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Abstract

Binary neural networks (BNNs) are advantageous in
performance and memory footprint but suffer from low ac-
curacy due to their limited expression capability. Recent
works have tried to enhance the accuracy of BNNs via a
gradient-based search algorithm and showed promising re-
sults. However, the mixture of architecture search and bi-
narization induce the instability of the search process, re-
sulting in convergence to the suboptimal point. To address
this issue, we propose a BNN architecture search framework
with bimodal parameter perturbation. The bimodal pa-
rameter perturbation can improve the stability of gradient-
based architecture search by reducing the sharpness of the
loss surface along both weight and architecture parameter
axes. In addition, we refine the inverted bottleneck convo-
lution block for having robustness with BNNs. The synergy
of the refined space and the stabilized search process allows
us to find out the accurate BNNs with high computation effi-
ciency. Experimental results show that our framework finds
the best architecture on CIFAR-100 and ImageNet datasets
in the existing search space for BNNs. We also tested our
framework on another search space based on the inverted
bottleneck convolution block, and the selected BNN models
using our approach achieved the highest accuracy on both
datasets with a much smaller number of equivalent opera-
tions than previous works.

1. Introduction
Deep neural networks (DNNs) have continuously im-

proved with their outstanding performance on complex

tasks, but the increasing amount of memory and operation

cost has been consistently raised as an issue [3, 8, 11]. To

*Work done while at Pohang University of Science and Technology.

reduce the overhead, model compression techniques, in-

cluding quantization or pruning, have been widely stud-

ied. As an extreme case of quantization, binary neural net-

works (BNNs) where both input activations and weights are

represented with 1-bit have advantages on saving a signifi-

cant amount of memory and computational cost by replac-

ing floating-point multiplications with simple XNOR oper-

ations with popcount [5, 20, 21, 22, 24].

However, one major drawback of BNNs is the limited-

expression capability. Because the weights and activations

should be restricted into the binary representation, output

quality is degraded significantly compared to real-valued

DNNs. Recently, several studies on employing neural ar-

chitecture search (NAS) algorithm to mitigate the limitation

of BNN have been reported [4, 17, 36, 38]. In particular,

BNNs with differentiable architecture search (DARTS [19])

demonstrated modest gain in accuracy within the resource

target, validating the potential of the architecture search for

binarized networks.

One of the important issues in DARTS is the robustness

of the search process. Conventional DARTS algorithms

have “collapsing cell” problem in which only parameter-

free operations are selected. To mitigate this problem,

several advanced techniques have recently been proposed

[4, 6, 18, 17, 34, 36, 38]. Among them, we focus on the per-

turbation of architecture parameters. As shown in Fig. 1a,

the relaxed representation of architecture A∗ during search-

ing and the discrete architecture Adisc for evaluating the

searched model differs. Perturbing the architecture param-

eters leads the network to learn towards a flat minimum and

helps to find a generalized model by narrowing the differ-

ence of loss values between A∗ and Adisc.

In addition, previous studies [1, 10] showed that the flat-

ness of loss surface regarding weight is also important for

minimizing the accuracy degradation induced by the quan-

tization operator. If we let the search process converge to
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(a) Loss landscape on A axis

(b) Loss landscape on W axis

Figure 1: Illustration of loss landscape near flat and sharp

minima on (a) A axis and (b) W axis.

the minimum point where the weight robustness is consid-

ered as shown in Fig. 1b, we may improve the network’s

output quality and transferability. However, the sharpness

of the loss curve near minimum along W axis has not been

considered in low-precision NAS fields yet.

Based on this intuition, we propose a BNN architecture

search framework with perturbation in both architecture and

weight parameters. In the proposed framework, weight pa-

rameters are trained using the loss value computed with ran-

dom perturbation on architecture parameters, and architec-

ture parameters are updated with the loss value computed

by random noise-added weight parameters. Injection of the

random noise to a parameter during the training phase of the

other parameter can support a model to be trained to the flat

minimum for both parameters.

