3 96.4
KA-AGTN [31] ✗ ✓ 90.4 96.1 86.1 88.0

STAR-Transformer ✗ ✓ ✓ 92.0 96.5 90.3 92.7

Table 2. Performance comparison with other state-of-the-art methods on the NTU-RGB+D Action dataset (Est, estimated pose(skeleton);
XSub,cross-subject; XView, cross-view; XSet, cross-setup).

rate of 2e-4, and a momentum of 0.9. The experiments
were conducted in an environment configured with four
NVIDIA Tesla V100 GPUs.

4.2. Comparison with State-of-the-art Methods

Penn-Action Dataset: Table 1 shows the results of the
comparison experiments with other SoTA action recogni-
tion technologies for the Penn-Action dataset: 1) body joint
guided 3D deep convolutional descriptors (3D Deep) [8], 2)
evolution of pose estimation maps (EV-Pose) [29], 3) mul-
titask CNN [32], 4) Bayesian hierarchical dynamic model
(HDM-BG) [55], 5) view-invariant probabilistic embedding
(Pr-VIPE) [40], and 6) a unified framework for skeleton-
based action recognition (UNIK) [49]. UNIK [49] was pre-
trained using the Posetics dataset reconstructed from the
Kinect-400 [25] dataset, and Pr-VIPE [40] was pretrained
using the Human3.6M dataset [24]. STAR-transformer and
the other methods were trained and tested only on the given
data, without any pre-training.

The pre-trained UNIK [49] model showed a 0.8% lower
accuracy than the proposed model at 97.9%, and the Pr-
VIPE [40] model showed 97.5% accuracy, which is 1.2%
lower than that of the proposed model.

During the experiment, STAR-transformer and the three
methods [8, 29, 32] using the RGB of the video frames and
the pose (skeleton) feature together showed a high overall
performance of 98% or higher. However, the three meth-
ods [55, 40, 49] using only the pose feature showed a rel-
atively low performance of 93% to 97%. As the results in
Table 1 indicate, we can confirm that the action recogni-
tion performance can be improved when the RGB of the
video frames and pose features are used together. Although
STAR-transformer did not use any pre-training, the highest
accuracy was derived through the proposed cross-attention
using the cross-modal features together.

NTU-RGB+D Dataset: Table 2 shows the results of
the comparison experiments with SoTA action recognition
technologies when applying the NTU-RGB+D dataset: 1)
long-term localization using 3D LiDARs (PoseMap) [29],
2) multimodal transfer module (MMTM) [35], 3) video-
pose embedding (VPN) [14], 4) multi-granular spatio-
temporal graph network (DualHead-Net) [10], 5) skeletal
graph neural networks (Skeletal GNN) [51], 6) channel-
wise topology refinement GCN (CTR-GCN) [11], 7) in-
formation bottleneck-based GCN (InfoGCN) [13], 8) con-
trastive learning (3s-AimCLR) [23], 9) 3D skeleton and
heatmap stack (PoseC3D) [17], and 10) kernel attention
adaptive graph transformer network (KA-AGTN) [31]. Be-
cause a transformer-based action recognition method that
uses RGB of the video frames and cross-modal features of
skeleton together has not yet been published, we compare
the performance with KA-AGTN, a SoTA for skeleton and
transformer-based action recognition.

During this experiment, the accuracy was measured sep-
arately for the NTU-RGB+D 60 and NTU-RGB+D 120
datasets, and the cross-subject (XSub), cross-view (XView),
and cross-setup (XSet) were measured separately for each
dataset. The performances of four methods [17, 14, 35, 29]
using the RGB of the video frames and pose together, and
six methods using only the pose [31, 10, 51, 11, 13, 23],
were compared with STAR-transformer. Pre-training was
conducted using only 3s-AimCLR [23]. As shown in Ta-
ble 2, the accuracy was higher for NTU60 and NTU120
when the cross-modal features of the RGB and pose were
used together than when a unimodal feature was applied.
PoseC3D [17] performed 5% better on NTU60 XSub and
3.7% better on NTU120 XSet than the proposed STAR-
transformer because PoseC3D did not use annotated poses
but applied a separate pre-trained poseConv3D model for
3D pose estimation to achieve better action recognition. As
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Multi-Class token Accuracy(%)

✗ 97.3
✓ 98.7

Table 3. Effectiveness of multi-class token.

the results indicate, PoseC3D achieved a relatively high ac-
curacy because it extracted the optimal pose features suit-
able for its own model and used them for learning. How-
ever, this method still has certain disadvantages in that it re-
quires a pre-trained model for additional pose detection, and
the pose detection and action recognition models cannot be
trained end-to-end as a single model. KA-AGTN [31] used
a transformer structure as in our method. However, because
it uses only skeleton information and the transformer is used
only for spatial information processing between joints, the
performance is inferior to the proposed method by up to
1.6% for NTU60 and up to 4.7% for NTU120.

Although transformers need to be pre-trained using a
large dataset, the proposed STAR-transformer combines the
RGB and annotated poses without any pre-training, achiev-
ing a promising accuracy even on a larger class dataset
NTU120. In particular, NTU120 XSub and XSet showed
the second highest performance with accuracy rates of
90.3% and 92.7%, respectively. This indicates that STAR-
transformer is capable of an excellent action recognition,
although the action class is increased or the cross view is
changed.