On the other hand, we also conduct extensive studies for

refining the search space of BNNs. Due to the instability

of BNNs, overparameterized backbone networks are often

utilized [20, 22, 17]. The inverted bottleneck block origi-

nated from MobileNet-v2 [25] are preferred in full-precison

as an efficient backbone, but known to be vulnerable in low-

precision [23]. We refine the inverted bottleneck judiciously

by tuning the detailed configurations, i.e., groups size, ex-

pansion size, etc., for having robustness with BNNs. With

bimodal perturbation, we could search for the most accu-

rate network on the proposed search space having a much

smaller number of operations than previous works.

Overall, our contributions are summarized as follows.

• We proposed a new gradient-based BNN architecture

search framework using the bimodal parameter perturba-

tion, which drives the network to reach the flat minima in

the loss curve along both W and A axes. In the DARTS-

based BNN search space, our framework with noise in both

parameters searched for a cell architecture which achieved

the state-of-the-art performance on CIFAR-100 dataset.

• We designed a modified binary inverted mobilenet con-

volution (MBConv [25]) block, which is tolerant to bina-

rization error. Using the modified binary MBConv block as

a backbone architecture, we established a search space that

consists of the number of channels, kernel size, and expan-

sion, and then relaxed them as architecture parameters.

• Using the proposed NAS framework based on the

modified binary MBConv blocks, we demonstrated the

higher accuracy on CIFAR-100 and ImageNet dataset with

smaller number operations compared to previous NAS-

based BNNs.

2. Related works
2.1. Binary neural networks

BNNs were first proposed in [16] using the sign function

and straight-through estimator (STE) for gradient computa-

tion, showing reasonable accuracy on MNIST and CIFAR-

10 dataset. A scaling factor of binarized weights adopted in

[24] allowed BNNs to obtain more representation capacity

so that BNNs achieved noticeable improvement in accuracy

on the large ImageNet dataset. Several studies presented the

techniques to increase the representation ability with negli-

gible increase in the size of parameters or number of oper-

ations. Liu et al. [21] increased the performance of BNNs

by simply adding real-valued shortcut path to every convo-

lution layer. Martinez et al. [22] further enhanced the repre-

sentation ability of BNNs by adopting a data-driven chan-

nel scaling factor, knowledge distillation and 2-stage train-

ing schedule. Trainable parameters of activation function

were also introduced as a method to increase the accuracy

of BNN [20, 33].

2.2. Gradient-based neural architecture search

Gradient-based NAS [6, 13, 14, 18, 19, 28, 31, 34]

searches for an optimal architecture with a differentiable

method, and have the faster search time than evolutionary-

based [7, 39] or reinforcement-based [28, 29, 30] NAS. One

of the types of the gradient-based NAS is to search for the

components of each convolution layer including kernel size

or channel dimension [13, 14, 28, 31]. Components of each

convolution layer to be searched for are parameterized, and

the optimal architecture is found during the training of a su-

per network and the component parameters in this method.

DARTS [19] is another type of gradient-based NAS. In

DARTS framework, the operation candidates in a super cell

are expressed as the architecture parameters, and the ob-

jective to select optimal operations in the cell is relaxed

by learning architecture parameters. DARTS suffers from

the instability problem stated in Sec. 1, and to solve this is-

sue, improved DARTS techniques have been actively stud-

ied [6, 18, 34]. Binary NAS based on DARTS framework

recently has emerged to search for a binarization-optimized
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architecture [4, 17, 36, 38], but the same instability problem

may restrict the performance of the searching algorithm.

3. Preliminaries
3.1. Binary neural networks

Given a weight matrix W ∈ R
Cout×Cin×k×k, where

Cin, Cout and k stand for the number of input channels,

the number of output channels, and kernel size in a con-

volutional layer of a neural network, respectively, W can be

binarized using the following equation,

B(W ) = αW · sign(W ), (1)

where αW = E(|W |) = 1
nW

· ∑ |W | means an L1 norm

of W [24]. Similarly, an input matrix of the convolutional

layer X ∈ R
Cin×w×h, where w and h is the width and

height of X , can be binarized as,

XB =

{
1, ifX ≥ 0

−1, otherwise
(2)

[24]. In a binary neural network, a real-valued convolution

operation ⊗ is estimated using the above binarized B(W )
and XB as W ⊗ X ≈ B(W ) ⊕ XB , where ⊕ means a

binary XNOR convolution operation with popcount, which

gives significant performance improvement compared to the

full-precision operations in inference. During the training,

we use straight-through estimation (STE) [16] for gradient

computation to progressively update B(W ).