4.3. Ablation Study

In this section, the detailed performance of the modules
constituting the proposed STAR transformer model is
verified based on several experiments. All experiments
were conducted using the Penn-Action dataset.

Effectiveness of multi-expression learning: To con-
firm the effect of the proposed multi-expression learning,
Table 3 presents a comparison experiment conducted with a
single-class token used in pure ViT [16] and the multi-class
token proposed in this study. The proposed multi-class
token performed 1.4% higher than a single-class token.
Although the existing single-class tokens did not effec-
tively conduct learning between the cross-modal tokens,
it was confirmed that the proposed multi-class token can
effectively increase the performance of the model under the
same cross-modal condition.

Effectiveness of the number of transformer layers:
Figure 5 shows the difference in performance according to
the number of transformer layers for the proposed spatio-
temporal cross-attention module structure. As shown in
Fig. 5, the overall performance improves as the number of
layers increases; however, when there are more than four
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Figure 5. Variation in accuracy according to the number of spatio-
temporal cross attention layers.

Attention Struture
Accuracy (%)

Encoder Decoder

F-F F-F 96.1
F-Z F-Z 97.3
F-B F-B 97.8
F-B F-Z 97.3

F-Z F-B 98.7

Table 4. Difference in accuracy between spatio-temporal cross-
attention mechanisms. F represents FAttn, Z indicates ZAttn, and
B represents the BAttn.

layers, the model is easily overfitted. Therefore, based on
the experimental results, we set the number of transformer
layers to three.

Effectiveness of spatio-temporal cross attention: Fig-
ure 6 shows the relative frame importance score for the
spatio-temporal cross-attention mechanism proposed in this
study. The scores were calculated using an attention rollout
[1] to calculate the relative concentration for each frame.
The attention rollout recursively receives the embedding at-
tention as the input for each layer of the transformer model
and computes the token attention.

In Fig. 6 (a), FAttn, which has a structure similar to that
of ViTs, shows a high score in the last frame, indicating that
the front frames are barely considered in action recognition.
Here, only the final top-three frames of after throwing the
ball significantly contributed to the performance, and thus
we can see that FAttn does not consider the overall temporal
characteristics.

In the case of ZAttn and BAttn, which are spatio-
temporal cross-attention mechanisms, the importance
scores are equally high in all frames, as shown in Fig. 6 (b)
and (c). When checking the top-three frames of ZAttn and
BAttn, sequentially varied frames such as before throwing
the ball, while throwing the ball, and after throwing the
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A�en�on A�en�on Score Top-3 Frames

(a) Full A�en�on

(b) Zigzag A�en�on

(c) Binary A�en�on

Figure 6. The relative importance score of 16 input frames of a validation video. The bar graph shows the attention score for each frame.
When only full spatio-temporal attention is used, the attention score appears high at the end of the action. In the case of zigzag spatio-
temporal attention, high attention scores were obtained in the middle and last frames when the action was large. In the case of binary
spatio-temporal attention, a high attention score appears in the entire frame of an action.

ball are considered for a performance improvement.

Difference in accuracy of cross attention modules:
Table 4 shows the differences in accuracy according to
the structure of the spatio-temporal cross-attention module.
Based on the experimental results, we can see that when
ZAttn (Z) and BAttn (B) are used together, the performance
is higher than when FAttn is used alone. When FAttn and
BAttn were used equally for the encoder and decoder (F-B,
F-B), the second highest accuracy was achieved at 97.8%;
however, the importance of the entire frame was still not
accurately reflected, and thus the performance was slightly
lower than that of the F-Z and F-B combinations. The com-
bination of F-B and F-Z, in which BAttn is applied to the
encoder and ZAttn is applied to the decoder, showed the
second-lowest performance at 97.3%. Based on the exper-
imental results, we used F-Z as the encoder and F-B as the
decoder.

Through these experimental results, we can see that for
an accurate action recognition, it is necessary to learn the
frame characteristics evenly in all frames through the pro-
posed spatio-temporal cross attention mechanism.

5. Conclusion
In this paper, we proposed STAR-transformer, an algo-

rithm based on a spatial-temporal cross-attention module
that simultaneously uses video frames and skeleton-based

features for action recognition. In addition, the proposed
multi-feature representation learning approach was able to
flexibly combine the RGB of the video frames, skeleton,
and joint trajectories using multi-class tokens. As a result
of testing the proposed algorithm using the Penn-Action
and NTU-RGB+D action datasets, it was confirmed that
the proposed STAR-transformer model achieved substantial
improvements in comparison to previous SoTA methods. In
a future study, we plan to develop an algorithm that can ef-
ficiently learn a model without an overfitting, even with a
small number of data. In addition, by extending the pro-
posed STAR-transformer to a model that combines a pose
estimation rather than annotated poses, we will modify the
STAR-transformer into an end-to-end model that can simul-
taneously apply pose feature estimation and action recogni-
tion optimized for action recognition.
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