3.2. Differentiable architecture search (DARTS)

DARTS [19] is one of the state-of-the-art architecture

search frameworks based on the continuous relaxation of

discrete decision for the architecture parameters. The ob-

jective function of DARTS is formulated as the bi-level op-

timization problem of the training loss Ltrain and the vali-

dation loss Lval as following

min
A

Lval(W
∗(A), A), s.t. W ∗ = argmin

W
Ltrain(W,A).

(3)

With Eq. (3), weight W and the matrix of architecture pa-

rameters A = [αo
i,j ] are alternatively updated by gradient

descent method.

DARTS’s search space is motivated by the cell-based

CNN design [39]; only the normal and reduction cell ar-

chitectures are searched, then the whole neural network is

organized as a stack of the searched cells. Each cell is com-

posed of nodes and edges where each node x represents

an intermediate activation value and each edge ei,j repre-

sents a set of operation candidates as a Direct Acyclic Graph

(DAG). Given an operation o in a predefined search space

O, a mixed operation ôi,j(x) is constructed as,

ôi,j(x) =
∑
o∈O

exp(αo
i,j)∑

o′∈O exp(αo′
i,j)

· o(x), (4)

where αo
i,j stands for an architecture parameter correspond-

ing to the operation o at ei,j . The cell architecture is de-

termined by replacing the mixed operation with the opera-

tion that has the maximum αo
i,j value per each ei,j after the

searching process.

4. Binary neural architecture search with bi-
modal parameter perturbation

4.1. Searching BNN toward flat loss landscape via
bimodal parameter perturbation

In case of differentiable NAS for binary neural net-

works [4, 17, 36, 38], Eq. (3) is redefined with B(W ) as

follows:

min
A

Lval(B(W ∗(A)), A),

s.t. W ∗ = argmin
W

Ltrain((B(W ), A),
(5)

with the search space OB , where convolution operations are

replaced with binary convolution operations. This gradient-

based binary NAS method, however, also experiences the

same instability problem as the real-valued DARTS, which

results in the cell collapsing. To stabilize the training of ar-

chitecture parameters, previous binary NAS works adopted

diverse methods, including softmax with temperature [4],

gumbel softmax [36], penalties to parameter-free operation

or entropy-based diverse regularizer [17, 36].

The instability problem of DARTS was already ad-

dressed in recent studies [6, 18, 34], commonly indicating

that the phenomenon is highly related to the magnitude of

∇2
ALval. The standard DARTS is often trained to converge

to sharp minima (large ∇2
ALval). Because the final discrete

cell architecture (Adisc) to be deployed after the search may

not be same as the relaxed architecture (A∗) found in the

search step due to the discretization of architecture param-

eter selection, the difference in validation loss between two

architectures can be large if DARTS is trained towards sharp

minima. To alleviate this issue, early-stopping [18, 34] or

perturbing architecture parameter [6] was proposed, which

showed aforementioned techniques helped DARTS to be

trained to decrease the eigen values of ∇2
ALval and to avoid

to search for the collapsed cell.

The previous works, however, did not consider ∇2
WL

which determines the sharpness of minima of loss landscape

along W axis. It was reported that injecting adversarial per-

turbation to model parameters leads the model to learn to-

wards flat minima, thus a more generalized model can be

obtained [12, 37]. In addition, a previous study [26] showed

that low-precision models also achieved a high generaliza-

tion capacity when converges to the flat minima. The main

objective of BNN NAS is to find an architecture robust to

binarization error (and expected to achieve high accuracy

on validation/test set), so making models escape from sharp
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minima regarding W by using perturbation on W could be

another important objective for BNN search.

Motivated by the above relationship between general-

ization and parameter perturbation, we propose a BNN

search framework where perturbation of both architecture

and weight parameters is considered. The objective func-

tion for our framework is defined as follows:

min
A

EδW (Lval(B(W ∗(A) + δW ), A)),

s.t. W ∗ = argmin
W

EδA(Ltrain(B(W ), A+ δA)).
(6)

Perturbation on weight (δW ) and architecture parameters

(δA) are complementarily injected in Eq. (6). δW and δA
follow random uniform distribution U(−εWαW , εWαW )
and U(−εA, εA) with the scaling constants εW and εA, re-

spectively.

Next, we explain how the injected noise δW and δA can

regularize ∇2L. By applying Taylor expansion to the upper

objective function of Eq. (6) and approximating, the objec-

tive function can be approximated as follows

EδWL(B(W + δW ), A) ≈ Eδ′WL(B(W ) + δ′W , A)

≈ Eδ′W [L(B(W ), A) + δ′W∇WL(B(W ), A)

+
1

2
δ′TW∇2

WL(B(W ), A)δ′W ]

= L(B(W ), A) +
ε2Wα2

W

6
Tr{∇2

WL(B(W ), A)},

(7)

where δ′W follows N(0, εWαW /
√
3). In Eq. (7), the term

including ∇WL was removed because Eδ′W (δ′W ) = 0, and

the term including ∇2
WL acts as a regularization term in

addition to the original loss term. Therefore, the training

process to minimize the upper objective function of Eq. (6)

can lead the model to converge to flat minima of loss sur-

face along W axis by reducing the eigen values of ∇2
WL.

Likewise, the lower objective function of Eq. (6) can be also

similarly approximated applying the similar approach to the

one used in Eq. (7)1

Therefore, the bimodal perturbation on architecture and

weight parameters helps the model to converge to a flat

minimum of loss landscape along axes of both parame-

ters during search process. As a result, the gradient-based

BNN NAS algorithm with perturbation can find out a ro-

bust BNN architecture among candidates. Note that both

random noise and adversarial noise by projected gradient

descent (PGD) can regularize Hessian. In this work, we

only tested random noise because BNN search with PGD

requires much longer search time than with random noise

which increases search cost by 20%. Detailed analysis on

search cost of our proposed framework is provided in the

supplementary material.

1Approximation of the objective function with noise of architecture pa-

rameters was also explained in [6].

Table 1: CIFAR-100 test accuracy for the searched models

on BNAS search space under various perturbation condition

max εA
0.0 0.1 0.2 0.3

max εW

0.0 72.30 72.43 74.33 71.33

0.125 74.30 73.98 74.47 71.44

0.250 75.30 75.25 75.38 74.53

0.375 75.10 75.04 75.04 72.57

4.2. Bimodal parameter perturbation on BNAS

The search space used in BNAS [17] includes 1) binary

convolutions with 3× 3 and 5× 5 kernels, 2) binary dilated

convolutions with 3 × 3 and 5 × 5 kernels, 3) max pooling

and average pooling operations with 3 × 3 kernels, and 4)

a ‘Zero’ operation. Compared to DARTS, ‘Zero’ operation

will remain if selected and skip-connection (a real-valued

convolution) is added to normal (reduction) cell. We first

conducted a grid search to find the optimal magnitude of

perturbations (εA, εW ), and evaluated CIFAR-100 accuracy

on various size of models with the tuned perturbations.

Experiment setup for architecture search Our exper-

imental condition for architecture search is similar to the

condition stated in [17]. We searched for the architecture

by training a network (both weight and activation are 1-bit)

with 8 cells and 16 initial channels for 50 epochs on CIFAR-

10 dataset. 50% of the training CIFAR-10 dataset was used

for training weights, and the other 50% was set to valida-

tion set which was used for training architecture parameters

and evaluating the performance of relaxed architecture dur-

ing search. εA and εW were linearly increased from ×0.1
to ×1 of the maximum εA and εW value.

Experiment details of the evaluation of the searched
model The searched models were trained on CIFAR-1002

with 2-stage. At stage 1, the models with real-valued weight

(bw=32) and binary activation (ba=1) were trained for 400

epochs. Adam optimizer with learning rate 0.002, weight

decay 1e-5, and cosine annealing learning rate schedule

were used. The trained model at stage 1 was retrained un-

der (bw, ba)=(1,1) condition for 400 epochs with the same

training condition as the stage 1 except the weight decay

0. In both stages, mixup (α=0.2) [35] and cutout [9] were

applied in addition to the basic data augmentation, and the

real-valued ResNet-34 participated as a teacher model.

Searching for the optimal noise scaling To search for

an optimal magnitude of (εA, εW ), we tested our frame-

work in BNAS search space under various scales of per-

turbation on architecture/weight parameters, and the results

are shown in Tab. 1. Adding random noise to either archi-

tecture parameters or weight parameters helps finding the

2Training dataset of CIFAR-100 is split into 90% of training set and

10% of validation set.
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Figure 2: Test accuracy vs. the number of equiva-

lent operations on CIFAR-100 dataset under different per-

turbation conditions (εA=0.2 and εW =0.25). The num-

ber of equivalent operations is computed as FLOPs +

BinaryOPs/64 [36].

robust BNN architecture which achieves higher accuracy on

CIFAR-100 than searching without perturbation. Perturba-

tion of architecture parameters prevents a selected model

from collapsing, while perturbation of weight parameters

aids the search algorithm to find a cell more robust to bi-

narization; both results in search models with higher gen-

eralization capacity. The combined effect of both pertur-

bations is more effective, allowing the searching algorithm

to discover the models even more robust to binarization.

The optimal point with εA=0.2 and εW =0.25 shows the best

accuracy. Note that too large perturbation interferes with

learning, failing to find a better model. The architectures of

searched cells are illustrated in the supplementary material.

Evaluation of searched BNAS models Based on the

searched cell at the optimal point (εA=0.2 and εW =0.25),

we further evaluated the performance of searched models

with various sizes under different perturbation conditions

(without noise, with noise to either weight/architecture pa-

rameters, and with noise to both parameters). As shown in

Fig. 2, the searched model with both types of noise shows

the highest accuracy in all aspects on the CIFAR-100. As

a result, our bimodal perturbation-based NAS framework

discovered the best cell architecture on the BNAS search

space.

5. Differentiable binary NAS based on inverted
bottleneck structure

5.1. Modified binary inverted bottleneck structure

To demonstrate the general applicability of the proposed

method, we adopted the MBConv block, which is widely

used for NAS [7, 15, 29, 30], as a backbone architecture.

Networks based on MBConv, however, show large accu-

racy drop at low-precision, so we modified MBConv blocks

to binary MBConv blocks as shown in Fig. 3. In the mod-

(a)  Normal Block (b)  Reduction Block

Figure 3: Structure of modified binary (a) normal and (b)

reduction MBConv block. RSign and RPReLU stand for

ReAct Sign and ReAct PReLU, respectively.

ified binary MBConv, ReAct Sign and ReAct PReLU with

learnable threshold are used, which are known to increase

the representation capacity of BNN [20]. In addition, short-

cut path including average pooling (AvgPool) and a novel

partial activation duplication is added to reduction block

(Fig. 3b). It has been empirically accepted that connect-

ing the identity connection in an end-to-end manner is ef-

fective to maintain the expression capability of BNNs [21].

However, the identity path is disconnected in the original

inverted residual structure when the input/output channel

sizes are different. In order to connect the identity path in

a continuous manner without additional real-valued opera-

tions, we propose a partial activation duplication scheme.

Given the number of input channels Cin and that of out-

put channels Cout in a reduction binary MBConv block, the

output of AvgPool XAP is partially duplicated and concate-

nated as [XAP , XAP [: Cout − Cin, :, :]], then added to the

output of second 1 × 1 convolution. Without any shortcut

path in the reduction block, BNN models with binary MB-

Conv block failed to converge, but shortcut path with partial

duplication allows the models to achieve reasonable accu-

racy. We tested on the various types of shortcut path, and

adopted the type with partial duplication which shows the

highest accuracy on average. Experiments with the modi-

fied shortcut candidates are described in the supplementary

material. Finally, the depthwise convolution in MBConv

block is replaced with group binary convolution in binary

MBConv block because depthwise convolution is known
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to be difficult to binarize due to the double approximation

problem [4]. Based on the modified binary MBConv block,

we search the various number of input/output channels (C),

expansion e, and kernel size of group binary convolution

(k), which are included in the search space.

5.2. Parameterization of search space based on bi-
nary MBConv

(a) Kernel sharing 
(GroupBinConv)   

(b) Channel sharing 
(BinConv1x1)   

Figure 4: Parameterization methods to search for a optimal

binary MBConv block architecture using (a) kernel shar-

ing [27] and (b) channel (for input channel and expansion

search) sharing.

For gradient-based BNN search, the search targets (C, e
and k) need to be parameterized, and we chose the widely

used weight sharing method [13, 14, 27, 31, 32]. In case

of kernel size (k), we adopted the kernel sharing method

introduced in the Single-Path NAS [27]. Using the kernel

sharing method, k ∈ {3, 5} of the group binary convolution

can be parameterized with a super 5 × 5 kernel W5×5, 3 ×
3 sub-kernel W3×3, and a kernel-gating parameter αk as

follows (Fig. 4a)

W5×5 = W3×3 +
1

1 + exp(−αk)
·W5×5−3×3. (8)

The sign of the trained αk during search determines the ker-

nel size of group binary convolution to 3 or 5.

Next, we parameterize the number of channels C and

expansion e as single gating parameters αC and αe. As

shown in Fig. 4b and Eq. (9), the sigmoid value decided

by the channel position x (parameterized to p(x)) and αC

or αe is multiplied by the input of the first or second 1 × 1
convolution per channel, respectively.

W ′
[:,x,1,1] =

1

1 + exp(p(x)− α{C,e})
·W[:,x,1,1] (9)

After training αC and αe during search process, p(αC) and

p(αe) determines the number of channels and expansion of

each modified MBConv block.

The search space of BNN architecture based on modi-

fied binary MBConv is described in Tab. 2. Search space

size is as large as ≈ 1045 for CIFAR-100 and ≈ 1040 for

Table 2: Network architecture and search space based on

binary MBConv for (a) CIFAR-100 and (b) ImageNet. ‘c’,

‘k’, ‘e’, ‘s’, and ‘l’ stand for the number of output chan-

nels, kernel size (3 or 5), the number of expanded channels,

stride, and the number of layers, respectively. Two numbers

in bracket means the minimum and maximum number of

output/expanded channels whose step is 4

(a) Search space for CIFAR-100 dataset

Type c k e s l

Conv [48, 96] 3 - 1 1

BinMBConv [48, 96] {3, 5} [144,576] 1 4

BinMBConv [96, 192] {3, 5} [144,576] 2 1

BinMBConv [96, 192] {3, 5} [288,1152] 1 3

BinMBConv [160, 384] {3, 5} [288,1152] 2 1

BinMBConv [160, 384] {3, 5} [480,2304] 1 3

BinMBConv [320, 512] {3, 5} [480,2304] 2 1

BinMBConv [320, 512] 3 [960,3072] 1 3

AvgPool [320, 512] - - - 1

FC 100 - - - 1

(b) Search space for ImageNet dataset

Type c k e s l

Conv 32 3 - 2 1

BinConv 64 3 - 1 1

BinMBConv [96, 144] {3, 5} [192,384] 2 1

BinMBConv [96, 144] {3, 5} [288,864] 1 1

BinMBConv [128, 288] {3, 5} [288,864] 2 1

BinMBConv [128, 288] {3, 5} [384,1728] 1 1

BinMBConv [256, 512] {3, 5} [384,1728] 2 1

BinMBConv [256, 512] {3, 5} [768,3072] 1 5

BinMBConv [512, 768] {3, 5} [768,3072] 2 1

BinMBConv [512, 768] {3, 5} [1536,4608] 1 1

AvgPool [512, 768] - - - 1

FC 1000 - - - 1

ImageNet dataset. To search for a network with the tar-

get number of operations tOPs, we used the regulariza-

tion term max(log (OPs(αk, αC , αe)/tOPs), 0), in which

OPs(αk, αC , αe) stands for the expected number of opera-

tions computed with αk,αC ,and αe.

5.3. Bimodal parameter perturbation on NAS with
binary MBConv block

Experimental setup for CIFAR-100 The super network

((bw, ba) = (1, 1)) was trained for 80 epochs during search-

ing. Architecture parameters were not updated during the

first 40 epochs, but perturbation was added to architecture

parameters to learn representation under diverse architec-

ture conditions. Adam optimizer with learning rate 0.002

and weight decay 0 and the cosine annealing learning rate

schedule was used for training weight parameters. A fixed

learning rate 5e-4 and weight decay 0 were used for training
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(a) Test accuracy of models searched under different perturba-

tion conditions
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N Groups (Depthwise)
N/2 Groups
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(b) Test accuracy of models with various number of groups for

group binary convolution

Figure 5: Test accuracy vs. the number of equivalent opera-

tions on CIFAR-100 dataset with searched (a) models under

different perturbation condition (N/2 groups) and (b) mod-

els with various number of groups searched with bimodal

parameter perturbation on binary MBConv search space.

architecture parameters. The searched models were trained

on CIFAR-100 with the same training schedule, hyperpa-

rameters, and data augmentation stated in Sec. 4.2.

Experimental setup for ImageNet We used ImageNet-

100, which has ×0.1 size of ImageNet with 100 labels for

searching for a model, and used ImageNet for evaluating

the searched models. 20% of validation set were randomly

selected from training dataset of ImageNet-100 as follow-

ing the widely used setup for NAS on ImageNet [31]. The

super network ((bw, ba)=(32,1)) was first trained for 100

epochs without searching, then the trained super network

at the previous step was retrained under (bw, ba)=(1,1) con-

dition for 100 epochs. Architecture parameters were not up-

dated during the first 50 epochs, but perturbation was added

to architecture parameters. Adam optimizer with learning

rate 5e-4, weight decay 0, and linear learning rate schedule

was used for training weight parameters. The fixed learning

rate 5e-4 and weight decay 0 were used for training archi-

tecture parameters. The searched model was trained under

(bw, ba)=(32,1) condition for 128 epochs. Adam optimizer

with learning rate 5e-4, weight decay 1e-5 and linear learn-

ing rate schedule were used. The trained model at stage

1 were retrained under (bw, ba)=(1,1) condition during 128

epochs with the same training condition at stage 1 except

weight decay 0. In both stages, only the basic data augmen-

tation was applied, and the real-valued ResNet-34 partici-

pated as a teacher model.

Experimental results on search space of binary MB-
Conv block We first found the optimal perturbation scale

point (εA, εW )=(0.3,0.5), where the searched model showed

the best performance on CIFAR-100 (74.23%) with about

13M equivalent Ops. Fig. 5a describes CIFAR-100 test

accuracy on searched models using N/2 groups in group

binary convolution with N input channels under dif-

ferent perturbation conditions. Injecting noise to both

weight/architecture parameters during search helps to find

the architectures more optimized for binarization similar to

the BNAS cases in Sec. 4.2. The searched models based on

binary MBConv block achieve > 75% accuracy on CIFAR-

100 with 83.2% reduced number of operations compared to

models selected on BNAS. We further searched and evalu-

ated the model by varying the number of groups of group

binary convolution using our framework, and its result in

Fig. 5b showed that N/2 is the optimal number of groups

for the CIFAR dataset in which the highest accuracy is

achieved with a similar number of operations. Similarly,

we found that N/4 groups is optimal for ImageNet dataset.

Interestingly, we observed that the perturbation on ar-

chitecture parameters in the binary MBConv-based search

space was not as effective as the cases in the BNAS search

space. The difference of the effect on generalization comes

from the difference in the search space and the target to

search. The objective of BNAS is to search for the opti-

mal operations in a cell, whereas the objective of binary

MBConv block-based NAS is to search for the optimal size

of kernel or channels in a fixed operation. Because the ar-

chitecture components targeted to find are relaxed in both

search spaces, both BNAS and MBConv block-based NAS

experience the difference in loss between the relaxed archi-

tecture representation during search and its discrete repre-

sentation for evaluation (|L(Adisc) − L(A∗)|). But, the

|L(Adisc)−L(A∗)| is much more prominent on BNAS (dis-

crepancy due to eliminating operations) than on binary MB-

Conv block-based BNN search (discrepancy due to Sigmoid

function), and hence perturbing architecture parameters in

DARTS-based BNAS achieves better generalization effect.

Comparison with the previous works Tabs. 3 and 4

shows the comparison between the best model from our

scheme and those from previous works. With the lower

number of FLOPs and equivalent operations, our searched

network achieves the higher accuracy than other BNN mod-

els that were handcrafted or searched with gradient-based
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Table 3: Top-1 validation accuracy on ImageNet-1K for BNN models searched for with gradient-based NAS. ‘Params’ are

computed by assuming that 32-bit is required for full-precision parameters and 1-bit for binarized parameters. Params of

BARS [36] cannot be computed because channel dimensions of the searched models are not available. In case of BNAS [17],

Ops and Params are calculated including real-valued convolutions at shortcut paths in reduction blocks

Model BOPs (G) FLOPs (M) Equiv. Ops (M) Params (MB) Top-1 Acc. (%)

BNAS-D [17] 1.024 303.1 319.1 16.0 57.7

BNAS-E [17] 1.156 341.4 359.5 17.8 58.8

BNAS-F [17] 1.439 341.4 363.9 18.1 59.0

BNAS-G [17] 1.258 403.2 422.9 20.6 59.8

BNAS-H [17] 5.433 1190 1275 57.6 63.5

BARS-D [36] 1.645 129.0 154.7 N/A 53.2

BARS-E [36] 2.848 161.0 250.5 N/A 56.2

BARS-F [36] 5.188 254.0 335.1 N/A 60.3

BATS [4] 1.149 80.50 98.45 N/A 60.4

BATS (2×) [4] 2.157 121.0 154.7 N/A 66.1

Ours 4.344 21.64 89.52 5.78 68.2

Table 4: Top-1 validation accuracy on ImageNet-1K for manually designed BNN models

Model BOPs (G) FLOPs (M) Equiv. Ops (M) Params (MB) Top-1 Acc. (%)

BNN [16] 1.695 131.4 157.9 4.18 42.2

XNOR-Net [24] 1.695 133.3 159.8 4.18 51.2

Bi-Real-Net [21] 1.676 154.4 180.6 4.18 56.4

Real-to-bin [22] 1.676 156.4 182.6 4.18 65.4

XNOR++ [5] 1.695 133.3 159.8 4.18 57.1

MeliusNet22 [2] 4.620 135.0 162.0 3.9 63.6

ReActNet-A [20] 4.820 12.0 87.31 7.89 69.4

Ours 4.344 21.64 89.52 5.78 68.2

method. Despite the outstanding performance of the in-

verted mobile structure in the full-precision domain, it

is hard to utilize the benefit of the structure in the low-

precision domain due to its vulnerability in quantization.

The refined structure improves the robustness of the search

space, and the proposed bimodal perturbation guides the

search process toward a more robust space. The synergy

of the two contributions produces the state-of-the-art BNN

results for the ImageNet scale task. In addition, while previ-

ous BNN models heavily relied on floating point operations

(>64% of equivalent operations) to improve the accuracy,

only 24% of equivalent operations are floating point opera-

tions in our model.

6. Conclusion
We proposed a gradient-based binary architecture search

framework based on bimodal parameter perturbation to al-

leviate the instability problem of gradient-based NAS meth-

ods. We mathematically derived that random noise injected

into architecture/weight parameters could drive a model to

a stable flat minima in the loss landscape. Experimental

results on DARTS-based BNN search showed that our pro-

posed method allowed the search algorithm to find more

robust BNN architecture. To search for more operation-

efficient BNNs using our framework, we modified the MB-

Conv block to be optimized to binarization, and used it as

a backbone layer for search. In the search space for the

ImageNet datasets based on our modified binary MBConv

block, our proposed framework found an architecture that

achieved higher performance with the smaller number of

operations than previous BNN NAS methods.
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